2001年 7月

N-取代吡唑亚甲胺基-N-取代苯基(硫)脲的合成

刘 莹 任 军 陈卫强 金桂玉*

(南开大学元素有机化学国家重点实验室,元素有机化学研究所 天津 300071)

摘 要 用取代吡唑醛与水合肼反应生成腙,后者与异氰酸酯、异硫氰酸酯反应,制得一系列新型 $N-(1 \times 3)$ 基 -3 甲基 -5-氯 -4 吡唑亚甲胺基)-N' 苯基脲类化合物,其结构经 $1R^{-1}H$ NM R M S 和元素分析确认,部分化合物生物活性普筛发现,一些缩胺硫脲有杀菌活性.

关键词 合成,吡唑,脲,硫脲,生物活性

中图分类号: 0626

文献标识码: A

文章编号: 1000-0518(2001)07-0513-04

缩胺 (硫)脲类化合物具有广谱的生物活性 . 如金属络合缩胺 (硫)脲具有抗肿瘤 ^[1]、抗结核 ^[2] 等活性 ,杂环缩胺 (硫)脲具有杀虫活性 ^[3]、除草活性 ^[4]等 . 近年来 ,杜邦公司从稠杂环缩胺化合物中开发出杀节肢动物药剂 ^[5] ,这类化合物的研究受到越来越多的关注 .

为了寻找高活性的化合物,本文以取代吡唑醛为创制源,与水合肼反应形成腙(M-1),然后(M-1)在不同溶剂中与异氰酸酯 异硫氰酸酯反应,制得一系列未见报道的取代吡唑基的新型缩胺(硫)脲类化合物 1~ 19. 合成路线如下:

$$H_3C$$
 CHO NH_2NH_2 R^1 R^2 R^2 R^1 R^2 R^2 R^3 R^4 R^4

 $(R^1=Ph,CH_3;R^2=Cl,OEt,OPh;X=S,O;Q=(substituted)Ph,CH_2Ph)$

1 实验部分

1.1 仪器与试剂

Yanaco MT-3型 CHN 自动元素分析仪; Brucker AC-P200Q型核磁共振仪(CDCb 为溶剂,TMS为内标); JEOLFX-90Q型核磁共振仪(CDCb 为溶剂,TMS为内标); VG-7070E型质 谱仪; Shimadzu-IR435型红外吸收光谱仪(KBr压片); Yanaco M P-500型熔点仪(温度计未经校正).

所有溶剂均为国产分析纯,干燥后重蒸使用,试剂为国产分析纯. 1苯基-3甲基-5氯-4吡唑甲醛,1,3三甲基-5氯-4吡唑甲醛,1苯基-3甲基-5-苯氧基-4吡唑甲醛,1-苯基-3-甲基-5-乙氧

基 4 吡唑甲醛参考文献 [6 方法制备.

1. 2 中间体 1取代 -3甲基 -5-取代 -4-吡唑甲醛 腙的合成

用 1苯基 -3-甲基 -5-氯 -4-吡唑甲醛与过量的 85% 水合 肼加热 80 ℃反应 3 h,冷却,加水, CHCb 萃取,无水硫酸钠干燥,液体脱溶后,残余物用 DM F-C Ho O H重结晶,得中间体 M -1-1,白色晶体, R¹= Ph, R²= Cl, mp 99~ 100 ℃,产率 94.8%. C1 Ho N4 Cl,元素分析实测值(计算值)%: C 56.30(56.30), H 4.61(4.72), N 23.89(23.87). 同法制得中间体 1苯基 -3-甲基 -5-苯氧基 -4-吡唑甲醛腙 M -1-2; 1-苯基 -3-甲基 -5-乙氧基 -4-吡唑甲醛腙 M -1-3; 1-苯基 -3-甲基 -5-氯 -4-吡唑甲醛腙 M -1-4.

1.3 目标化合物的合成

1. 3. 1 N-(1-取代-3-甲基-5-取代-4-吡唑亚胺基)-N'-取代苯基(苄基) 脲的制备 将腙(5 mmol)加入新处理的 20 mL无水乙腈中,室温搅拌下,滴加与腙等摩尔的异氰酸酯,生成大量固体,室温搅拌,TLC跟踪至反应完全,抽滤,固体用无水乙醇-DM F重结晶,得化合物 1~ 9.

1. 3. 2 N-(1-取代-3-甲基-5取代-4-吡唑亚胺基)-N'-取代苯基(苄基)硫脲的制备 5 mmol

腙与等摩尔的异硫氰酸酯在 20 mL无水乙醇中室温搅拌, TLC跟踪至反应完全,抽滤,固体用无水乙醇-DM F重结晶,得目标化合物 10 19.

2 结果与讨论

2.1 化合物的合成

目标化合物的物理常数与元素分析数据列入 表 1,1 H NM R数据列入表 2.吡唑醛与水合肼反 应时,水合肼要过量,以保证产物为 1-取代-3-甲 基 -5-取代 -4 吡唑甲醛与肼分子中 1个氮上氢反 应,在所采用条件下,并无吡唑 5-Cl被一 N HN H≥ 取代的产物:用极性非质子性溶剂无水乙腈对腙 与异氰酸酯的加成效果很好,所得产物后处理时 要注意水的存在,以防产物分解: 腙在极性质子型 溶剂无水乙醇中与异硫氰酸酯反应,顺利得到目 标化合物,大部分产物收率超过80%.曾试图合 成 5位为取代嘧啶巯基的目标化合物 用 1苯基 -3-甲基 -5-(4,6-二甲基 -2-硫代)嘧啶基吡唑甲醛 与水合肼反应时,得到的却是 5-位为氢的腙,表 明成腙反应时,嘧啶巯基断裂,采用 5位为氯的 化合物 1254.6 工甲基 -2 巯基嘧啶反应 .也未 能成功.

表 1 目标化合物的熔点、收率与元素分析数据

Tab. 1 Mp, yield and elemental analysis of the title compound

Compd.	R^{l}	R ²	X	Q	mp/C	Yield ‰	Elemental analysis (calcd.) /%		
							C	Н	N
1	Ph	Oph	О	4-Cl-Ph	216~ 217	92.3	64. 20(64. 65)	4. 54(4. 52)	15. 71(15. 71)
2	Ph	Oph	O	2, 4-(Cl) ₂ -Ph	233~ 235	88. 9	60. 03(60. 01)	4. 19(3. 99)	14. 70(14. 78)
3	Ph	Oph	O	3, 4-(Cl) ₂ -Ph	201~ 210	94. 4	60. 15(60. 01)	4. 10(3. 99)	14. 72(14. 58)
4	Ph	Cl	O	4-Cl-Ph	251~ 252	90. 3	55. 84(55. 68)	3. 99(3. 89)	17. 97(18. 04)
5	Ph	Cl	O	2, 4-(Cl) ₂ -Ph	249~ 251	94. 7	50. 99(51. 15)	3. 56(3. 34)	16. 46(16. 57)
6	Ph	Cl	O	3, 4-(Cl) ₂ -Ph	244~ 245	88. 8	51. 22(51. 15)	3. 52(3. 34)	16. 67(16. 57)
7	Ph	Cl	O	3-Cl-Ph	234~ 236	91. 4	55. 38(55. 68)	3. 93(3. 89)	17. 63(18. 04)
8	Ph	Cl	O	4-F-Ph	214~ 216	92. 1	58. 04(58. 15)	4. 09(4. 07)	18. 67(18. 84)
9	Ph	Cl	O	$\mathrm{CH}_2\mathrm{Ph}$	156~ 158	82. 2	62. 01(62. 04)	5. 00(4. 93)	19. 07(19. 04)
10	Ph	Cl	S	4-Br-Ph	217~ 218	89. 1	48. 21(48. 18)	3. 50(3. 37)	15. 65(15. 61)
11	Ph	Cl	\mathbf{s}	2-C F ₃ -Ph	187~ 188	85. 6	52. 09(52. 12)	3. 54(3. 45)	15. 73(15. 99)
12	Ph	Cl	S	Ph	187~ 188	91. 8	58. 35(58. 46)	4. 47(4. 36)	18. 68(18. 94)
13	Ph	Oph	S	2, 4-(Cl) ₂ -Ph	198~ 200	94. 0	58. 01(58. 07)	3. 85(3. 86)	14. 01(14. 11)
14	Ph	Oph	S	4-Br-Ph	216~ 217	84. 7	56. 84(56. 92)	4. 07(3. 98)	13. 87(13. 83)
15	Ph	Oet	\mathbf{s}	2-Cl-Ph	197~ 198	84. 5	58. 18(58. 03)	4. 84(4. 87)	16. 94(16. 92)
16	Ph	OEt	S	2, 4-(Cl) ₂ -Ph	214~ 215	83. 6	53. 35(53. 58)	4. 24(4. 27)	15. 49(15. 62)
17	Ph	OEt	\mathbf{s}	4-Br-Ph	207~ 208	87. 4	52. 32(52. 41)	4. 28(4. 40)	15. 19(15. 28)
18	CH ₃	Cl	\mathbf{s}	4-CH3-Ph	203~ 204	75. 0	49. 67(49. 77)	4. 79(4. 77)	20. 76(20. 73)
19	CH_3	Cl	S	2, 4-(Cl) ₂ -Ph	241~ 243	92.0	41. 21(41. 45)	3. 30(3. 21)	18. 75(18. 59)

表 2 M-1和目标化合物的 H NMR数据

Tab. 2 ¹H NMR data of M-1 and title compounds

Compd.	¹ H NM R,W					
M -l -l	2 47(s, 3 H, C H ₂), 5. 38(s, 2 H, N H ₂), 7. 34~ 7. 58(m, 5 H, Ph), 7. 72(s, H, — C H=)					
M -1 -2	2 $47(s, 3 \text{ H, C H}_3)$, 6. 80~ 7. 78(m, 10 H, 2Ph), 8. 15(s, H, — C H=)					
1	2 $51(s, 3H, CH_3)$, 6. 92^{\sim} 7. $59(m, 14H, 2Ph)$, 9. $05(s, H, -CH^{-})$					
2	2 $60(s, 3 \text{ H, C H})$, 6 90 7. $59(m, 13 \text{ H, 2Ph})$, 8 $55(s, \text{ H, } -\text{C H})$					
3	$2\ 59(s,3H,CH_{\!\tiny 2}),7.\ 10^{\!\!\!\!-}\ 7.\ 90(m,13H,2Ph),7.\ 90(s,H,CH^{\!\!\!\!-}),9.\ 70(s,H,NHQ)$					
4	$2\ 58(s,3H,CH_{\!B})\ , \ 7.\ 28{\sim}\ \ 7.\ 84(m,9H,Ph)\ , \ 8.\ 15(s,H,-CH_{\!\!}-)\)\ , \ 8.\ 80(s,H,NHQ)$					
5	2 $57(s, 3 \text{ H, C H}_3), 7.24$ 7. $98(m, 8 \text{ H, Ph}), 8.70(s, \text{ H, } -\text{C H})$					
6	2 $60(s, 3 \text{ H, C H}), 7.23$ ~ 7. $98(m, 8 \text{ H, Ph}), 8.60(s, \text{ H, } -\text{C H} -\text{C})$					
7	$2\ 60(s,3H,CH_{\!\tiny 2}),7.\ 00^{\!$					
8	$2\ 60(s,3H,CH_{\!B}),7.\ 00\ \ 7.\ 96(m,9H,2Ph),8.\ 10(s,H,-CH_{\!\!}),10.\ 70(s,H,NHQ)$					
9	$2\ 30(s,3H,CH_{2})\ ,4\ 50(s,2H,CH_{2}Ph)\ ,6.\ 30(s,H,NHQ)\ ,7.\ 20^{\sim}\ 7.\ 70(m,\ 10H,2Ph)\ ,7.\ 90(s,H,\ -CH^{-}\)\ ,$					
	9. 80(s, H, NN H →)					
10	$2.52(s,3H,3-CH_{\!5}),7.45-7.56(m,9H,2Ph),7.89(s,H,-CH_{\!-}),9.19(s,H,NHQ),9.80(s,H,-NNH)$					
11	$2.55(_{S}, 3~_{H}, 3{C~_{H}S}), 7.47-7.53(_{m}, 9~_{H}, 2~_{Ph}), 8.02(_{S}, ~_{H}, ~_{C~_{H}}=~), 9.19(_{S}, ~_{H}, ~_{N~_{H}Q}), 10.10(_{S}, ~_{H}, ~_{N~_{N}H}~)$					
12	$2.53(s,3H,3-CH_{\!3}),7.24 \!$					
13	$2.53(s,3H,3\text{C}H_{\!3}),8.32,8.37(\mathrm{d}),6.907.56(m,13H,3Ph),8.70(s,H,CH_{\!-\!-}),9.20(s,H,NHQ)$					
14	$2\ 46(s,3H,3\text{C}H_{\!3}),6.\ 93\ 7.\ 58(m,14H,3Ph),8.\ 27(s,H,CH^{\!-\!-\!-}),9.\ 74(s,H,NHQ)$					
15	$1.\ 2\ \vdash\ 1.\ 28(\ _{t},3\ _{H},C\ _{H_{3}})\ ,\ 2.\ 51(\ _{s},3\ _{H},3\ _{CH_{3}})\ ,\ 4.\ 02\ \vdash\ 4.\ 07(\ _{q},2\ _{H},O\ _{C}\ _{H_{2}})\ ,\ 8.\ 65(\ _{d})\ ,\ 7.\ 23\ \vdash\ 7.\ 67(\ _{m},9\ _{H},2\ _{Ph})\ ,$					
	7. 99(s, H, — C I=), 9. $52(s, H, N HQ)$, 9. $95(s, H, NN I=)$					
16	$1.21 \hspace{-0.2cm} \leftarrow 1.29(t,3H,CH_3),2.50(s,3H,3 - CH_3),4.02 \hspace{-0.2cm} \leftarrow 4.06(q,2H,OCH_2),7.23 \hspace{-0.2cm} \leftarrow 7.67(m,8H,2Ph),1.22 \hspace{-0.2cm} \leftarrow 1.22 \hspace{-0.2cm} \leftarrow 1.\hspace{-0.2cm} \leftarrow 1.\hspace{-0.2cm} \leftarrow 1.\hspace{-0.2cm} \leftarrow 1.$					
	7. $97(s, H, -CH=)$, 9. $47(s, H, NHQ)$, 9. $90(s, H, -NNH)$					
17	$1.22^{\omega}1.29(t,3H,CH_3),2.48(s,3H,3-CH_3),4.03^{\omega}4.06(q,2H,OCH_2),7.24^{\omega}7.68(m,9H,2Ph),$					
	7. $97(s, H, -CH=)$, 9. $04(s, H, NHQ)$, 9. $98(s, H, -NNH)$					
18	$2\ 39(s,3H,3-\!CH_{\!5}),3\ 78(s,3H,OCH_{\!5}),3\ 79(s,3H,1-\!CH_{\!3}),6.8\\ \\ \mathcal{F} 7.48(d,4H,Ph),7.8\\ \\ 7.87(s,H,-\!CH_{\!5}),\\ \\ 9.87(s,H,-\!CH_{\!5}),\\ 9.87(s,H_{\!5}),\\ 9.87(s,$					
	8.90(s, H, N HQ), 10.20(s, H, = NN H)					
19	$2.43(s,3H),3.81(s,3H,1-CH_3),8.68(d),7.3\vdash\!$					
	958(s, H, = NNH)					

M-l-1: 1-phenyl-3-methyl-5-chloro-4-pyrazolyl methylaldehyde hydrazon 6

M-1-2 1-phenyl-3-methyl-5-chlorophenyl-4-pyrazolyl methylaldehyde hydrazone;.

2.2 结构表征

1 H NM R谱中, M-1-1 M-1-2的吡唑 3位甲 基质子化学位移 W值在 2.47(单峰),化合物 1~8 的吡唑 3位甲基质子化学位移 W值在 2.51~ 2.60 (单峰),向低场移动 0.04~0.13;而化合物 9的吡 唑 3·位甲基质子 W值在 2.30(单峰),向高场移动 0.17,说明 N' 上取代苯基共轭效应使吡唑 3位甲 基电子云密度降低,苄基的影响与苯基正相反. N' 上取代基对吡唑 1-位取代基质子化学位移影响 不大. 化合物 9的谱图上出现了两处 N H的质子 化学位移,W值在 6.30为 NHQ的质子化学位移, 9.80为 = NNH的质子化学位移.有些化合物的 ¹ H NM R谱上或有一处 或没有 N H化学位移值. 硫脲的 1H NMR显示化学位移较有规律. — CH=NNH— 的 NH化学位移 W在 9.57以 上,为馒头峰; QN I─ 的质子化学位移 W值在 8.1~9.6之间,为尖峰. IR谱中,脲化合物的 NH 峰在 $3\,400\,\mathrm{cm}^{-1}$ 左右,羰基吸收峰在 $1\,690\,\mathrm{cm}^{-1}$ 左右.硫脲有明显的 $2\,\mathrm{N}\,\mathrm{H}$ 吸收峰 (约为 $3\,420\,\mathrm{H}$ $3\,250\,\mathrm{cm}^{-1}$ 处),硫羰基吸收峰约在 $1\,250\,\mathrm{cm}^{-1}$ 处. M S检测发现,M-1,脲,硫脲均有分子离子峰,主要碎片得到合理解释.

2.3 生物活性

初步化合物生测普筛显示,这一系列缩胺硫脲有一定杀菌活性.部分化合物对水稻纹枯病和烟草病毒在浓度为 500 mg/L时活性超过 60%.对小麦锈病基本无活性.

参 考 文 献

- West D X, Owens M D. Transition Met Chem. (London), 1998, 23(1): 87
- 2 Frech F A, Blanz E J J Med Chem, 1966, 9 585
- 3 Yagi K, Ohtsu T, Irimata A, et al. WO 9 703 976, 1997

- 4 Anderson R J, Cloudsdale I S, Lamoreaux R J, et al. US 5 681 793, 1997
- 5 Harrison C R, Lett R M, McCann S F, et al. WO 9 203 421, 1992
- 6 HUANG Run-Qiu(黄润秋), SONG Jian(宋健), FENG Lei (冯磊). Gaodeng Xuexiao Huaxue Xuebao(高等学校化学学报), 1996, **17**(7): 1 089

Synthesis of N-(Substituted) Pyrazolylmetheneimino-N' -(Substituted) Phenyl(Thio) Urea

LIU Ying, REN Jun, CHEN Wei-Qiang, JIN Gui-Yu*

(State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071)

Abstract The title compounds were synthesized from substituted pyrazolyl aldehyde as starting material, which were treated with hydrazine hydrate to give hydrazone (M-1). M-1 were reacted with isocyanates, isothiocyanates to yield 1~ 19. The structures of compounds were confirmed by elemental analyses, ¹ H NMR IR and MS. The preliminary bioassay indicated that some of them displayed fungicidal activities.

Keywords synthesis, pyrazole, thiourea, urea, bioactivity

启 事

本刊面向科研院所、大专院校和工矿企业,发行面已覆盖全国包括港澳台地区,并一直由中国国际图书贸易总公司向国外发行。在本刊刊登广告极有利于拓宽其产品的销售面。同时可以通过本刊代为厂家向用户单位在改进产品质量或开发新产品起咨询作用。

本刊自 1983年创刊以来,其文章即为国内外权威文摘刊物 (如美国的 C. A. 俄罗斯的 PЖ .. 瑞士的 E. A. 等)逐期摘引,有其广泛的影响。刊发广告,有利于提高其产品及其厂家的知名度,进一步开拓市场,扩大销售量。

欢迎来函来电,商定广告事宜。

《应用化学》编辑部

地址: 长春市人民大街 159号,邮编 130022

联系电话: (0431) 5262016, 5262330

E-mail yyhx@ ciac. jl. cn