
SCIENCE CHINA
Technological Sciences Print-CrossMark

September 2025, Vol. 68, Iss. 9, 1970301:1–1970301:19
https://doi.org/10.1007/s11431-024-2943-2

c⃝ Science China Press 2025 tech.scichina.com link.springer.com

. PROGRESS .

A survey of supply chain management modeling and optimization:
Key problems and recent solutions

Yu SUN1, Zhenqian WANG1,2, Haibo GU1,2, Shaolin TAN2 & Jinhu LÜ1,2*
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Abstract As a significant infrastructure of contemporary consumption and commodity production, supply chains formulate
entire networks, from industrial production to sales. In recent years, several key challenges have emerged for supply chains, along
with the rapid improvement in production capabilities and increased consumption, such as efficiency, robustness, and flexibility,
among other concerns. To address these challenges, supply chains have been trending toward developing strongly interconnected
networking structures and highly automated intelligent management. In the meantime, supply chain management (SCM) methods
are increasingly being reshaped by artificial intelligence (AI)-driven decision-making techniques. This review provides a brief
yet systematic survey of current modeling and optimization approaches for SCM. Specifically, we first introduce the fundamental
decision-making problems in the four key areas of SCM, covering inventory management, logistics, production planning, and
demand forecasting. We then review the classic and contemporary AI-driven methods employed to address these problems.
Finally, we highlight some challenges and future research directions in the context of SCM.
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1 Introduction

The globalization process has fomented the widespread dis-
tribution of industrial production, transportation, and retail
operations. With the advancements in the Internet and infor-
mation technology (IT), the rise of e-commerce has estab-
lished a more dynamic and fast-paced market [1, 2]. Con-
sumers expect faster delivery times, personalized products,
and seamless shopping experiences across multiple chan-
nels. Furthermore, emerging capabilities such as the indus-
trial internet [3, 4], intelligent manufacturing [5, 6], and in-
dustry 4.0 [7, 8] are driving production and manufacturing
sectors toward automation and intelligence. Supply chains
are a bridge between industrial production and retail oper-
ations that coordinate suppliers, manufacturers, and distrib-
utors. An idealized supply chain must adapt to fluctuating
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consumer preferences and should also be capable of manag-
ing inventory in real time and ensuring seamless coordina-
tion across e-commerce and physical sales channels. There-
fore, global supply chains’ value has become especially pro-
nounced, and the optimal design of efficient and flexible sup-
ply chains is a popular research topic [9–14].

Supply chains coordinate raw material suppliers and man-
ufacturers on the upstream end and distributors and retailers
on the downstream end. They maintain the flow of materials,
funds, and information across associated enterprises, estab-
lishing stable, efficient, and sustainable industrial systems.
Although supply chains within different fields are organized
in diverse ways across different sectors, their general intent is
to reduce the costs associated with procurement [15], produc-
tion [16], transportation [17], and storage [18] processes. Be-
yond cost reduction, supply chains must ensure efficient lo-
gistics to maintain product quality and response time [19,20].
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The supply chain must be capable of withstanding market
uncertainties or stochastic disruptions and reducing the pos-
sibility of extreme circumstances such as stockouts or back-
logs. A well-organized supply chain can significantly en-
hance efficiency, reduce waste, boost profits, and stimulate
economic growth.

Supply chain management (SCM) involves making op-
timal decisions based on available information to ensure
the efficient flow of goods, services, and information from
suppliers to consumers. Managers aim to determine the
best strategies referencing their experience, computational
simulations, and/or mathematical models to achieve objec-
tives such as profit maximization. However, several chal-
lenges arise in managing a supply chain efficiently and cost-
effectively. First, entities within the supply chain often be-
long to different organizations, and a tendency toward lim-
ited information sharing to protect individual interests can
arise [21]. Such information asymmetry can impede a sup-
ply chain’s ability to improve material flow efficiency and re-
duce overall competitiveness. Second, uncertainty within the
supply chain hampers decision-making for all involved enti-
ties [14,22,23]. Uncertainties can arise from demand fluctua-
tion [19], random events [24], and government policies [25],
which make demand forecasting and production planning
difficult and can result in lost sales, increased costs, and oper-
ational inefficiencies. Finally, the structure of modern supply
chains has become significantly more complex due to global-
ization, technological advancements, and changing consumer
expectations [26, 27]. The interconnection between different
supply chain entities is strongly coupled and even dynami-
cally changes with time [28–30]. Managing and optimizing
such complex supply networks requires advanced strategies
that ensure agility and flexibility.

Operations research, which provides systematic quantita-
tive tools for solving complex decision-making supply chain
problems, has a crucial role in SCM’s development and op-
timization [31, 32]. A variety of optimization models have
been developed for typical supply chain scenarios such as in-
ventory management [33–41], logistics [42–46], and produc-
tion [47–52]. These models can help managers make sound
decisions to minimize costs, maximize service levels, and
balance trade-offs between different objectives. Moreover,
in recent years, technological advancements such as the In-
ternet of Things (IoT) [53], blockchain [9] and artificial in-
telligence (AI) [37] have also introduced new approaches to
SCM. These technologies have enabled enhanced data shar-
ing, real-time visibility, and improved traceability, establish-
ing more efficient, transparent, and responsive supply chains,
which motivates our investigation of the latest developments
in related fields.

This study provides a review of academic literature on
SCM modeling and optimization, with a focus on fundamen-
tal challenges and recent AI-driven solutions. SCM encom-

passes a wide array of activities, such as materials procure-
ment, product design, manufacturing, logistics, marketing,
and retail. Considering the vastness and complexity of the
field, it is challenging to offer an exhaustive review of all as-
pects of SCM. Consequently, our review specifically focuses
on four critical areas: production planning during the pro-
duction stage, inventory management during the intermedi-
ate stage, logistics during the distribution stage, and demand
forecasting during the consumption stage. These areas form
the core framework of SCM and provide a clear overview
of its primary concerns. While this review concentrates on
these key issues, it is crucial to acknowledge that other fac-
tors, such as marketing, purchasing and human resources, are
also vital components of the broader supply chain and logis-
tics ecosystem.

Several survey studies on SCM have been published in
recent years [8, 11, 13, 21, 54]; however, these surveys pri-
marily focused on the technical aspects of supply chain de-
sign. In contrast, this study provides a technical review of re-
cent advancements in SCM from the perspective of modeling
and optimization. Our goal is to explore how these innova-
tions are transforming traditional operations research meth-
ods in SCM. Overall, the primary contribution of our review
is twofold. First, it incorporates the latest advances in SCM
modeling and optimization and can increase SCM practition-
ers’ capability to leverage AI and machine learning (ML)
technologies to persistent SCM challenges effectively. Fur-
thermore, this review provides a rich framework of the real-
world challenges faced in SCM that can help AI researchers
understand the complexities and practical considerations that
must be addressed when applying ML techniques in the sup-
ply chain field. Overall, this review bridges the gap between
the practical challenges of complex SCM and the growing
potential of AI advances to address these challenges.

2 Overview of supply chains and optimization
models

2.1 Supply chain structure

A supply chain encompasses all processes involved in trans-
forming raw materials into finished products and delivering
them to end consumers, involving a series of interconnected
activities such as sourcing, production, transportation, dis-
tribution, sales, and inventory management [55]. Figure 1
describes a typical supply chain diagram involving multiple
entities such as suppliers, manufacturers, distributors, and re-
tailers, wherein materials move downstream, while informa-
tion and funds flow upstream. Suppliers deliver raw mate-
rials to manufacturers, who then produce products and pass
them further downstream. Distributors are responsible for
conveying products from manufacturers to retailers, and re-
tailers handle the final sales stage. These processes facilitate
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Figure 1 (Color online) Illustration of the supply chain structure.

the flow of materials, funds, and information to maintain sup-
ply chain operations.

Typically, a supply chain is represented as a chain [56]
or network structure [27]. Contemporary supply chains may
feature more complex structures, with multiple entities un-
dertaking the same role, forming the supply chain network
(SCN) [11]. This network structure enables the efficient flow
of materials and information so that the right products are
available at the right time and place to meet consumer de-
mand.

Entities within a supply chain could be part of the same
enterprise, but they are more frequently operated by differ-
ent companies [15]. Intricate strategic interactions such as
competition among these companies introduce difficulties in
supply chain coordination [57]. Furthermore, products that
flow across a supply chain often possess diverse attributes
that impose various requirements on supply chain operations.
For instance, perishable goods demand swift transportation
across the supply chain to maintain quality, whereas prod-
ucts with a longer shelf life can accommodate inefficient lo-
gistics [58].

SCM encompasses multiple interconnected areas that col-
lectively influence efficiency and competitiveness. Inventory
management is a crucial component of SCM, as each entity
within the supply chain must maintain an adequate buffer
stock to ensure a continuous supply to downstream partners.
The logistics process facilitates the movement of materials
between entities and has a key role in determining the supply
chain’s overall efficiency. The factory production process is
the starting point of product flow, and the costs associated
with procurement and manufacturing have a significant im-
pact on the overall competitiveness of the supply chain. Ad-
ditionally, accurate demand forecasting is critical as it is in-
herently connected to inventory management, logistics, pro-
duction, and other SCM processes. Considering the intrin-
sic delays in production and transportation, upstream entities
must anticipate downstream demand to effectively align sup-
ply with customer needs. Accurate demand forecasting is
vital for minimizing costs, enhancing risk resilience, and im-

proving services throughout the supply chain [59].
Every operational procedure noted above contributes to

the final retail cost of a product. Therefore, optimizing man-
agement strategies to reduce costs is a central focus of SCM.
Various optimization techniques have been applied across
different SCM areas to improve efficiency, reduce costs, and
boost profitability. As noted above, this review focuses on
four key areas of SCM: inventory management, logistics,
manufacturing, and demand forecasting, which are funda-
mental to driving improvement and achieving cost-effective,
streamlined operations throughout the supply chain.

2.2 Optimization models

The primary task of SCM is to ensure that products reach
consumers in a timely manner, while each participant seeks
to minimize costs and maximize profits. Consequently, op-
timization techniques are an integral aspect of SCM and are
extensively applied to improve efficiency and profitability.

2.2.1 Basic optimization models

Mathematically, optimization is intended to identify the de-
cision variable subject to certain constraints to maximize or
minimize a specific objective function. A typical optimiza-
tion problem can be expressed as follows:

min f (x),

s.t. gi(x) 6 0, i = 1, 2, · · · ,m,
h j(x) = 0, j = 1, 2, · · · , n,

where x is a scalar or multi-dimensional decision vector, f (·)
is the objective function, and gi(·) and h j(·) respectively de-
note inequality and equality constraints.

Linear programming (LP) has been extensively studied
and widely used for supply chain optimization problems,
such as facility location and logistics planning [11, 55]. The
objectives and constraints of LP problems are linear func-
tions; therefore, the feasible region is a convex polytope and
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the solution is always located at the boundaries of this re-
gion. The simplex algorithm and interior point method are
two typical approaches used to solve the LP problem, and
many mature commercial or open-source solvers have been
developed for LP problems.

Optimization problems involving nonlinear objective
functions or constraints are referred to as nonlinear program-
ming (NLP) problems. These types of problems are com-
monly applied in areas such as inventory management, de-
mand forecasting, and commodity pricing [34, 60]. Con-
sidering that unconstrained convex optimization problems
have been extensively studied, much more effort has been
focused on how to transform constrained, nonconvex NLP
problems into unconstrained convex problems. In this case,
the Karush-Kuhn-Tucker (KKT) conditions provide neces-
sary conditions for optimality in NLP problems. However,
nonconvex optimization problems remain challenging, and
only approximate solutions can be obtained for complex
problems.

Some of the decision variables in supply chain problems,
such as products’ quantity and routing paths, could be dis-
crete [11]. In this case, solutions based on the continuity
assumption become infeasible in practice; therefore, these
types of problems are typically modeled as discrete opti-
mization problems (DOP), such as integer programming (IP)
problems or mixed integer programming (MIP) problems.
In many scenarios, these problems are commonly NP-hard
and subsequently introduce significant computational chal-
lenges, especially in accommodating large solution spaces.
Branch-and-bound and dynamic programming methods have
commonly been employed for this type of problem-solving
strategy [42, 44]. Problems with specific constraints, such as
scheduling and routing, are typically classified as combinato-
rial optimization problems (COPs). While such problems can
generally be formulated as IP or MIP models, specialized so-
lution algorithms tailored to the unique structure of a problem
have often been developed. Approximate methods such as
heuristic algorithms and deep learning-based methods have
frequently been employed to mitigate excessive computa-
tion, although this may come at the cost of solution accuracy
[49].

In addition to cost metrics, factors such as service level,
robustness, and environmental impact are often considered
in SMC. As a result, multi-objective optimization problems
(MOPs) are common challenges in this field [10]. A straight-
forward approach is to assign weights to each objective,
which transforms the problem into a single-objective opti-
mization. However, this method may not be suitable for all
situations. An alternative is to assess multiple performance
metrics using the concept of Pareto frontiers. This approach
generates a set of optimal solutions that establish a hyper-
plane representing the optimal trade-offs among the various
objectives.

2.2.2 Advanced optimization problems

Supply chain models may not always be deterministic, as ran-
dom events are prevalent within SCM processes. Optimiza-
tion and decision-making under uncertain conditions are sig-
nificant topics in the SCM field. In such cases, stochastic
programming (SP) problems are constructed, in which cer-
tain parameters are treated as random variables with specific
probability distributions [24]. The optimization objectives
are then adjusted to reflect specific statistical characteristics,
such as the expected value and variance of residuals.

In comparison, robust optimization (RO) problems con-
centrate on preparing for the worst-case scenario, which can
often be more intricate [12, 61]. In contrast, distribution-
ally robust optimization (DRO) assumes that more distribu-
tion information is known outside the feasible domain, con-
structing an uncertain set of distributions to address the prob-
lem [62]. In many scenarios, entities must dynamically adapt
to unknown external uncertainties by adjusting their strate-
gies. These challenges are often modeled as Markov deci-
sion processes (MDPs). Recently, dynamic decision-making
frameworks based on reinforcement learning (RL) and deep
reinforcement learning (DRL) have gained considerable at-
tention [16, 63]. Such algorithms can learn and adjust dy-
namically, using a predefined reward function to determine
the optimal action at each step. Some studies have also em-
ployed optimal or robust control approaches to mitigate the
effects of uncertainty [64]. The goal of optimal control is to
determine the best sequence of control signals over a spec-
ified or infinite time horizon. This long-term, strategic ap-
proach helps maintain system stability, even in the face of
unpredictable fluctuations.

A supply chain involves multiple companies with com-
plex competitive and cooperative relationships. As a result,
game optimization (GO) approaches have commonly been
employed, in which other participants’ actions are consid-
ered in decision-making [65–67]. Game theory is particu-
larly useful in pricing strategy, especially for coordinating
interactions between vendors and buyers [68]. This approach
is a framework for understanding how different supply chain
participants can influence one another’s decisions and align
strategies to achieve mutually beneficial outcomes.

As a brief summary, Table 1 details the commonly used

Table 1 (Color online) Common optimization problems in SCM

Inventory Logistics Manufacturing Forecasting
LP – X X –

NLP X X – X

DOP X X X –
MOP X X X –

SP/RO X X X X

MDP X X X X

GO X – – –
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optimization models for inventory, logistics, manufacturing,
and forecasting. We survey these models and associated op-
timization methods in detail in the next section. Notably,
our survey primarily focuses on analytical modeling and op-
timization approaches; therefore, the simulation-based opti-
mization approaches are not included in this review. Relevant
studies include refs. [63, 69–71].

3 SCM modeling and optimization methods

This section presents a detailed survey of the SCM model-
ing and optimization from inventory management, logistics
optimization, production planning, and demand forecasting
perspectives.

3.1 Inventory management

An efficiently managed supply chain is expected to promptly
meet market demand without shortages; however, as materi-
als move downstream through the supply chain, time delays
are inevitable during manufacturing and logistics. Therefore,
inventory has a crucial role in supply chains to ensure the
ability to fulfill service requirements. Effective inventory
management is a critical SCM concern that is widely im-
plemented within supply chains as a buffer against demand
fluctuations and operational uncertainties.

As illustrated in Figure 2, the primary functions of in-
ventory management can be divided into product distribu-
tion according to downstream orders and upstream orders
based on current inventory levels and future demand. Beyond
simply meeting downstream entities’ demand, managers also
aim to minimize overall inventory costs while maintaining
stock levels. Therefore, companies can improve financial
performance by implementing optimal replenishment strate-
gies that strike a balance between the costs of stockouts and
inventory holding.

3.1.1 Basic inventory models

The economic order quantity (EOQ) model, introduced by
Harris [72] in 1913, is a foundational approach for contin-
uously reviewed inventory systems. In this model, the re-
plenishment process assumes zero lead time and constitutes
an idealized framework. Furthermore, inventory levels are
assumed to decrease linearly over time with constant and
known demand. Once inventory reaches zero, it is imme-
diately replenished to order quantity Q by placing a new or-
der, which is calculated to minimize the total costs associated
with holding inventory and ordering new stock over a given
period. The total cost is commonly represented as

C(Q) =
h
2

Q + k
D
Q
+ cD. (1)

In this model, h is the coefficient of holding cost, k is the co-
efficient of the fixed cost of a single order, c is the coefficient
of variable order cost, and the demand rate D is constant.
The primary intent of the replenishment strategy is to deter-
mine the time points and/or order quantities that optimize the
total cost C(Q). Eq. (1) is a convex function with optimal or-

der quantity Q∗ =
√

2kD
h . Managers often maintain a buffer

stock to ensure that demand is promptly met, whereas hold-
ing excess inventory could also result in capital loss due to
inefficiencies. When the costs of shortages can be quanti-
fied, managers may factor them into penalty costs as an as-
pect of their total cost considerations. Managers may adopt
a zero-inventory strategy for products with low demand or
high holding costs to avoid unnecessary holding or potential
sunk costs. This approach, which is known as the just-in-
time (JIT) strategy, involves ordering only when immediate
need arises [24].

In contrast, the EOQ model is a simplified framework that
does not fully capture the complexities of real-world inven-
tory management. In practice, orders must be placed before
inventory is depleted to account for lead time (i.e., the period
between placing an order and receiving the materials). Man-
agers typically maintain a certain level of safety stock to pre-
vent stockouts during replenishment. This (r,Q) policy that
immediately orders a predetermined quantity Q when the in-
ventory decreases to the established reorder point r is widely
adopted for continuously reviewed products [33,73]. The re-
order point r should exceed the safe inventory level to cover
demand during the reorder process. The (s, S ) policy that re-
plenishes the inventory level up to S if the on-hand inventory
falls below s was found to be more suitable for periodically
reviewed inventory systems [35]. More specific models can
be found in ref. [60].

Depending on the specific product category, managers
must consider various factors such as lead time, safety stock,
transportation capacity, and production rates. In practice,
actual inventory management strategies may be customized
variations of these basic models. Managers typically use
optimization techniques that are formulated as NLP or MIP
problems to determine optimal order times and quantities.

Products’ prices can affect consumers’ willingness to pur-
chase, particularly for goods with elastic demand and inven-
tory management is closely aligned with pricing strategies
in such circumstances. Combining dynamic pricing with in-
ventory control can be a powerful approach to enhance prof-
itability [36]. In addition, pricing strategies also involve
factors of cooperation, competition, and fairness concerns
across different sales channels [15].

Perishables such as fresh goods and blood products are
commonly encountered in daily life. Such items have lim-
ited shelf lives [38] or are subject to gradual degradation over
time [39]. Holding large quantities of perishable goods is
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Figure 2 (Color online) An illustration of inventory management procedure.

prone to considerable losses, and such products generally re-
quire lower inventory levels and more efficient logistics op-
erations. Therefore, the perishable goods supply chain is par-
ticularly vulnerable to market fluctuations [40].

3.1.2 Stochastic inventory management

SCM processes often involve uncertainty and variability that
must be modeled probabilistically rather than deterministi-
cally. Uncertainties arising from demand fluctuations, vari-
able lead times, and unreliable supply channels can signif-
icantly impact inventory management, potentially resulting
in stockouts and other challenging scenarios. Therefore,
stochastic modeling is commonly used in such scenarios to
account for variability and optimize decisions concerning or-
der quantities, stock levels, and safety inventory.

The newsvendor model is a classic framework for deter-
mining the optimal order quantity Q over a single period at
which demand D is a stochastic variable that follows a spe-
cific probability distribution P [34]. The basic model is par-
ticularly relevant for products with discrete order quantities
in which unsold items can be returned or recycled. Expected
earnings are calculated by considering the revenue from sales
and costs of order and unsold inventory as follows:

C(Q) = pE [min(Q,D)] + sE [max(Q − D, 0)] − cQ,

where the coefficients p, s, and c denote the selling price, the
salvage price, and the unit order cost, respectively. The form
of the profit function C(Q) is shaped by the distribution of D
and typically results in an NLP or MIP problem.

In some cases, the distribution of random variables is
poorly understood, and profit maximization may not be the
sole objective. Instead, inventory management might prior-
itize maintaining service levels under conditions of extreme
uncertainty. In this scenario, some reduction in profit is ac-
cepted in exchange for improving the inventory system’s ro-
bustness. For example, in the newsvendor problem, where
only the feasible demand region D is known, the goal of ro-

bust optimization is to maximize profit in the worst-case sce-
nario as follows:

C(Q) = max
Q

min
D∈D

[
p min(Q,D) + s max(Q − D, 0) − cQ

]
.

In addition to demand uncertainty, supply channel vari-
ability can also affect inventory stability. Fluctuating lead
times due to changes in production and logistics can poten-
tially accelerate or delay deliveries [37]. Moreover, supply
quantities may decrease or even cease entirely if stockouts in
upstream sources occur [74].

Note that many inventory management problems involve
nonconvex objective functions and high-dimensional deci-
sion variables, which makes them difficult to solve using an-
alytical approaches [75]. As a result, heuristic [37] and meta-
heuristic [76] techniques are often employed to address these
complex issues. Moreover, robust optimization is a semi-
infinite optimization problem that presents further computa-
tional challenges. To address these concerns, control theory-
based methods have also been adopted that use robust control
approaches to balance system stability and optimality [39].

3.1.3 Multi-echelon inventory system

While inventory management models often focus on a single
entity, real-world systems are typically organized as multi-
echelon chain structures. In many cases, downstream entities
adopt multi-vendor strategies to mitigate the impact of sup-
ply disruptions, contributing to an increasingly complicated
supply chain structure [18]. It is essential to recognize that
the optimal decision for each individual entity does not in-
herently lead to an overall supply chain optimum.

When suppliers manage the overall inventory in a sup-
ply chain through vendor managed inventory (VMI) sys-
tems [77], the goal is to optimize total inventory costs across
all entities. However, as the number of nodes in the sup-
ply chain increases, the number of decision variables also
expands, introducing computation difficulties [78]. A more
practical approach is to foster cooperation between entities,
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which can be achieved by establishing procurement contracts
between upstream and downstream entities to secure a mutu-
ally beneficial strategy [57]. Alternatively, it is also feasible
to maintain limited information sharing between entities to
enhance the supply chain’s overall efficiency and effective-
ness [56].

The bullwhip effect is a common phenomenon wherein
fluctuations in demand are amplified as they move upstream
along the supply chain. In addition to demand fluctuations,
information asymmetry and entities’ self-interest decisions
were determined to be the main causes of the bullwhip ef-
fect [79]. One effective way to reduce the bullwhip effect is
to forgo a portion of each entity’s benefits in exchange for
information sharing via VMI, which shifts the focus from
individual optimization to system-wide optimization [80].
However, considering that only limited cooperation between
entities is possible, it is challenging to fully adopt this ap-
proach. As a result, various distributed inventory strate-
gies have been designed and tested. In particular, optimal
control approaches [39, 81, 82] have been shown to be ef-
fective in mitigating the bullwhip effect by reducing order
fluctuations.

3.1.4 Deep learning methods for inventory management

In recent years, deep learning methods have increasingly
been applied to inventory management to improve efficiency,
forecasting accuracy, and decision-making. These methods
employ complex neural networks to analyze vast amounts of
data, identify patterns, and make predictions regarding inven-
tory needs and demand fluctuation. Considering its ability to
address complexity optimization problems, deep learning of-
fers a new approach for addressing inventory management
problems [83].

Specifically, since inventory management is a dynamic
decision-making process that must continuously adapt to
market changes, managers’ decisions are often influenced by
on-hand stock, in-transit stock, and expected demand. There-
fore, some studies have treated inventory management prob-
lems as MDPs and introduced DRL to seek near-optimal
strategies within the changing environment [84–86]. For in-
stance, ref. [87] used transfer learning methods to train DRL
models based on the heuristic method for efficient and low-
cost management of perishable products. Moreover, some
DRL-based game models have been proposed for inventory
management scenarios to coordinate order strategies between
different entities, increase profits, and mitigate the bullwhip
effect [68].

Another significant advantage of deep learning is its abil-
ity to make informed decisions using data. These data-driven
methods are often combined with demand forecasting [88].
Ref. [89] employed an end-to-end framework to help man-
age the replenishment process for an e-commerce platform.

The proposed deep learning approach can learn the optimal
strategy directly from the data, and has achieved favorable
results in industrial practice. It can also assist inventory man-
agers by predicting supplier performance and identifying po-
tential disruptions. However, these methods require large,
high-quality datasets to produce accurate predictions. More-
over, the convergence and robustness of DRL approaches re-
main a key challenge for further research.

3.2 Logistics optimization

As shown in Figure 3, logistics systems facilitate the trans-
portation of materials across various entities within the SCN.
Logistics’ efficiency has a substantial influence on how
quickly the supply chain can respond to demand fluctuations.
Furthermore, logistics costs frequently represent a substan-
tial share of total supply chain expenses and can be the pre-
dominant cost. Therefore, optimizing logistics operations is
a critical aspect of comprehensive supply chain optimization
strategies.

Logistics optimization can be categorized into strategic,
tactical and operational planning according to the length of
the associated time horizon. This section explores optimiza-
tion issues in the logistics domain with a focus on strategic
logistics network design, tactical channel allocation, and op-
erational route planning and warehousing. Notably, these ar-
eas are not completely separate, as a logistics decision prob-
lem may consider long-, medium-, and short-term models si-
multaneously.

3.2.1 Logistics network design

Logistics networks’ design and layout are fundamental tasks
in the early stages of supply chain development and can have
a lasting impact on subsequent SMC operations for several
years or more. The location layout problem is a foundational
issue in logistics network design that involves identifying the
optimal node locations to minimize the supply chains’ oper-
ational costs and maximize profits.

This problem is often modeled as a mixed-integer lin-
ear programming (MILP) or a mixed-integer nonlinear

Figure 3 (Color online) An illustration of logistics within a supply
chain network.
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programming (MINLP) problem with the following universal
representation:

min f (x1, x2, · · · , xm),

s.t. gi(x1, x2, · · · , xm) 6 0, i = 1, 2, · · · , n,
xk ∈ Z, for some k ∈ {1, 2, · · · ,m},

where the notion Z is the integer set, meaning that some el-
ements of the decision vector x are integers. The cost func-
tion f (x) can involve a variety of expenses, such as initial
construction costs, production and procurement expenses, lo-
gistics fees, environmental impact, and potential costs from
supply chain disruptions [11]. Moreover, constraints gi(·) are
primarily derived from physical limitations such as supply
and logistics capabilities. These models may also be pre-
sented as multi-objective optimization problems to balance
different performance metrics [13].

Uncertainty is a core challenge in supply chain design.
Addressing these uncertainties is crucial for preventing po-
tential failures due to unforeseen events. To this end, stochas-
tic and robust optimization models have been integrated into
the logistics network design processes [14]. For example, the
study [12] considered an actual case of a bread supply chain
with uncertain demand and varying costs, proposing a robust
optimization model to determine prime locations and allo-
cations. Uncertainty concerns motivate companies to con-
sider real-world risks to avoid the pitfalls of overly idealized
models.

Some studies have also focused on adapting the exist-
ing logistics network to better handle disruptions. Further-
more, a growing body of literature has examined failed sup-
ply chains’ operational recovery [90]. Notably, identifying a
precise solution can be challenging for the design of large-
scale logistics networks due to the “curse of dimensional-
ity” [55]; therefore, the majority of the existing literature has
relied on heuristic or metaheuristic algorithms to effectively
solve large-scale MIP problems [91].

3.2.2 Transportation optimization

Once a logistics network is operational, the focus shifts to
products’ daily transportation. Commodity transportation
within the SCN primarily involves route selection and vehi-
cle allocation, and most of these scenarios can be expressed
as LP or MILP problems.

The transportation problem (TP) is a key mid-term chan-
nel allocation issue to determine the most efficient strategy
for transporting materials from multiple suppliers to vari-
ous customers. In a classic TP, the total amount of supply
matches the total demand, and the objective is to minimize
overall costs by assigning the most efficient traffic volumes
to each edge within the network. The TP can be modeled as

the following standard LP problem:

min
m∑

i=1

n∑
j=1

ci jxi j,

s.t.
m∑

i=1

xi j = ai,

n∑
j=1

xi j = b j,

xi j > 0,

where i denotes the supplier and with a total number of m,
j denotes the receiver with a total amount of n. ci j de-
notes the cost coefficient, and the decision variable xi j rep-
resents the volume of transportation, referring to the number
of goods transported along each route. The constraints in the
TP model reflect the supply capacities of the originating node
i as ai and the demand requirements of the destination node
j as b j, which depend on supply and demand at each node
and the transportation capacities of the routes connecting
them.

In ref. [92], the simplex method is first applied to solve
TP. However, heuristic algorithms often outperform tradi-
tional methods in terms of computation time for large-scale
problems. Therefore, algorithms such as the simulated an-
nealing algorithm (SA), genetic algorithm (GA), and the ant
colony algorithm (ACO) have gained popularity due to their
efficiency [58].

The key to solving the TP is achieving a balanced flow
of goods within the SCN in which the total inflow equals
the total outflow at each node. Such problems are often ad-
dressed in terms of network flow theory, which calculates the
maximum flow or minimum-cost maximum-flow based on
the network topology. Well-known algorithms in this area
include the Ford-Fulkerson algorithm, the Edmonds-Karp al-
gorithm, and the Dinic algorithm [93], which were designed
on the basis of network flow theory and are more explanatory.
In particular, an unbalanced TP in which total production is
unequal to sales can be extended to a standard TP by intro-
ducing a virtual production or demand node.

Multimodal transportation is a common approach to bal-
ance efficiency, cost, and risk [94]. This method extends the
traditional TP by incorporating rail, water, road, and air trans-
port modes. Goods flow through the SCN via these modes in
parallel or in series. The complexity of this problem is am-
plified by the inherent capacity constraints and time window
limitations in each mode of transport making the multimodal
TP more challenging than the standard TP.

3.2.3 Vehicle routing optimization

The vehicle routing problem (VRP) is a classic COP in which
the decision space is a discrete set with special topological
constraints. VRPs are more general optimization tasks that
focus on minimizing total delivery time or logistics costs.
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Recent studies have also integrated environmental consider-
ations, such as reducing congestion to reduce carbon emis-
sions [22]. Unlike TPs, VRPs require accounting for the
topological relationships between nodes and considering ad-
ditional constraints such as vehicle capacity and time win-
dows.

A general VRP considers scheduling multiple vehicles to
minimize the total cost of all vehicles in the system. De-
note m and n as the number of vehicles and the number of
destinations, respectively. The mathematical formulation for
considering topological constraints is as follows:

min
m∑

k=1

n∑
i=0

n∑
j=0

ci jxk
i j,

s.t.
n∑

j=1

xk
0 j = 1,

n∑
i=1

xk
i0 = 1, ∀k = 1, · · · ,m,

m∑
k=1

n∑
j=1

xk
i j = 1, ∀i = 1, · · · , n,

xk
i j ∈ {0, 1} .

Here, the decision variable xk
i j = 1 if vehicle k chooses the

path i→ j, and xk
i j = 0 otherwise.

The basic models of path planning are the shortest path
problem (SPP) and traveling salesman problem (TSP) that
identify the optimal route within a graph to minimize the
sum of the edge weights between two nodes. SPP can be
addressed within polynomial time using dynamic program-
ming, the Dijkstra algorithm, and the A∗ algorithm, while
TSP is NP-hard and large-scale instances can only be effi-
ciently solved using approximate methods.

Section 2.2 cited the use of branch-and-bound, cutting-
plane, and dynamic programming methods to search for the
solution within an acceptable time for small-scale problems.
However, in reality, VRPs often include a large number of
nodes and must account for a variety of constraints, such
as maximum cargo volume, delivery time windows, road
restrictions, and dynamic demand [42]. To accommodate
the typically exponential computational complexity of VRPs,
heuristic algorithms have commonly been used to search for
near-optimal solutions [17, 95].

In practice, path planning must consider various con-
straints, resulting in different types of VRPs. These include
the capacitated VRP (CVRP) with a focus on capacity lim-
itations; VRP with time windows (VRPTW), which incor-
porates time constraints; the heterogeneous VRP (HVRP)
that can accommodate a mix of different vehicle types; and
the dynamic VRP (DVRP), which includes real-time plan-
ning [42, 44–46]. Products’ transportation must also fac-
tor in the effects of uncertainties that can disrupt preplanned
schedules, such as traffic congestion, weather conditions, and
vehicle breakdowns. These challenges are often addressed

through robust optimization models, which add to the com-
plexity of solving such problems. Ref. [62] introduced a dis-
tributionally robust optimization model to simplify TSP with
time windows (TSPTW).

3.2.4 Warehousing and picking

Warehousing and picking are integral to the beginning and
end of transportation processes, with some transportation
workflows also involving terminal operations. The primary
goal of optimizing these processes is to efficiently schedule
equipment and manual labor, such as selecting optimal job
paths to minimize total time and maximize resource use [96].
For example, in warehouse picking, the focus is typically
on reducing the total picking time or travel distance, while
terminal operations aim to improve efficiency by minimiz-
ing loading and transit times. These challenges share similar
mathematical formulations with VRPs with key differences
in decision variables and constraints. In warehouse picking
tasks, constraints include vehicle loading capacity, complet-
ing pick-ups, and maintaining continuous paths. In terminal
operations, constraints often involve operational time win-
dows to ensure efficient use of equipment.

Traditionally, these problems are addressed by exact op-
timization techniques. For example, ref. [96] employed a
commercial solver to address the warehouse picking prob-
lem, demonstrating its practical application for improving
pick rates per employee and ensuring equitable workload dis-
tribution. However, obtaining a precise solution can be chal-
lenging for problems with complex constraints and high di-
mensionality, and the quality of approximate solutions must
be carefully evaluated. The advent of IoT technology has re-
sulted in a rise in process simulations that can be integrated
with optimization approaches to assess the quality of the de-
rived solutions [97].

3.2.5 New technologies for logistics optimization

Optimization problems that correspond to network design
and path planning often encounter the challenge of the
“curse of dimensionality” and the complexity of constraints.
In addition to heuristic solutions, ML approaches have
also demonstrated promising potential for addressing design
problems [98] and VRPs [99].

Given the topological considerations and inherent ge-
ographical relationships between nodes in path planning
problems, VRP solutions based on graph neural networks
(GNNs) [100] and Transformer models [101] have emerged
as a prominent research focus. The strength of deep learn-
ing is its generalizability, i.e., a pre-trained model that has
learned a prior paradigm for problems with similar struc-
tures has a higher computational efficiency and can produce
better results. Ref. [100] presented an example of a GNN-
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based order scheduling approach and demonstrated its valid-
ity using a real data set collected from a delivery platform.
In addition to the end-to-end approach [102], deep learning
can also be combined with heuristic algorithms for training
or joint solutions for improved performance [103], and rein-
forcement learning methods are often applied when training
these models. Furthermore, logistics processes frequently in-
volve random events, dynamic demands, and changing envi-
ronments that necessitate vehicles to dynamically adapt pre-
viously planned routes accordingly. To address these chal-
lenges, DRL approaches have also been introduced to obtain
online solutions [104, 105].

In recent years, a growing interest in developing more flex-
ible transportation modes has emerged. In particular, electric
vehicles (EVs) have attracted increased attention due to their
potential to reduce carbon emissions, which aligns with the
current focus on environmental costs in SCM [45,104]. How-
ever, EVs’ limited battery life and the accessibility of charg-
ing stations present a significant challenge in route planning
and the potential impact on travel time [46].

Moreover, the advent of autonomous driving technology
has also sparked interest in unmanned logistics vehicles. Al-
ternative logistics methods such as unmanned aerial vehi-
cles (UAVs) and autonomous vehicles, are gaining traction
for their potential to minimize human labor dependence and
expedite delivery services [106, 107]. In addition, the appli-
cation of automated guided vehicles (AGVs) and collabora-
tive robots has greatly improved warehouse management effi-
ciency. These technological innovations are poised to revolu-
tionize the logistics sector by boosting operational efficiency
and reducing the environmental footprint.

3.3 Production management

Manufacturing facilities upstream in the supply chain have
a pivotal influence on retail pricing and overall supply chain
performance. Producers craft production plans in response
to downstream demand through direct orders and/or market
forecasts. Efficient planning is essential to prevent delivery
delays and maintain inventory levels at a minimum, as em-
phasized by the criticality of JIT production strategies. Con-
currently, streamlining the production process can markedly
enhance resource utilization and manufacturing efficiency.
This section examines the optimization challenges within the
production process with a focus on strategic production plan-
ning and operational scheduling.

3.3.1 Production planning

Manufacturers must develop production plans that align with
their production capacity to ensure the timely fulfillment of
downstream demand. Production planning typically spans a
longer time horizon, ranging from weeks to months, to opti-

mize resource utilization and improve overall production ef-
ficiency.

As a complex and multifaceted problem, production plan-
ning varies between industries and regions, with different
companies prioritizing distinct concerns. In addition to man-
aging raw materials and finished goods inventories, a crucial
concern of production planning is strategic resource alloca-
tion, including equipment and personnel. No one-size-fits-
all model exists for production planning. Companies often
rely on tailored optimization models to guide their strategies,
sometimes even using manual solutions. Enterprise produc-
tion planning (ERP) systems are commonly used to manage
these challenges by framing production problems as LP or
MIP models and employing optimization software to deter-
mine a solution [108]. In some cases, heuristic algorithms
and simulation-based approaches are employed to find near-
optimal solutions.

Given the inherent lengthy lead times in production pro-
cesses, including material procurement and resource alloca-
tion, manufacturing enterprises often struggle to swiftly re-
spond to substantial shifts in demand. Consequently, these
companies typically rely on existing downstream orders or
engage in forecasting to anticipate future demand. Therefore,
it is crucial to integrate demand forecasting and production
scheduling [109]. Precise demand forecasts are instrumen-
tal in enhancing the effectiveness of production planning by
aligning manufacturing activities more closely with market
demand.

3.3.2 Production scheduling

Adept production resource scheduling is crucial for signifi-
cantly boosting production process efficiency. Optimization
goals include reducing overall production time, maximiz-
ing equipment use, enhancing process reliability, and min-
imizing raw material use. The production process is fre-
quently constrained by the machinery’s processing capacity
and the availability of raw materials. Addressing these chal-
lenges often involves formulating integer programming prob-
lems, with decision variables centered on the sequencing of
workpieces across production stages. In practice, production
scheduling is usually handled by manufacturing execution
system (MES) software.

Single machine scheduling [47] and parallel machine
scheduling [48] problems represent two fundamental issues
within the realm of production scheduling. The primary ob-
jective in these scenarios is typically to minimize total pro-
cessing time. For example, in the context of a parallel ma-
chine scheduling problem, denote i as the index of machines
and j as the index of jobs. The challenge is to allocate jobs
to machines to minimize the maximum load on any machine,
as discussed in ref. [48]. Its mathematical formulation can be
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written as follows:

min Cmax = max
j=1,··· ,n

C j,

s.t.
m∑

i=1

xi j = 1, 1 6 j 6 n,

n∑
j=1

p jxi j 6 Cmax, 1 6 i 6 m,

xi j ∈ {0, 1} ,

where p j and C j denote respectively the processing time and
actual completion time of job j, and xi j = 1 if job j is as-
signed to machine i.

Furthermore, the various production processes of products
result in highly diverse workshops. Large quantities of a sin-
gle product are typically produced in a flow shop [50], where
production follows a defined sequence of operations. In con-
trast, small batches of multi-variety products are usually pro-
duced in a job shop [51], where each product may require dif-
ferent equipment or follow distinct but specific procedures,
as shown in Figure 4. A workshop without fixed process con-
straints is referred to as an open shop.

Similar to VRPs, small-scale scheduling problems can
be solved using exact methods such as dynamic program-
ming [110] or branch-and-bound methods. Notably, some
studies have developed optimal control approaches based
on the principle of maximizing value to achieve multi-
objective and multi-level scheduling in intelligent facto-
ries [111]. However, most shop scheduling problems are NP-
hard; therefore, only approximate solutions can typically be
obtained for large-scale scheduling problems using heuristic
algorithms [112, 113].

Modern production lines must also be adaptable to the
impact of uncertain factors, such as machine failures, labor
shortages, and new job arrivals [114]. For example, ref. [115]

Figure 4 (Color online) Gantt chart of a job shop scheduling. The
horizontal coordinate is the time epoch, while the vertical coordinate
is the machine used in different processes. The blocks with bolt,
gear, and nut represent three different workpieces, respectively.

proposed a multi-objective particle swarm optimization to
achieve stable scheduling under dynamic events. Load bal-
ancing is often incorporated into scheduling problems to mit-
igate the risk of machine breakdowns. In addition, produc-
tion lines should also have the ability to dynamically ad-
just to cope with inserted tasks or emergencies [53]. In
some studies, shop scheduling problems have been mod-
eled as dynamic decision-making problems for rapid re-
sponse [116, 117].

3.3.3 Machine learning methods for production manage-
ment

With rapid advances in robotics and IT, smart factories have
emerged as a leading trend in manufacturing [118]. Modern
smart factories introduce automated handling robots, human-
robot interaction systems, and other automated tools to re-
place or assist workers [119, 120]. Using these automated
tools can further enhance the production flexibility and in-
tensify the complexity of scheduling problems. In particu-
lar, a problem concerning a job shop with parallel machines,
which is known as the flexible job-shop scheduling problem
(FJSP), poses significant challenges and is a highly investi-
gated topic [115]. As a typical COP similar to VRPs, a high-
dimensional FJSP can only be solved using an approximate
method. Ref. [52] proposed a heuristic algorithm to solve
this problem, which was applied to real production scenarios
for validation. Moreover, deep neural network (DNN) mod-
els and DRL methods have exhibited substantial potential in
efficiently addressing complex FJSPs [16, 20, 48, 121].

While production planning and production scheduling
are often treated separately in practice, to improve over-
all production efficiency, it is imperative to consider these
two processes holistically by integrating ERP software with
MES [122]. Furthermore, the fast-moving consumer goods
(FMCG) industry has achieved overall optimization of the
supply chain profit by integrating production, logistics, sales,
and other processes. This technique could be widely adopted
across various industries to achieve comprehensive supply
chain coordination.

3.4 Demand forecasting

Demand forecasting has a critical influence on SCM, as it
directly impacts decision-making in various supply chain
stages. Accurate demand prediction can enable businesses
to optimize inventory levels, production schedules, and pro-
curement strategies, reducing inefficiencies and costs. Mar-
ket demand is influenced by numerous factors, including
market trends, seasonality, external events, and correlations
with other products (Figure 5). Therefore, future demand is
inherently uncertain and often difficult to predict with precise
accuracy. The goal of demand forecasting is to identify pat-
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Figure 5 (Color online) The influencing factors of demand. The blue blocks represent features of time series, the green blocks are external
influencing factors, and the orange blocks indicate correlations with complementary and substitutable products.

terns and trends within this uncertainty that can help guide
more informed decision-making.

SCM forecasting methods can be broadly classified into
qualitative and quantitative approaches. Qualitative forecast-
ing methods rely substantially on managers’ intuition and
judgment and are less precise and harder to quantify in terms
of accuracy, whereas quantitative forecasting uses historical
data and statistical models to forecast future demand. In this
section, we primarily concentrate on quantitative forecasting
methods to offer more measurable outcomes.

3.4.1 Time series forecasting

Demand forecasting commonly involves examining patterns
from a time series of historical demand data. The aim of
time series forecasting (TSF) is to identify demand trends,
periodic patterns, and autocorrelations within the data series
to extrapolate insights for predicting future demand. Essen-
tially, TSF entails fitting a function that captures key trends
in the historical data while minimizing the risk of overfitting
to ensure its generalization to future periods.

One strategy to mitigate overfitting is to select an appro-
priately simple model with a low order. The exponential
smoothing (ES) model [123] is commonly used to predict fu-
ture demand D̂ as a weighted sum of past demand D. Specif-
ically, the basic ES model can be iteratively formulated as
follows:

D̂t+1 = αDt + (1 − α)D̂t, t = 1, 2, · · · ,

where α ∈ (0, 1) is an adjustable coefficient, and the t sub-
scpript denotes the time epoch.

Since D is a random variable, the optimization target
aligns the model parameter α to minimize statistical metrics
such as mean absolute error (MAE) or root mean squared
error (RMSE), which are NLP problems. The averaging pro-
cess in ES filters out high-frequency noise from the data to ef-

fectively capture the predictable elements of demand. The ES
model is well suited for stationary processes, yet it struggles
to capture demand that exhibits trends or seasonality. To ad-
dress this limitation, Holt [124] and Winters [125] extended
the ES model to higher orders to better accommodate trends
and seasonal fluctuations. However, the choice of models is
still subject to managers’ the judgment.

Another approach to demand forecasting is regression
analysis of stationary data. An important feature of the de-
mand sequence is autocorrelation in which the current de-
mand is correlated with the previous demand. The autore-
gressive (AR) model treats predictions by weighting his-
torical data Dt. In contrast, the moving average (MA)
model treats predictions as a weighting of historical residuals
εt. The autoregressive integrated moving average (ARIMA)
model [126] integrates these two models and introduces dif-
ferential treatment of nonstationary sequences. p, d and q
respectively denote the order of the AR model, the differ-
ence, and the MA model, and an ARIMA(p, d, q) model can
be represented as follows:

Dd
t =c + ϕ1Dd

t−1 + ϕ2Dd
t−2 + · · · + ϕpDd

t−p

+ εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q,

where ϕ1, ϕ2, · · · , ϕp are the coefficients of AR model and
θ1, θ2, · · · , θq are the coefficients of MA model.

Nevertheless, this model requires the data to satisfy certain
assumptions of stationarity, and in some cases, the original
data can be transformed to improve processing [127]. Hence,
appropriate (p, d, q) order parameters should be chosen to
meet the stationarity requirements and estimate the model
parameters (ϕi, θ j). Akaike information criterion (AIC) and
Bayesian information criterion (BIC) are frequently em-
ployed to address this issue [128]. Their criteria incorporate
a penalty term for the number of parameters in the likelihood
function to prevent overfitting.

Parameter estimation challenges are typically framed as
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NLP issues. Maximum likelihood estimation (MLE) and
least squares (LS) methods have been the most commonly
used approaches. The MLE method maximizes the possibil-
ity L(ϕ, θ), while the LS method minimizes the second mo-
ment of the residual S (ϕ, θ), where ϕ = [ϕ1, ϕ2, · · · , ϕp]T,
θ = [θ1, θ2, · · · , θq]T, respectively.

The ARIMA model and its variants have been widely used
in demand forecasting [59]. In addition, the generalized au-
toregressive conditional heteroskedasticity (GARCH) model
captures changes in conditional heteroskedasticity within the
data, relaxing the assumption of constant variance that is
inherent to the ARIMA model [129]. However, both of
these forecasting methods still rely heavily on expert judg-
ment for model selection and tuning. Ref. [130] adopted a
curve-fitting approach to produce long-term predictions that
account for trends and seasonal variations, which incorpo-
rates the Fourier series to model periodic components of the
data.

3.4.2 Multiple regression and multivariate time series

As discussed previously, TSF methods focus on modeling
the average, trend, seasonality, and autocorrelations within
the data over time; however, as illustrated in Figure 5, fu-
ture demand is influenced by various external factors, such as
price, weather, and resident incomes. The autoregressive in-
tegrated moving average with exogenous inputs (ARIMAX)
model [131] extends the ARIMA framework by integrating
these exogenous variables, which are closely related to de-
mand, to improve forecasting precision. The modeling and
forecasting processes of ARIMAX are similar to those of the
standard ARIMA model. Similarly, the Prophet model [130]
also incorporates factors such as holidays and other external
inputs to refine the performance of the model.

In some cases, companies must forecast multiple time
series simultaneously, and correlations may exist between
them. For example, sales of complementary or compet-
ing products often influence one another, and accounting
for these interdependencies can produce more accurate fore-
casts. TSF models such as ES, AR, MA, and ARIMA can be
extended to multivariate versions to handle such scenarios,
where variables are treated as vectors that include demand
and related influencing factors [132].

The parameter estimation process for multivariate time
series forecasting (MTSF) is similar to the approach used
for univariate time series; however, MTSF models can suf-
fer from multicollinearity in which high correlations be-
tween multiple variables can distort the model’s estimations.
Principal component analysis (PCA) can be used to reduce
collinearity by removing some of the correlated variables.
In addition, incorporating regularization terms into the loss
function can help mitigate the effects of collinearity and yield
more stable regression coefficients [133]. Common regular-

ization techniques include ridge regression and LASSO re-
gression.

3.4.3 Machine learning methods for demand forecasting

Linear regression models often struggle to capture the com-
plex relationships between demand and its various influenc-
ing factors. With contemporary IT advances, supply chains
can now access data more easily, which makes it possible to
extract valuable insights directly from large datasets. As a re-
sult, ML techniques are increasingly being adopted for com-
plex demand forecasting scenarios, offering a more effective
approach to generate automated SCM strategies [59].

Specifically, ML methods such as support vector regres-
sion (SVR) can capture complex, nonlinear patterns in data
by employing various kernel functions. Decision tree (DT)
algorithms, which rely on information entropy, have also
been found effective for analyzing the impact of multiple fac-
tors on demand. Improved DT algorithms such as random
forest, XGBoost, and LightGBM have gained widespread
adoption in demand forecasting due to their ability to ac-
commodate large datasets, reduce overfitting, and improve
prediction accuracy [134].

In particular, deep learning has become a prominent fo-
cus in demand forecasting in recent years [135]. For ex-
ample, recurrent neural networks (RNNs) are well suited
for TSF as they can capture dependencies within sequential
data. Ref. [136] applied an integrated ARIMA and RNN
method to a semiconductor distributor’s the demand fore-
casting and demonstrated good performance. In contrast, the
long short-term memory (LSTM) model [137] offers signif-
icant advantages in handling data with causal relationships.
Other models such as convolutional neural networks (CNNs),
GNNs, and Transformer-based architectures have also been
introduced to enhance forecast accuracy and interpretabil-
ity [138, 139].

Considering that demand data are continuously obtained
during the supply chain operation process, a growing interest
in developing online forecasting methods has emerged. DRL
has been widely used for demand forecasting and inventory
management strategies as it can iteratively refine strategies
in response to market fluctuations and has significant ad-
vantages in terms of adaptability [140]. Furthermore, deep
learning-based anomaly detection [141, 142] and sentiment
analysis are also employed to enhance the quality of fore-
casts.

Deep learning methods have demonstrated potential and
scalability in demand forecasting; however, it must be noted
that the current body of research has not sufficiently validated
these techniques to render traditional forecasting models ob-
solete. In fact, the effectiveness of ML methods remains
questionable, and sometimes, their predictions do not out-
perform those of traditional methods. Therefore, significant
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room remains for the integration of deep learning approaches
with existing methods within the field.

4 Trends and future perspectives

Technological advances like the IoT have promoted demand
forecasting considerably and significantly enhanced SCM ca-
pabilities. The intricacies of contemporary supply chains fre-
quently present businesses with unexpected risks, which re-
quire managers to prioritize supply chain risk management in
addition to economic benefits. Furthermore, environmental
sustainability has become a central focus in SCM, reflecting
a broader shift toward greener and more responsible business
practices. This section explores some future perspectives on
SCM.

4.1 Network and collaboration

With the development of industry and enrich logistics chan-
nels, the network structure has become a key charac-
teristic of modern supply chains. Contemporary supply
chains form large-scale networks of suppliers, manufactur-
ers, distributors, retailers, and final consumers to enhance
flexibility [27, 143]. Significant opportunities remain for
industrial development and service improvement if SCN
participants can achieve close cooperation, resource shar-
ing, and information transparency; however, limited stud-
ies have examined large-scale SCNs, and the evolutionary
and collaborative mechanisms of SCNs are not yet fully
understood.

Although SCNs have significant potential to enhance over-
all effectiveness, cooperation between entities involved re-
mains underdeveloped. The potential for improved perfor-
mance is hindered by a lack of effective collaboration mech-
anisms that can facilitate seamless interaction between sup-
pliers, manufacturers, distributors, and other stakeholders.
Realizing the full benefits of an SCN requires more ad-
vanced optimization technologies and sophisticated manage-
ment strategies to increase synergies between network par-
ticipants. A new trend called horizontal collaborative logis-
tics has emerged to enhance collaboration between organi-
zations at the same supply chain level rather than between
different tiers [144]. Moreover, the concepts of physical in-
ternet and intertwined networks have been proposed to create
more efficient, sustainable, and flexible logistics operations
[143, 145].

4.2 Resilience

Uncertainties are inherent at every stage of the supply chain
and can propagate throughout the network, potentially lead-
ing to disruptions or even complete failure of supply chain
services. Modern supply chains exhibit a trend of rapid

change and networked topology, which can further amplify
the impact of risks. Moreover, as the trend of economic glob-
alization has been adversely affected by protectionist trade
policies between countries, the risk of failure is rising. In par-
ticular, the COVID-19 pandemic triggered widespread fail-
ures across global supply chains [27] and supply chain risk
management has become an increasingly critical area of fo-
cus in recent years.

Traditionally, SCM research has concentrated on sup-
ply chains’ efficiency and costs; however, optimization can
sometimes produce supply chains that are too fragile to bear
risks. In such cases, supply chains’ robustness and/or re-
silience must be considered [146]. A key aspect of risk man-
agement is to enhance network robustness amid uncertain-
ties [23]. This approach is often addressed during the supply
chain design phase. One study modeled the supply chain as
a complex network and examined supply chain risk by ana-
lyzing the ripple effect of node failure to identify key nodes
and enhance network flexibility [147]. Another study con-
centrated on networks’ post-failure resilience, with an opti-
mization goal of either the speed of recovery or its associated
cost [90].

4.3 Green supply chain

In recent years, the effects of climate change have attracted
growing attention to green supply chains [10]. Some simi-
lar concepts include environmental, sustainable, circular and
closed-loop supply chains (CLSC) [148,149]. In these cases,
managers consider environmental impact in addition to eco-
nomic considerations. Environmental considerations include
carbon emissions, pollutants, and product recycling, among
which reducing carbon emissions has been a focus of social
and academic attention. Common approaches to incorpo-
rating environmental effects directly into SCM have been to
quantify the weight of factors such as green products [150]
and carbon emissions [151] as optimization variables for
decision-making. In addition, carbon footprint tracking and
carbon trading on the basis of the supply chain have also
become operational matters, and carbon emissions manage-
ment has matured using digital supply chain and digital-twin
technology [69, 152].

In addition to incorporating environmental indicators into
SCM, transforming the traditional supply chain is also an op-
tion. For example, the CLSC approach focuses on product
recycling and reuse [149]. A key challenge in this area is de-
signing reverse logistics networks [153], specifically select-
ing recycling points and developing recycling routes based
on existing nodes to minimize new construction and reduce
costs. Optimization in this context involves multiple consid-
erations, including product production, recycling, logistics,
and inventory management. Examining the circular flow of
materials by integrating reverse logistics into traditional sup-
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ply chains can help conserve resources and reduce carbon
emissions.

4.4 Integration with advanced technologies

The proliferation of IT and automated technologies has pro-
foundly reshaped SCM by introducing new capabilities that
enhance efficiency, flexibility, and responsiveness. These
technologies enable real-time tracking, data-driven decision-
making, and seamless communication throughout the supply
chain for more agile and resilient operations. For instance,
technologies such as the IoT, which encompasses radio-
frequency identification (RFID) [154] and blockchain [9] are
being extensively integrated to improve automated manage-
ment systems’ efficiency. Moreover, intelligent equipment
such as UAVs, intelligent robotic arms, and other new tech-
nologies is improving the efficiency of logistics and manu-
facturing [119, 120].

In particular, AI, which is closely intertwined with data-
driven methodologies, is increasingly applied across various
supply chain functions. By leveraging vast amounts of data
and advanced algorithms, AI can enable companies to make
more informed decisions, optimize operations, and enhance
overall supply chain performance [2, 141, 155]. Our survey
demonstrates the significant benefits of AI-based approaches
in enabling systems to adapt to market dynamics, support
automated management, and provide robust capabilities to
solve inherently complex optimization problems in supply
chain decision-making. In addition to its ability to optimize
and forecast, AI can enhance customer service within the
supply chain, particularly in areas such as customer support,
order tracking, and issue resolution. For example, chatbots
can interact with customers in real-time to answer questions,
provide updates, and resolve problems. Indeed, generative
AI models—particularly large language models (LLMs)—
have emerged as a significant area of interest in both in-
dustry and academia. These models’ ability to process and
understand natural language, analyze unstructured data, and
provide decision-support through automated insights makes
them valuable tools for risk management, supplier communi-
cation, and knowledge transfer.

Nevertheless, it is essential to note that several challenges
remain in using AI-based optimization and decision-making
methods in SCM. While AI models rely on large, high-
quality datasets to deliver accurate predictions and optimiza-
tion results, many organizations’ data may be fragmented,
incomplete, or of poor quality, which can hinder the effec-
tiveness of AI solutions [54]. Supply chains are subject to
high uncertainty and variability from factors such as chang-
ing customer preferences, geopolitical risks, economic shifts,
and weather disruptions. AI models may struggle to accom-
modate such variability, particularly when the historical data
do not include unusual or unforeseen events. Moreover, sup-

ply chain data often contain sensitive information about sup-
pliers, customers, and proprietary processes. Using AI to
process and analyze these data can raise concerns related to
data privacy and security, and privacy protection has become
an important topic in SCM. Advanced technologies such as
differential privacy and federated learning can enhance data
security; however, their application in SCM requires further
investigation [156]. Unreliability is another significant hin-
drance that impedes widespread AI adoption. For example,
algorithmic bias in ML can result in unfair decisions, and
hallucinations in LLMs can produce misleading recommen-
dations. To unlock the potential for AI to inform the devel-
opment of more reliable, efficient, and agile supply chains,
more research is essential to address these issues to improve
the reliability and effectiveness of AI applications.

5 Conclusion

This survey examines the application of optimization theory
within the realm of SCM, covering four pivotal areas: in-
ventory management, logistics, production planning, and de-
mand forecasting, and providing an overview of the classi-
cal mathematical models and optimization algorithms used
to make optimal decisions in this area. Considering the myr-
iad challenges inherent in supply chains, we investigate the
frameworks for addressing corresponding optimization prob-
lems. Additionally, the study encapsulates the recent trends
of increased emphasis on risk management and environmen-
tal sustainability in contemporary SCM research. We also
identify increased adoption of data-driven methodologies and
AI technologies in SCM. While we do not claim to cover
every facet of SCM, this survey can serve as a foundation
and more exhaustive summaries are anticipated in the future
as the field continues to evolve and expand.
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