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Abstract

MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs) that play their roles in the regulation of physiological
and pathological processes. Originally, it was assumed that miRNAs only modulate gene expression post-
transcriptionally in the cytoplasm by inducing target mRNA degradation. However, with further research, evidence
shows that mature miRNAs also exist in the cell nucleus, where they can impact gene transcription and ncRNA
maturation in several ways. This review provides an overview of novel models of nuclear miRNA functions. Some of
the models remain to be verified by experimental evidence, and more details of the miRNA regulation network

remain to be discovered in the future.
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Introduction
MicroRNAs are a category of endogenous, noncoding small RNAs
that have approximately 19-24 nucleotides in length and regulate
gene expression through various mechanisms. Since their discovery
in 1993 [1], extensive research has been conducted. miRNAs play a
critical role in many metabolic processes, including cell differentia-
tion, lineage specification, reprogramming, immune response, and
the cell cycle [2-6]. Moreover, miRNAs are well known to be closely
linked to various kinds of diseases, including cancer [7-9]. Given
their association with numerous pathological processes, miRNAs
possess significant potential as biological drug targets, and tissue-
specific miRNAs can also serve as biomarkers [10,11]. For medical
research in this field, it is worth noting that numerous miRNAs are
evolutionarily conserved [12], permitting researchers to investigate
them using Drosophila, Mus musculus, and even plant models.
Originally, miRNAs were believed to regulate gene expression in
a negative manner posttranscriptionally in the cytoplasm. In this
conventional pathway, the transcription of a primary miRNA (pri-
miRNA) occurs from a miRNA gene, aided by RNA polymerase II
(Pol II) or Pol III [13,14]. Next, Drosha and DiGeorge syndrome
critical region 8 (DGCRS8) cleave the pri-miRNA into pre-miRNA,
which is then exported to the cytoplasm with the help of Exportin-5
[15-18]. In the cytoplasm, Dicer cleaves the pre-miRNA into a

miRNA duplex [13,14], which is unwound by cytoplasmic
Argonaute (Ago) protein. One strand is loaded into the miRISC,
while the other strand is degraded [19]. Subsequently, miRISC
serves as a negative regulator to mediate translational repression or
mRNA degradation [13,14].

The recruitment of miRNAs to their targets depends mainly on the
sequence complementarity between them. The canonical miRNA-
target interactions are mediated by the seed sequence, which is a
region of 6-8 nucleotides on the 5’ end of the miRNA that forms
Watson-Crick base pairs with the target [20]. Noncanonical miRNA-
target interactions also exist in the functions of numerous miRNAs,
such as miR-24 and let-7 [21,22]. Some of these interactions do not
follow simple seed sequence pairing and contain multiple mis-
matches, bulges and wobbles, indicating that miRNA targeting
modes may be complex and flexible.

Over time, evidence has emerged supporting the existence of
mature miRNAs in the nucleus [23-28]. Numerous mechanisms of
nuclear miRNA functions have been discovered, including their
interactions with DNA, RNA, and proteins [29-32], which suggests
that nuclear miRNAs play a critical role in the overall miRNA-
related gene regulation network (Figure 1). This review primarily
concentrates on nuclear functional miRNAs, summarizing research
conducted in this field in recent years.
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Primary miRNAs (pri-miRNAs) are transcribed from miRNA genes by Pol Il or Pol lll. They are

cleaved by Drosha and DGCR8 into precursor miRNAs (pre-miRNAs), which are then exported into the cytoplasm with the help of Exportin-5. Pre-
miRNAs are cleaved into miRNA duplexes by Dicer and unwound by cytoplasmic Argonaute protein. One strand of the miRNA duplex is loaded
into miRISC to repress mRNA expression by inducing degradation of mRNA. A proportion of mature miRNAs are translocated to the nucleus with
the help of Importin-8 (IPO8). Their newly recognized functions include regulating gene transcription through interaction with promoters or
enhancers, regulating the maturation of mRNA, IncRNA, pre-miRNA and pri-miRNA and other microprocessing engagement.

Presence of miRNA in the Nucleus

An accumulating body of evidence indicates the presence of mature
miRNAs in the cell nucleus. The first identified nuclear miRNA was
miR-21 [23], which has since prompted numerous studies exploring
the localization and functions of miRNAs in the nucleus [33-35].
With the application of high-throughput profiling technologies,
researchers have been able to compare and contrast the distribution
of miRNAs between the nucleus and cytoplasm. The results of these
studies indicate that most miRNAs that are present in the cytoplasm can
also be found in the nucleus, with varying levels of abundance [27].

It is speculated that cells may transport not only miRNAs but also
miRNA effector molecules, such as Ago proteins, to the nucleus to
enhance the efficiency of miRNA-mediated gene regulation [36]. In
the conventional pathway of miRNA-mediated gene regulation,
miRNAs and Ago proteins operate together in the cytoplasm [19].
Consistent with the presence of miRNAs in the nucleus, numerous
studies have also reported the existence of Ago proteins in this
compartment [37]. Moreover, it has been demonstrated that Ago
proteins play a role in nuclear miRNA function through the
formation of miRISCs [37].

Although the exact mechanism of miRNA nuclear translocation
remains unknown, research shows that nuclear miRISC is 20-fold
smaller than its cellular counterpart [38]. When imported into the
nucleus, some cofactors, such as Dicer, are not attached to the
miRISC, while core components, Ago2 and Trinucleotide Repeat
Containing Adaptor 6 (TNRC6), are conserved both in the nucleus
and cytoplasm [38,39]. Since these components exist both in
nuclear miRISCs and cellular miRISCs, it is supposed that they are
functional in miRNA translocation.
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A previous study showed that TNRC6A plays an important role in
the nuclear translocation of Ago2 and miRNA. It has been reported
that TNRCGA serves as a nuclear-cytoplasmic shuttling protein that
can bring Ago2 into the nucleus with its Ago-interacting motifs [40].

It has also been suggested that Importin-8, a member of the
karyopherin family, is critical for mediating the cytoplasm-to-
nuclear transport of mature miRNAs [41]. Experiments have shown
that knocking down IPOS8 reduces the level of miRNAs and Ago2
inside the nucleus without affecting their total cellular level,
indicating that their nuclear translocation is suppressed [42].
Additionally, through cross-immunoprecipitation and western blot
analysis, it has been reported that IPO8 is physically associated with
Ago2, so IPO8 may mediate Ago2 and miRNA nuclear translocation
through directly binding to Ago2 [42].

Additionally, a few studies have identified a specific nuclear
localization signal sequence in the nucleotide sequence of highly
abundant nuclear miRNAs. Mature miRNAs that bear a nuclear
localization signal (AGUGUU) at their 3’ terminus are specifically
targeted to the nucleus [25]. It is plausible that the nuclear pore
complex recognizes and utilizes this specific sequence to target
miRNAs to the nucleus.

Functions of Nuclear miRNAs

Nuclear miRNAs play a critical role in the overall gene regulation
network due to their numerous functions. In this paragraph, we
summarize these functions in three main categories: regulation of
gene transcription, posttranscriptional regulation of RNA, and
regulation of protein activity. In most cases, the functional activity
of miRNAs is dependent on their incorporation into miRISCs.
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However, there are some instances, such as in the case of
interaction with caspase 3, where miRNAs can act independently
to elicit their functional effects.

Regulation of gene transcription

Interaction with promoters

Since 2009, nuclear miRNAs have been demonstrated to have the
potential to interact with gene promoters, with numerous possible
binding sites residing therein [43—45]. From then to now, numerous
studies have indicated that miRNAs may regulate gene expression at
the transcriptional level by binding to promoter regions, mediating
either transcriptional gene activation (TGA) or transcriptional gene
silencing (TGS).

Transcriptional gene activation The precise mechanism under-
lying how nuclear miRNAs regulate gene expression through
interactions with promoters remains unclear, but a number of
hypotheses have been proposed. For TGA, two main possible
mechanisms have been proposed, including miRNA influence on
epigenetic modification and bidirectional transcription (Figure 2A).

The first plausible mechanism involves miRNA-mediated epige-
netic modification of gene promoters, leading to alterations in gene
transcriptional activity [34,46,47]. For example, miR-744 is known
to regulate the expression of mouse Cyclin B1 (Ccnbl). Studies have
demonstrated that Agol is recruited to the Ccnbl promoter by miR-
744, and miR-744 can induce increased Pol II occupancy and
H3K4me3 at the Ccnbl promoter, thus resulting in transcriptional
activation [46].

Additionally, miR-589 activates the expression of cyclooxygen-
ase-2 (COX-2). In this case, miR-589 binds pRNA, which functions
as a scaffold, and recruits Ago2 and GW182 (TNRC6A) to form a
complex. This complex can modify histones through the assistance
of WDRS5, a WD40 repeat-containing protein that can act as a
protein scaffold to stimulate histone methyltransferase activity. As a
result, H3K4me3 at the COX-2 promoter increases, and gene
transcription is activated [47].

Furthermore, a single miRNA can target several promoters to
enhance the expressions of multiple genes. For instance, miR-205
targets specific sites in both IL-24 and IL-32 promoter RNA,
increasing the expressions of both genes with assistance through
inducing local active modifications, such as H3 acetylation, H4
acetylation, and H3 lysine 4 dimethylation, accompanied by the
enrichment of Pol II [34].

Another possible mechanism is associated with bidirectional
transcription [48]. In mammalian cells, there are numerous sense—
antisense transcript pairs. The antisense transcript of a bidirection-
ally transcribed gene can induce epigenetic silencing of the sense
gene promoter [49]; thus, suppression of the antisense transcript
can lead to gene activation. For example, the p21 antisense RNA
Bx332409 directs suppressive modifications, such as H3K27me3, at
the loci of the p21 gene. A small interfering RNA (siRNA), p21-322,
can significantly suppress the p21 antisense RNA Bx332409,
resulting in the loss of its suppressive epigenetic modification and
consequently leading to increased p21 mRNA transcript expression.
Notably, Ago2 is necessary for p21-322-mediated gene activation.
[48]. Although siRNA functions differently from miRNA, evidence
has demonstrated that many bidirectionally transcribed genes
overlap significantly with miRNAs on the 3’ UTR [50], suggesting
the potential for miRNA-mediated transcriptional activation.
Transcriptional gene suppression By interacting with promoters,

certain nuclear miRNAs are capable of performing cotranscriptional
gene suppression [51-57] (Figure 2B). One example of this is miR-
552, which is capable of inhibiting human cytochrome P450 (CYP)
2E1 expression both co-transcriptionally and posttranscriptionally.
The seed sequence of miR-552 functions by inhibiting protein
production, while the nonseed sequence is necessary for inhibition
at the mRNA level. The promoter of CYP2EI contains an 11 nt
incomplete inverted repeat and a loop hairpin with a cruciform
structure, and it has been demonstrated that the cruciform structure
in this promoter region plays a regulatory role in gene transcription
[51]. Through binding with this cruciform structure, the nonseed
sequence of miR-552 is able to inhibit SMARCEI, which is an
accessory component of the mammalian SWItch/Sucrose NonFer-
mentable (SWI/SNF) chromatin remodeling complex and is
involved in transcriptional gene activation. This results in hindering
the recruitment of Pol II and ultimately suppressing Pol II-
dependent CYP2E1 transcription [58].

Multiple studies have found that this kind of transcriptional
regulation requires the Agol protein. For example, miR-320 is
capable of inhibiting POLR3D mRNA expression. Specifically, miR-
320 directs Agol in a sequence-specific manner to the promoter of
POLR3D, leading to the enrichment of histone-lysine N-methyl-
transferase enzyme (EZH2), a histone methyltransferase that
mediates H3K27me3 [58]. Another study also reported that miR-
208b can bind to EZH2 and inactivate the promoter of related genes
in a similar manner [59].

Moreover, miR-223 can bind to sites within the promoter of the
NFI-A gene and recruit Agol, Dicerl and PcG members (YY1 and
Suzl2) to this region, leading to a decrease in transcriptionally
active chromatin marks acetylated H3 and H3K4me3 and an
increase in inactive chromatin marks H3K27me3, as polycomb
(PcGs) and trithorax (TrxGs) proteins are responsible for the
trimethylation of H3K27 and H3K4, respectively [55,56]. Thus, miR-
223 can generate a chromatin-silent state on the NFI-A gene
promoter during granulopoiesis, which plays an important role in
directing the fate lineage determination of hematopoietic progeni-
tors [57].

In addition to the Agol protein, the Ago2 protein also seems to be

associated with this miRNA-dependent transcriptional regulation.
For example, miR-423-5p mimics can suppress progesterone
receptor (PR) gene transcription by binding to the promoter itself
and recruiting Ago2 to an antisense noncoding RNA transcribed
from the PR promoter, ultimately resulting in decreased Pol II
occupancy and an increased level of histone H3K9me2 at the PR
promoter [52]. However, further investigations should be con-
ducted to explain the role that the Ago protein plays and the
mechanisms for miRNA-promoter transcriptional processes.
Three interaction models In conclusion, three main models have
been proposed for miRNAs to interact with promoters [60,61]: RNA-
DNA, RNA-RNA and RNA-DNA triplex. The function of the
interaction can be either activation or silencing, and its function
can be related to the specific target region and the epigenetic status
of the promoter [62]. These interactions are also dependent on Ago
proteins [63].

In the case of RNA-DNA interactions, miRNA-Ago complexes
bind to the TATA box or transcription factor-binding sites of the
promoter, thereby recruiting transcription factors, epigenetic
modifiers and Pol II to the promoter region. For example, as
mentioned above, miR-552 has been shown to directly bind with
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Figure 2. miRNA-mediated gene promoter regulation

(A) The activating function of miRNA. First, in the steady stage, a certain amount of RNA

polymerase |l transcribes the promoter into pRNA. Second, Ago1 mediates miRNA binding with the promoter region, while Ago2 mediates miRNA
binding with pRNA. Third, Ago2 recruits TNRC6A to form a complex, and the binding of both Ago1 and Ago2 leads to the enrichment of RNA
polymerase Il and active histone modifications, such as H3K4me3, H4ac (histone 4 acetylation) and H3K4me2. (B) The suppressive function of
miRNA. First, in the steady stage, a certain amount of RNA polymerase Il transcribes the promoter into pRNA. Second, Ago1 mediates miRNA
binding with the promoter region, while Ago2 mediates miRNA binding with pRNA. Third, some modifications can be carried out. (a) Ago1 recruits
EZH2 to increase H3K27me3. (b) A chromatin silent status is generated by miRNA by recruiting PcG members (YY1 and Suz12), and H3K27me3 is
increased while H3K4me3 is hindered. (c) Ago2 acts as a mediator to recruit HDAC1 to increase H3K27me3 and H3K9me2 while decreasing
H3K4me3. All of the above processes lead to a decrease in RNA polymerase Il and gene suppression.

CYP2E] promoter DNA to suppress its transcription [58]. Similarly,
miR-138, miR-92a, and miR-181d can activate promoter activities
through binding to the TATA-box motifs of insulin, calcitonin, or c-
myc, respectively [64].

In contrast, RNA-RNA interactions involve the binding of the
miRNA-Ago complex to noncoding transcripts derived from gene
promoters, wherein either sense or antisense transcripts can be
targeted by miRNA-Ago complexes. This interaction then recruits
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histone modifiers, transcription factors and Pol II for further
processing of the promoter [65].

For RNA-DNA triplex interactions, miRNA-Ago complexes
directly alter the topography of chromatin, thereby changing its
accessibility to transcription factors and resulting in either activa-
tion or suppression of transcription. The triplex can also suppress
transcription by overlapping the target site of transcription factors
on the promoter [66]. The accuracy of the triplex binding
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mechanism has been verified through the binding of hsa-miR-483-
5p to duplex DNA in vitro [67].

Interaction with enhancers

In addition to promoter regions, recent studies have shown that
miRNAs also have the ability to interact with enhancers, which are
genomic elements capable of upregulating gene transcription.

Some miRNAs whose gene loci are identified within the peaks of
H3K27ac modification, which is an active enhancer marker, are
believed to have the potential to activate neighboring gene
transcription by targeting enhancers [68]. For instance, miR-26a-1
overexpression results in an increase in transcription of neighboring
ITGA9 and VILL genes, and miR-339 overexpression activates the
neighboring gene GPER by 4-fold. Researchers have further
confirmed this relationship between enhancer markers and
enhancer-associated miRNA function through examples of miR-
3179 and miR-3180, two miRNAs located at the same intergenic
region with significantly different H3K27ac enrichment levels.
Transient transfection of miR-3179 into HEK293T cells results in
the upregulation of neighboring genes ABCC6 and PKD1P1 by 3-fold
and 5-fold, respectively, while miR-3180 does not show any
activation [68].

To explore the mechanism of miRNA as an enhancer trigger,
researchers focused on the function of miR-24-1 (Figure 3). It has
been demonstrated that increased level of miR-24-1 activates the
transcription of its neighboring genes FBPI and FANCC. At first, it
can induce Ago2, p300/CBP and Pol II enrichment at the enhancer
region. Meanwhile, the active enhancer marker H3K27ac and the
poised enhancer marker H3K4mel are increased, and the repressive

marker H3K9me3 is depleted. As a result, functional enhancer RNA
(eRNA) transcripts are increased, which can subsequently activate
gene transcription. That is, miR-24-1 overexpression leads to direct
chromatin state alteration of the enhancer, which is involved in
gene activation [68].

Generally, the miRNA-enhancer target gene activation process
can be summarized in three steps. First, miRNA is transcribed from
its gene on enhancer loci. Second, it forms a complex with Ago2 and
p300/CBP, inducing an increase in H3K27Ac and H3K4mel levels
and a decrease in H3K27me3 level at the enhancer region, making
the enhancer recognizable to Pol II. Third, Pol II attracts
transcription factors and proteins such as P-TEFb, PAF1 and
SPT6. It is then activated through phosphorylation and bidirection-
ally transcribes the enhancer. Afterwards, the integrator complex
cleaves the 3'UTR of eRNA transcripts, converting it to an
appropriate size. Subsequently, mature eRNAs bind to p300/CBP
and other proteins to induce activation markers at the target gene
promoters. Pol II and other transcription factors then attach to the
gene promoter and activate target gene expression [69,70].

Posttranscriptional regulation of RNA

Interaction with mRNA

After maturation, miRNAs can form miRISCs with Ago2 and other
components in the cytoplasm. After being transported into the
nucleus, miRISC can perform its function just as in the cytoplasm,
using the guide strand to bind with certain sites called miRNA
response elements (MREs) on mRNAs, finally causing target mRNA
loss of function and degradation. Some of these interactions occur
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Figure 3. miR-24-1-mediated gene enhancer activation

First, miR-24-1 is transcribed from its gene at enhancer loci. Second, mature miRNA

forms a complex with Ago2 and p300/CBP, inducing active markers at enhancer regions, including an increase in H3K27ac and H3K9me3 and a
decrease in H3K4me1, making the enhancer recognizable to RNA polymerase Il. Third, TFs and other proteins bind to RNA polymerase Il, and RNA
polymerase | Il is activated. Then, it bidirectionally transcribes the enhancer. Subsequently, eRNA binds to p300 and other proteins to activate the

target gene promoter.
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co-transcriptionally, and some occur posttranscriptionally. While
MREs are usually on the 3'UTR of mRNAs, some are on the 5'UTR
and even protein-coding sequences [61,71-73]. When the miRNA:
MRE interaction is fully complementary, it can induce Ago2
endonuclease and cause target mRNA cleavage [74]. For animals,
miRNA:MRE complementarity is usually imperfect, preventing
Ago2 endonuclease activity [75].

As reported, low molecular weight miRISCs can interact with
mRNAs in the nucleus posttranscriptionally and induce mRNA
degradation, but the mechanism is not clear yet [40,76,77] (Figure
4A). Additionally, it has been reported that Ago proteins and Drosha
are involved in mRNA splicing [78,79], supporting the existence of
co-transcriptional miRISC:mRNA interactions. By directly interact-
ing with MREs on mRNAs, miRISCs in the nucleus can regulate gene
expression in many ways, contributing greatly to the whole miRNA
regulatory network.

Interaction with IncRNA

Long noncoding RNAs (IncRNAs) are transcripts longer than 200
nucleotides with low or no protein coding potential that participate
in the modulation of gene expression at both the transcriptional and
posttranscriptional levels [80]. In humans and other eukaryotes, a
vast proportion of the genome is transcribed in a developmentally
regulated manner, resulting in the production of numerous IncRNAs.

Converging lines of evidence suggest that IncRNA expression is
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subject to posttranscriptional regulation by nuclear miRNAs, which
bind to miRNA-responsive elements within IncRNAs, thereby
impacting their stability and function (Figure 4B). In 2011,
researchers identified that miR-671, which is primarily localized
in the nucleus, directs cleavage of the antisense transcript of the
cerebellar degeneration-related protein 1 (CDR1) gene in an Ago2-
dependent manner [81]. This was the first experimental evidence
pointing towards the functional targeting of IncRNAs by miRNAs
[36]. Since then, multiple nuclear IncRNAs have been identified as
target genes for miRNAs. For instance, the cancer-associated
nuclear IncRNA MALAT-1 has been reported as a target of miR-9
[82], while another cancer-associated nuclear IncRNA, XIST, has
been reported as a target of miR-210 [83]. The GENCODE
Consortium has implemented a map of putative microRNA target
sites, including 10419 IncRNA genes in the current version, many of
which are nuclear enriched [84]. Further experimental investiga-
tions will likely shed more light on the intricate network governing
the regulation of IncRNAs by miRNAs in the cell nucleus.
Interaction with rRENA
In addition to the interaction with specific regions of mRNA or
IncRNA, evidence suggests that nuclear miRNAs may have the
potential to interact with ribosomal RNA (rRNA).

Nuclear miRNAs have been observed to be localized in the
nucleolus [85,86], which is composed of three distinct components:
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Figure 4. Posttranscriptional regulation of RNA

pri-miRNA

pre-miRNA

Nuclear miRNAs participate in the posttranscriptional regulation of RNA via several

mechanisms. (A) Interaction with mRNAs. Mature miRNAs can enter the nucleus, form miRISCs and bind with MREs on the 3'UTR of mRNAs. In
animals, the complement system is usually imperfect. These interactions eventually lead to mRNA degradation. (B) Interaction with IncRNAs.
miRISCs can target miRNA-complementary sequences on IncRNAs to affect their stability and function. (C) Interaction with rRNAs. An example of
this mechanism is miR-92a-2-3p interacting with 28S rRNA. In the nucleolus, miR-92a-2-3p directs the binding of Ago2 to 28S rRNA, resulting in the
downregulation of the overall rRNA synthesis rate. (D) Interaction with pri-miRNAs. Pri-miRNAs can also be the target of miRISCs. After binding
with pri-miRNAs, miRISCs can prevent Drosha/DGCR8 from splicing pri-miRNA to pre-miRNA, which eventually stops miRNA maturation. This
shows that certain miRNAs have higher priority and can regulate the expression of other miRNAs.
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the fibrillar centers (FCs), where rDNA genes reside; the dense
fibrillar component (DFC), where pre-rRNA transcripts undergo
processing; and the granular component (GC), where additional
pre-TRNA processing and ribosome assembly occur [87]. For
instance, miR-206 has been shown to be present not only in the
cytoplasm but also in the nucleolus. Furthermore, it has been
demonstrated that miR-206 partially colocalizes with 28S rRNA in
both the cytoplasm and granular component of the nucleolus,
suggesting that miRNAs possess the capacity to bind to rRNA and
potentially play a role in rRNA biogenesis [24].

Other studies have reported that Ago2, an essential component of
the miRISC, can bind with rRNA. The ability of Ago2 to interact with
rRNA is nearly abolished in DICER-knockout cells, implying that
miRNAs may mediate the association between Ago2 and rRNA.
Specifically, miR-92a-2-3p has been found to facilitate Ago2 cross-
linking with rRNA possessing a perfect match with the seed
sequence of this miRNA (Figure 4C). Knockdown of Ago2 in
HEK293T cells led to a significant increase in overall rRNA
synthesis, thereby supporting the notion that miRISC components
may participate in rRNA biogenesis [37].

Interaction with pri-miRNA

It has long been documented that miRISC can interact with mRNA
through complementary MREs, thereby mediating posttranscrip-
tional gene silencing [61,71-73]. In a similar pathway, pri-miRNAs
can also serve as targets of miRNAs (Figure 4D).

Previous studies have shown that miR-709 can inhibit the
processing of miR-15a/16-1 by binding to a 19-nucleotide miR-709
recognition element present on pri-miR-15a/16-1 [88]. Additionally,
miR-122 can impede the maturation of pri-miR-21 by binding to
specific nucleotides recognized by the microprocessor complex
[89]. These findings suggest a hierarchical structure among
miRNAs, wherein certain miRNAs hold higher priority and can
regulate the expression of other miRNAs.

Regulation of alternative splicing

Scientific evidence demonstrates that miRNAs play a pivotal role in
splicing events within gene regulatory networks. Immunoprecipita-
tion assays have provided substantial proof of the interaction
between Ago proteins and several splicing factors in the nucleus
[90]. For example, crosslinking immunoprecipitation assays
coupled with high-throughput sequencing (HITS-CLIP) have
enabled the identification of Ago2 and miRNA binding sites within
intronic sequences by various studies [91-93]. Furthermore,
splicing outcome evaluation in DICER-knockout cells has estab-
lished that DICER-dependent small RNAs, including miRNAs, are
crucial to splicing events within the cells [78,90], further
substantiating the role of miRNA in alternative splicing. However,
the underlying mechanism remains poorly understood.

SF2/ASF, which is a splicing factor, can form a negative feedback
loop with miR-7. Direct interaction between SF2/ASF and the
primary miR-7 transcript facilitates Drosha cleavage and enhances
microRNA expression, and mature miR-7 subsequently targets the
3'UTR of SF2/ASF to repress its translation [94]. This suggests that
the interaction between splicing factors and specific miRNAs may
be a part of the alternative splicing regulation network.
Detention in the nucleus to fine-tune mRNA expression
It has been proposed that miRNAs can be retained in the nucleus to
fine-tune the expressions of their mRNA targets. For instance, miR-
706, miR-709, and miR-690 regulate the expression of Statl, Myc
and Cebpa, respectively, all of which are transcription factors

involved in myeloid differentiation [95-97]. It is suggested that the
enrichment of these miRNAs in the nucleus is linked to their
decreased cytoplasmic concentration, and their retention is able to
upregulate the expression of transcription factors and other proteins
during granulopoiesis [97].

Regulation of protein activity

In most situations, miRNA typically engages with Ago proteins and
binds to specific RNA or DNA regions to perform either activation or
suppression. It should be noted that some miRNAs can function
independently of Ago proteins and directly interact with non-Ago
proteins.

For instance, miR-126-5p can serve as an aptamer to caspase 3
(Figure 5). Upon maturation in the cytoplasm, miR-126-5p
associates with Mex3a and Ago2 to form a complex that is
translocated into the nucleus. In the nuclear compartment, miR-
126-5p dissociates from Ago2 and binds to caspase 3 using its seed
sequence. Following this interaction, the dimerization of caspase 3
is inhibited, thereby decreasing its activity in limiting apoptosis and
promoting antiapoptotic function. This reveals a noncanonical
mechanism by which miRNAs directly bind to target proteins and
modulate protein function [98].

Pathophysiology of miRNAs in the Nucleus
miRNAs play a critical role in the pathophysiology of multiple
diseases, including neuroendocrine tumors, nonalcoholic fatty liver
disease (NAFLD), and cardiovascular diseases [99-104]. In the
same way, it is also crucial to determine the role that nuclear
miRNAs play in the pathophysiology of diseases to better prevent
diseases, elucidate the mechanisms and identify novel biomarkers.

One example is nuclear miR-665, which is observed to have
increased expression in heart failure. The possible pathophysiology
for heart failure patients is that nuclear miR-665 targets the PTEN
(phosphatase and tensin homolog) gene in the nucleus, thus
inducing cardiac dysfunction related to TAC (transverse aortic
constriction) and heart failure [105].

Another example is nuclear miR-30b-5p. In abnormal autophagy-

miR-126-5p

|

Inhibit
dimerization

nucleus

Figure 5. miR-126-5p-mediated protein activity regulation After
forming a complex with Ago2 and MEX3A, miR-126-5p, with the
complex, is transported into the nucleus. Ago2 then dissociates from
the complex, and miR-126-5p can interact with caspase-3. It inhibits
the dimerization of caspase-3 and plays a role in antiapoptosis.
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related diseases, the expression of miR-30b-5p is decreased in the
nucleus. MiR-30b-5p can bind with coordinated lysosomal expres-
sion and regulatory elements, which are palindromic motifs
associated with autophagy and lysosomes. In this way, the
interaction with the transcription factor TFEB is suppressed, leading
to less activation of autophagy and biogenesis of lysosomes [106].
MiR-320 is reported to be related to heart failure in type 2 diabetes
mellitus patients. The expression of this kind of miRNA is increased
in the failing heart of diabetes patients compared with the
expression in patients without diabetes. Nuclear miR-320 can
promote the transcription of the Cd36 gene and increase cardio-
myocyte uptake of free fatty acids, leading to the accumulation of
lipotoxic diacylglycerol and reactive oxygen species. After that,
apoptosis occurs, and diabetic cardiomyopathy ensues [107].

Databases in miRNA Research

Currently, many databases about miRNA biogenesis and functions
in the nucleus have been established. Several of them are
introduced as follows.

The following databases are about susceptibility loci for nuclear
miRNAs. From these databases, it is possible for us to propose
potential targets for nuclear miRNAs.

EnhancerAtlas 2.0 (http://enhanceratlas.org/index.php) gives
the locations of enhancers in the human genome in a genome-wide
manner [108]. It also provides the target genes for a certain
enhancer. This can be used to predict the enhancers near a
susceptibility locus for nuclear miRNAs and list the potential target
genes.

EnhancerDB (http://lcbb.swjtu.edu.cn/EnhancerDB/) enables
users to search related miRNAs, genes, TFs and SNPs through this
enhancer’s name [109]. It also works when using a miRNA’s name
to search related enhancer and TFs. The expression level of this
miRNA will also be given.

EnhFFL (http://lcbb.swjtu.edu.cn/EnhFFL/) can be used to
search enhancer-miRNA-gene and TF-enhancer-miRNA interac-
tions through miRNA name or enhancer name [110]. This can
provide a clear picture of miRNAs in the nucleus and their
corresponding enhancers.

ChIP-Atlas: Target Genes (https://chip-atlas.org/) contains ChIP
data for Agol and Ago2, making it possible to find potential target
genes for many kinds of transcription factors [111]. As Ago2 is
thought to be a core component of nuclear miRISC, these ChIP data
may contain potential targets for nuclear miRNAs.

The 3Dgenome interaction viewer and database (http://kobic.kr/
3divvl/) offers data about long-range chromatin interactions,
including enhancer-promoter interactions, and has the ability to
visualize them [112,113]. This database can help explain epigenetic
variation and phenotypical polymorphisms during which nuclear
miRNAs can be involved. As a result, potential targets for nuclear
miRNAs can be proposed.

Other databases can help research on nuclear miRNAs by directly
providing information about miRNAs.

miRbase (http://www.mirbase.org) is a widely used database
containing nearly all miRNAs that have been discovered. By
searching through their name, their precursors, expression level,
location on the genome and other information can be given [114].
Since most nuclear miRNAs also exist in the cytoplasm, this
database contains information for both cellular and nuclear
miRNAs, making it useful in providing information on nuclear
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miRNAs.

RNALocate (http://rnalocate.org/) offers more than 210000
RNA-associated subcellular localizations, which can help analyze
the potential target sites for miRNAs [115]. By searching miRNAs
that are localized in the nucleus, information on nuclear miRNAs
can be obtained.

The following databases are established mainly for research on
nuclear miRNAs, and they can provide much information on the
interaction between target loci and nuclear miRNAs.

miRNASNP-v3 (http://bioinfo.life.hust.edu.cn/miRNASNP/) fo-
cuses on single-nucleotide variations, including SNPs and disease-
related variations in miRNAs and their target binding sites [116].
Since SNPs in miRNAs and their binding sites have a strong impact
on the effect of nuclear miRNA, data for them will be of great help
for research on nuclear miRNAs.

miRdSNP (http://mirdsnp.ccr.buffalo.edu) is a database that
integrates disease-associated SNPs, miRNA target sites and dis-
eases. With the help of this database, miRNA target sites and
disease-associated SNPs on the entire 3'UTR sequence can be
obtained, which can be very beneficial for studying SNPs and
certain diseases [117].

microPIR2 (http://www4a.biotec.or.th/micropir2) contains ap-
proximately 80 million predicted nuclear miRNA target sites located
in promoter sequences for humans and 40 million for mice [118].
These data are helpful for research on the interaction between
nuclear miRNAs and promoters. Moreover, it is convenient for
comparative analysis between human and mouse target sites of
nuclear miRNAs.

Conclusions
In the conventional pathway, the function of miRNA is typically
limited to the cytoplasm. With all the efforts made by researchers, it
is now clear that miRNAs can serve as regulators in both the
cytoplasm and nucleus through different mechanisms. In this
review, we have described how nuclear miRNAs can interact with
transcription factors, mRNAs, ncRNAs and proteins to implement
gene regulation. Given that the importance of miRNAs in diseases
such as systemic lupus erythematosus and cancer has been well
established, it is clear that further exploration of these novel
mechanisms will expand our understanding of the pathophysiology
of these diseases and offer new avenues for treatment.
Remarkably, SNPs in nuclear miRNAs and their target genes
represent a current research hotspot. By utilizing genome-wide
association study (GWAS) databases and applying high-throughput
sequencing technology to miRNAs, researchers can identify how a
single nucleotide mutation may influence the pairing of miRNAs and
their targets and the associated downstream pathway, deepening
our comprehension of miRNA-mediated disease development.
However, there are still many unsolved issues in the field. For
example, some transcription factors, such as CCCTC-binding factor
(CTCF), octamer-binding transcription factor 4 (OCT4) and sex
determining region Y-box 2 (SOX2), bind to their regulatory regions
depending on epigenetic changes [119,120], but for miRNAs in the
nucleus, the influence of epigenetic modifications on their interac-
tion with targets is poorly studied and may require future efforts.
It should be noted that further in vivo evidence is needed to
support the novel mechanisms. Nonetheless, we believe that the
exploration of these noncanonical miRNAs will result in novel and
exciting discoveries.
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