
SCIENCE CHINA
Information Sciences

March 2022, Vol. 65 139104:1–139104:3

https://doi.org/10.1007/s11432-019-1516-3

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. LETTER .

Teegraph: trusted execution environment and
directed acyclic graph-based consensus algorithm for

IoT blockchains

Xiang FU*, Huaimin WANG, Peichang SHI, Xingkong MA & Xunhui ZHANG

College of Computer, National University of Defense Technology, Changsha 410073, China

Received 4 April 2019/Revised 14 May 2019/Accepted 16 July 2019/Published online 21 May 2021

Citation Fu X, Wang H M, Shi P C, et al. Teegraph: trusted execution environment and directed acyclic graph-

based consensus algorithm for IoT blockchains. Sci China Inf Sci, 2022, 65(3): 139104, https://doi.org/10.1007/

s11432-019-1516-3

Dear editor,

Owing to the recent advancements in the field of Internet of

things (IoT), the use of IoT devices has increased in every

aspect of human life, such as smart cities, Internet of medi-

cal things, and Internet of vehicles [1]. Such devices gather

data from the surrounding environment and communicate

with each other via the Internet. However, it is difficult for

such non-trustable devices to collaborate without a trusted

intermediary [2]. According to IBM, blockchains [3,4], which

have been developed over the past 10 years, are expected to

play a vital role in the field of IoT technology [5]. They can

build trust between IoT devices, reduce the risks of collusion

and tampering, and reduce costs by eliminating the over-

heads associated with middlemen and intermediaries. The

blockchain-IoT combination is a powerful tool and facilitates

significant transformations in several IoT applications. For

example, Li et al. [6] proposed the use of a credit-based

payment for fast computing resource trading in an edge-

assisted blockchain-enabled IoT application; Additionally, a

lightweight blockchain-based platform for industrial IoT has

been presented to address security, trust, and island con-

nection problems in the process of industrial IoT ecosystem

construction [7].

As a key element in blockchain systems, existing con-

sensus algorithms possess some limitations, such as waste

of energy, low throughput, high latency, and high net-

work communication requirements [8]. This study focuses

on the design of a highly efficient consensus algorithm for

IoT blockchains. Herein, Teegraph, which includes a gossip

protocol-based message communication mechanism to gen-

erate a directed acyclic graph (DAG)-based data structure

for a highly efficient consensus process, is proposed. Tee-

graph uses a TEE-based “single-use of self-parent” mecha-

nism to assure that an IoT device can never equivocate when

sending messages. It also assures the dynamic changing of

the consensus subject mechanism to deal with the situations

wherein device-swarms are separated or gathered together

for different tasks. When no new transactions are created,

Teegraph acts like a resource-saving mechanism for reducing

communication overhead and saves storage space. Herein, a

proof-of-concept implementation of Teegraph has been pre-

sented. Simulation results demonstrate that Teegraph out-

performs Hashgraph [9] from the viewpoint of throughput

and latency; herein, we implement the consortium version

of Hashgraph.

Teegraph. In Teegraph, there are no accountants for col-

lecting transactions. A node generates transactions, places

them in an event, and then sends the event to the network

by selecting a random neighbor as the destination. Herein,

a node sends to the neighbor all the events that he knows

while his neighbor does not. Similar to Hashgraph, every

node has a column. According to the received events, nodes

can generate DAGs locally, as shown in Figure 1(a)(left).

There are four nodes, namely A, B, C, and D. While de-

termining whether an event reaches consensus or not, each

node can calculate how other nodes would vote for the given

event according to the DAG.

A malicious node launches a fork attack by creating two

different events and placing them at the same position in

its column, and then sending them to different neighbors, as

shown in Figure 1(a)(right). Malicious node B creates two

events, events 5 and 5’, and they have the same self-parent

(event 3). Node B sends them to two different neighbors,

i.e., nodes A and C. In Hashgraph, a single-node fork at-

tack requires considerably low cost and cannot be discovered

quickly and easily. Once the attack is discovered, it must roll

back all the related events; therefore, the cost of recovering

from a single-node attack is considerably high. Moreover, if

a malicious node continues doing this, events from honest

nodes will never reach consensus. Resultantly, the liveness

of Hashgraph cannot be guaranteed unless Hashgraph is de-

ployed as a consortium blockchain, wherein the number of

participants for the consensus process is specified and the

identities of participants are known to each other.

In Teegraph, we take advantage of the TEE for pre-

venting fork attacks. We have designed the “single-use of

self-parent” mechanism, wherein TEEs guarantee that each

*Corresponding author (email: fuxiang13@nudt.edu.cn)

 https://engine.scichina.com/doi/10.1007/s11432-019-1516-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-1516-3&domain=pdf&date_stamp=2021-5-21
https://doi.org/10.1007/s11432-019-1516-3
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-1516-3
https://doi.org/10.1007/s11432-019-1516-3
https://doi.org/10.1007/s11432-019-1516-3

Fu X, et al. Sci China Inf Sci March 2022 Vol. 65 139104:2

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25

Teegraph

Hashgraph

Timestamp

Self-parent

Other-parent

Transactions

Hash of event n−1

TEE

Memory

2. Whether
the self-parent

of event n
equals

the hash of event n−1

Event n

1. Send

event n

to TEE

3a. If equals
Event n
signed by

TEE

Hash of event n

Memory

4. Change the memory

3b. If not equal

Dump event n

and stop the
process

5

1

3

2
A Malicious node B C D

64 7

8
9

A fork

Time

5

1

3

2

7

A B C D

64 8

Time

(a)

(b)

(c)

(d)

Number of failure nodes

Number of failure nodes

L
at

en
cy

 (
m

s)

5

T
h
ro

u
g
h
p
u
t

(e
p
s)

Figure 1 (Color online) (a) Hashgraph (left) and fork attack (right); (b) “single-use of self-parent” mechanism;

(c) simulation result of throughput; (d) simulation result of latency.

event can only be a self-parent once. The first event created

by a node has no parents; therefore, we set both the parents

to zero. As shown in Figure 1(b), before being sent to the

network, an event must obtain a signature from the TEE to

prove that its self-parent is set as a self-parent only once. All

nodes in the system fully trust the TEEs and believe that

TEEs do not lie. There are four steps involved in obtaining

the TEE’s trusted signature: (1) the node sends event n to

the TEE; (2) the TEE compares event n’s self-parent hash

to the hash of event n− 1 stored in its memory; (3) if both

the hashes are equal, the TEE signs event n and sends it

back to the node; and (4) the TEE stores the hash of event

n to replace the hash of event n−1 in its memory. In step 3,

if the hashes are not equal, TEE dumps event n and stops

the process to wait for the next event. In other words, if

event n − 1 in TEE’s memory is set as the self-parent of

event n, event n− 1 will be immediately replaced by event

n in the TEE’s memory. Therefore, a node can never create

two different events with the same self-parent, which means

that a fork attack cannot occur. For Hashgraph, before an

event reaches consensus, it must obtain votes from greater

than 2/3 of all nodes for no less than three rounds. On the

contrary, Teegraph only requires votes from greater than 1/2

of all nodes in a single round because the TEE prevents fork

attacks.

In some IoT scenarios, different types of devices may form

a swarm and work together to accomplish a task without

a trusted intermediary. Data sharing between these non-

trustable devices is required for such collaboration, and the

shared data must reach consensus among these devices be-

fore the swarm uses the data. Most consensus algorithms

can achieve this when the consensus subjects are always the

same, e.g., when nodes are not replaced, no new nodes join

and no nodes exit. However, often there are multiple sub-

tasks, which require the swarm to be separated as several dif-

ferent sub-swarms. After completing their sub-tasks, these

sub-swarms may recombine for another new task. There-

fore, when consensus subjects change continuously without

the support of a trusted intermediary, the consensus algo-

rithm for IoT blockchains must have the ability to reach

consensus. In Teegraph, any node can trigger the swarm

separation or sub-swarm’ combinations by creating a spe-

cial event containing a node-list of the new swarm. If a

node agrees with this proposal, it will store this event and

only communicate with nodes in the new node-list; other-

wise, it will dump the given event. When this special event

reaches half of the nodes in the list, the consensus subjects’

changing becomes effective. Then, an event reaches consen-

sus when it obtains more than one-half of the votes from the

node-list.

The original Hashgraph requires each node to create and

send events all the time. Even a node that does not have

a transaction to send must create and send empty events

containing zero transactions. However, when no new trans-

actions are created and all transactions in Hashgraph have

reached consensus, empty events do not contribute to the

system, i.e., such empty events waste the network and stor-

age resources. In Teegraph, to address this limitation, we

propose a resource-saving mechanism that allows nodes to

stop gossiping at an appropriate time. Before a given node

creates and sends an empty event, the node can evaluate

whether it should do so according to the Teegraph structure

it holds.

Simulation. To demonstrate the efficiency of the pro-

posed algorithm, we present a proof-of-concept implementa-

tion of the TEE within Teegraph. In this simulation, there

were a total of 50 nodes, and we simulated different num-

bers of failure nodes ranging from 1 to 24 (24 < 50/2).

Each node was simulated as a Java thread. Herein, r and

p denote event request interval (rather than sending events

to neighbors, each node requests events from its neighbors)

and event propagation time, respectively. Therefore, net-

work delay is expressed as r + p. Herein, (r + p) was set to

200 ms during the simulation. We compared the throughput

(eps: the number of events handled per second) and latency

(ltc: the average time for an event to reach consensus) of

Teegraph to those of Hashgraph (consortium version). Re-

sults are shown in Figures 1(c) and (d). Results suggest

that the throughput was reduced and latency increased with

an increase in the number of failure nodes. Teegraph is not

considerably affected when failure nodes increase and it out-

performs Hashgraph. Moreover, when the number of fail-

ure nodes is greater than 16 (16 < 50/3 < 17), Hashgraph

stops working, whereas Teegraph continues to function up

to greater than 24 failure nodes.

Conclusion. TEE and DAG are two innovative technolo-

gies used to build highly efficient blockchains. Herein, we

propose an efficient Byzantine fault-tolerant consensus al-

gorithm, Teegraph, for IoT device collaboration. We use

the gossip protocol for message communication and present

 https://engine.scichina.com/doi/10.1007/s11432-019-1516-3

Fu X, et al. Sci China Inf Sci March 2022 Vol. 65 139104:3

a TEE-based “single-use of self-parent” mechanism to guar-

antee that a malicious node can never launch a fork attack.

Then, we design a DAG-based consensus process that can

support dynamic changes to the consensus subjects. We

also design a resource-saving mechanism, which is not avail-

able in Hashgraph, to reduce communication overhead and

storage requirements when no new transactions are created.

A proof-of-concept implementation of Teegraph is also pre-

sented, and the simulation results demonstrate that the pro-

posed Teegraph outperforms Hashgraph from the viewpoint

of throughput and latency. In the future, we plan to focus

on distributed consensus on resource-limited IoT devices,

blockchain security, and decentralized schemes for IoT.

Acknowledgements The work was supported by National

Key R&D Program of China (Grant No. 2016YFB- 1000100),

National Natural Science Foundation of China (Grant No.

61772030), and GF Innovative Research Program.

References

1 Banerjee M, Lee J, Choo K K R. A blockchain future for In-

ternet of things security: a position paper. Digit Commun

Netw, 2018, 4: 149–160

2 Christidis K, Devetsikiotis M. Blockchains and smart con-

tracts for the Internet of things. IEEE Access, 2016, 4:

2292–2303

3 Zheng Z B, Xie S A, Dai H N, et al. An overview of

blockchain technology: architecture, consensus, and future

trends. In: Proceedings of IEEE International Congress on

Big Data, 2017

4 Yuan Y, Wang F Y. Blockchain: the state of the art and

future trends. Acta Autom Sin, 2016, 42: 481–494

5 IBM. IBM Watson IoT platform. 2019. https://www.

ibm.com/us-en/marketplace/internet-of-things-cloud ?mh-

src=ibmsearch a&mhq=blockchain%20iot

6 Li Z N, Yang Z Y, Xie S L, et al. Credit-based payments for

fast computing resource trading in edge-assisted Internet of

things. IEEE Int Thing J, 2019, 6: 6606–6617

7 Bai L, Hu M, Liu M, et al. BPIIoT: a light-weighted

blockchain-based platform for industrial IoT. IEEE Access,

2019, 7: 58381–58393

8 Bach L, Mihaljevic B, Zagar M. Comparative analysis of

blockchain consensus algorithms. In: Proceedings of the

41st International Convention on Information and Com-

munication Technology, Electronics and Microelectronics

(MIPRO), 2018. 1545–1550

9 Baird L. The Swirlds Hashgraph Consensus Algorithm:

Fair, Fast, Byzantine Fault Tolerance. Technical Report,

2016

 https://engine.scichina.com/doi/10.1007/s11432-019-1516-3

https://doi.org/10.1016/j.dcan.2017.10.006
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/JIOT.2019.2908861
https://doi.org/10.1109/ACCESS.2019.2914223

