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Organic solar cells (OSCs) is a promising renewable energy tech-
nology as their prospect in producing large-area photovoltaic mod-
ules via low-cost roll-to-roll processing and their widespread
application including photovoltaic farms, building integration,
and portable electronics, etc. [1]. The key component of an OSC is
its photoactive layer, which is a bulk-heterojunction blend of an
electron donor and an electron acceptor [2]. The electron donors
are p-type semi-conducting conjugated polymers or small mole-
cules, and the electron acceptors were predominated by fullerene
derivatives in OSC history. The power conversion efficiencies
(PCEs) of fullerene-based OSCs have been promoted to �11% via
~20 years of effort by researchers all over the world [3]. After that,
the fullerene-based OSCs have encountered bottlenecks in both
device performance and stability due to the intrinsic drawbacks
of fullerene acceptors including poor light-harvesting ability, diffi-
culty in energy level control, and photon-induced dimerization,
etc.

Therefore, researchers in the OSCs field have shifted their inter-
ests into alternative electron acceptors with an aim at overcoming
the drawbacks associated with fullerene acceptors. A pioneering
work was done by Lin et al. [4], who reported the fused-ring
A–DD’D–A type molecular design for developing non-fullerene
small molecular acceptors (SMAs). A benchmark molecule is ITIC,
which consists of an indacenodithieno[3,2-b]thiophene core with
four 4-hexylphenyl groups on it and two 2-(3-oxo-2,3-dihydroin-
den-1-ylidene)malononitrile end groups. After that, numerous
SMAs with various core units, side chains, and end groups were
developed based on this A–DD’D–A type molecular design. Com-
bined with the progresses in high-performance polymer donors,
delicate morphology control, organic/electrode contact optimiza-
tion, and device engineering, OSCs based on A–DD’D–A type SMAs
can afford PCEs approaching 15% in fully optimized single-junction
cells [5] and over 17% in tandem cells [6].

More recently, a more promising A–DA’D–A type molecular
design for SMAs proposed by Yuan et al. [7] has brought OSCs into
a new era. The milestone molecule based on this design is Y6
(Fig. 1), which offered a prominent PCE of 15.7% in single-junction
OSCs along with external quantum efficiency exceeding 80% at a
voltage loss (Vloss) of only 0.50 V in its first report. This success
has inspired widespread research activities in OSC field rapidly.
Shortly afterwards, a few new SMAs (Fig. 1) based on the same
design rationale have been developed via appropriate backbone
modification, end group modification, and side chain control,
which all produced decent device performance in OSCs (Table 1)
[8–13]. Meanwhile, the device performance of OSCs has been
improved to higher level upon the use of matched polymer donors
and optimized device fabrication conditions. Up to date, the high-
est PCE of 18.2% in single-junction OSCs has been achieved based
on Y6 [14]. Moreover, a recent study by Liu et al. [8] reported an
unprecedently low voltage loss of 0.17 V due to non-radiative
recombination loss in single-junction OSCs based on an analogue
of Y6 (Y11, Fig. 1).

Y6 employs a ladder-type central fused ring (dithienothiophen
[3,2-b]-pyrrolobenzothiadiazole) based on an electron-deficient
benzothiadiazole core and two 2-(5,6-difluoro-3-oxo-2,3-
dihydroinden-1-ylidene)malononitrile end groups. The electron-
deficient benzothiazole unit with quinoidal character significantly
extended the optical absorption of the molecule to near-infrared
region with an absorption onset at 930 nm. The molecule consists
of two conjugated planes with a small twist due to the steric hin-
drance in the center, and the bulky side chains on the central nitro-
gen atoms are orthogonal to the conjugated planes, which can
prevent over-aggregation in solid state. With these unique charac-
teristics in structure, the molecule offers good solubility in com-
mon solvents and efficient intramolecular charge transfer effect
[7]. The single-crystal structure of a similar molecule (BTIC-CF3-c,
Fig. 1) was revealed by Lai et al. [11] very recently, which can help
to understand the marvelous photovoltaic performance of this kind
of SMAs. In the single-crystal of BTIC-CF3-c, the central fused rings
form H-aggregation in the perpendicular direction and the end
groups form J-aggregation in the horizontal direction, which col-
lectively result in a three-dimensional interpenetrating network
for intermolecular charge transport.

Overall, the recent achievements based on Y6 and its analogues
demonstrate that PCEs of 20% in single-junction cells and 25%
in tandem cells are conceivable for OSCs in the near future via
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Fig. 1. (Color online) The chemical structures of representative small molecular acceptors with an A–DA’D–A framework.

Table 1
Device performance of binary OSCs based on the representative A–DA’D–A type small molecular acceptors.

Acceptor Voc (V) a) Jsc (mA cm�2) b) FF c) PCE (%) Vloss (V) d) Ref.

Y6 0.83 25.3 0.75 15.7 0.50 [7]
Y11 0.83 26.7 0.74 16.5 0.50 [8]
AQx-2 0.86 25.4 0.76 16.6 0.47 [9]
BTP-4Cl 0.87 25.4 0.75 16.5 0.46 [10]
BTIC-CF3-c 0.85 25.2 0.73 15.6 0.48 [11]
N3 0.84 25.8 0.74 16.0 0.49 [12]
BTP-4F-12 0.86 25.3 0.76 16.4 0.47 [13]

a) Open-circuit voltage;
b) Short-circuit current density;
c) Fill factor;
d) Voltage loss, which is given by Vloss = Eg/q–Voc, where Eg is the bandgap acquired from the EQE onset, and q is the elementary charge.
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synergetic efforts from synthetic chemists and device scientists.
Further understanding on the working mechanism of these accep-
tors will help to boost the efficiency.
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