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Abstract When one solves differential equations by a spectral method, it is often convenient to shift from
Chebyshev polynomials Ty, (x) with coefficients a, to modified basis functions that incorporate the boundary
conditions. For homogeneous Dirichlet boundary conditions, u(£1) = 0, popular choices include the “Chebyshev
difference basis” ¢, (z) = Th42(x) — Th(z) with coefficients here denoted by b, and the “quadratic factor basis”
on(z) = (1 — 22)Ts (z) with coefficients c,,. If u(x) is weakly singular at the boundary, then the coefficients a.,
decrease proportionally to O(A(n)/n®) for some positive constant s, where A(n) is a logarithm or a constant.
We prove that the Chebyshev difference coefficients b,, decrease more slowly by a factor of 1/n while the
quadratic factor coefficients ¢, decrease more slowly still as O(A(n)/n"~2). The error for the unconstrained
Chebyshev series, truncated at degree n = N, is O(JA(N)|/N*) in the interior, but is worse by one power
of N in narrow boundary layers near each of the endpoints. Despite having nearly identical error norms in
interpolation, the error in the Chebyshev basis is concentrated in boundary layers near both endpoints, whereas
the error in the quadratic factor and difference basis sets is nearly uniformly oscillating over the entire interval
in . Meanwhile, for Chebyshev polynomials, the values of their derivatives at the endpoints are O(n?), but
only O(n) for the difference basis. Furthermore, we give the asymptotic coefficients and rigorous error estimates
of the approximations in these three bases, solved by the least squares method. We also find an interesting fact
that on the face of it, the aliasing error is regarded as a bad thing; actually, the error norm associated with the
downward curving spectral coefficients decreases even faster than the error norm of infinite truncation. But the

premise is under the same basis, and when involving different bases, it may not be established yet.
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1 Introduction

The success of Chebyshev polynomial spectral methods in solving differential and integral equations is
comprehensively cataloged in a variety of standard texts such as [14, 16, 20, 25, 27], and a cornucopia
of others including two by Boyd [6,8]. There are, however, some areas of spectral methods where
open questions remain and consensus has not been achieved. One is the best way to impose boundary
conditions. Even if we narrow the focus to the “basis recombination”, which is to use basis functions
that are linear combinations of Chebyshev polynomials such that each basis function individually and
exactly satisfies homogeneous linear boundary conditions, it might also have multiple options. Weak
endpoint singularities—“weak” in the sense that the spectral series converges—are still a topic of active
exploration. In this paper, we analyze both issues and show that they are closely interrelated.

The standard Chebyshev coefficients of a function u(x) are the coeflicients a,, in the series

u(z) = ZanTn(ac). (1.1)

If u(x) has weak endpoint singularities, then its Chebyshev coefficients a,, asymptotically (as n — o0)
decrease proportional to 1/n" for some positive constant x, which is the “algebraic convergence order”,
perhaps modulo some slower-than-power functions of n such as lnﬁ(n), 9 € N;. Here, “weak” (singularity)
means that u(x) is continuous everywhere on the interval = € [—1,1], but its first derivative or higher
derivatives are singular.

When a problem satisfies homogeneous Dirichlet boundary conditions u(£1) = 0, it is often desirable
to choose basis functions that satisfy the boundary conditions. Two possibilities are

ul(2) = " bpen(z),  u(w) = Tnya(a) — Tu(z) (the difference basis) (1.2)
n=0
or .
uded () = Z Cnon(z), on(x) = (1 —2H)T,(x) (the quadratic factor basis). (1.3)
n=0

This was dubbed “basis recombination” in the book of Boyd, who discussed this strategy and its
alternatives in [6, pp. 112-114]. The alternatives are “boundary-bordering”, which is to replace collocation
or Galerkin projection conditions by rows of the discretization matrix that explicitly enforce the boundary
conditions, and “penalty methods” [16]. Karageorghis [17] discussed the relationship between basis
recombination and boundary-bordering for multidimensional problems in single and multiple domains.

Why “desirable”? Boyd gave an answer for eigenvalue problems in [3]. Boundary-bordering for an
eigenvalue problem gives a discretization matrix in which the rows that impose the boundary conditions
are independent of the eigenvalue. This was sufficient to wreck EISPACK, the premier eigensolver of
its day. Forty years later, library matrix eigensolvers are made of sterner stuff, but the rows imposing
boundary conditions are still bad for the condition number.

Heinrichs [15] pointed out that if one constructs the recombined basis functions to be, say, for symmetric
functions for Dirichlet boundary conditions T}, y2(z) — T, () instead of Tay42(x) — To(z), the oscillations
of the two Chebyshev polynomials of similar degrees partially cancel, reducing the condition number of
the discretization matrix. The improvement for a k-th order differential equation with a basis truncated
to N Chebyshev polynomials is a factor of N* reduction in the condition number, which is particularly
significant for higher order differential equations®).

The widespread use of basis recombination is attested by texts like [16] as well as by other literature [13].

Convergence theory for Chebyshev polynomial series has coevolved with Chebyshev algorithms and
applications [6, 16]. Boyd’s review [7] summarizes convergence theory up to 2009. More recent

1) Parenthetically, note that basis recombination is also very convenient when N is small and the discretized problem
is solved by a computer algebra system; reducing the number of basis coefficients from N to (N — 2) greatly reduces the
complexity of the explicit, analytic answer [5].
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contributions include [18,19,27,29,31,35]. There is also active literature on closely related problems such
as Gaussian quadrature and Clenshaw-Curtis quadrature for functions with various types of singularities
[24,26,30,34], which were not included in [7]. It is impossible to review this in detail, but the sheer mass
of theory shows that this vein of mathematics is still being actively mined.

Gaps in the existing theory are: how do basis recombination and interpolation alter the convergence
rate? In this paper, we fill in these gaps.

One unnoticed but significant aspect of spectral methods for problems with weak endpoint singularities
is that all the three expansions have coefficients decreasing as inverse powers of n (or inverse powers of n
multiplied by a factor of a logarithm function), but the exponents are different for each of the three as
expressed by the first theorem below. Indeed, there are also other differences among these three basis
sets when truncated.

Our comparisons employ three different ways to calculate the coefficients in these basis sets.

(1) The Chebyshev inner product projection is

a _ 1 17T0($) U
O_7'r 1 V1 —22

b, and ¢, are expressed by the difference equations given below. They are consistent with all the degrees
with the infinite Chebyshev series as defined precisely in Lemma 2.1.

(x)dz, (x)dz, n >0, (1.4)

2 /1 T, (z)
ap = — —u
™ J_1 \/17:172

(2) The infinite sums are truncated and (N 4+ 1)-point interpolation is applied.

(3) Least squares minimization of constraints is applied at M points, where M > (N + 1).

The least squares method yields a rectangular matrix problem. Interpolation is the limit in which the
matrix is square (M = N + 1), while the infinite series coefficients are the limit M — occ.

The effects on the errors when each of the expansions is truncated after N terms are subtle. These
subtleties are explained in Section 3.

We compare the basis functions in Figure 1. The qualitative resemblance is strong, which makes the
behavioral differences all the more remarkable.
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Figure 1 (Color online) The left two plots show a typical quadratic factor basis function, plotted versus ¢ at the top and
x = cos(t) at the bottom. Right: Same but for a basis function which is the difference of two Chebyshev polynomials,
ss0(x) = Ta2(x) — Tao(x). The envelope of the bottom right curve is almost a circle of unit radius
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2 Rates of decay of Chebyshev coefficients and basis functions

In this section, we compare the coefficients of the infinite series on each basis. Interpolation and least
squares with a finite number of quadrature points are reserved for later sections.

Lemma 2.1 (Difference equations for infinite series coefficients). Suppose that a function u(x) is zero
at both endpoints but analytic everywhere on [—1,1] except at the endpoints where u(x) is allowed to be
weakly singular. Here “weakly” is in the sense that v(x) = u(x)/(1 — x2) is bounded at the endpoints. Let
u(z) have the three infinite series representations (1.1)—(1.3). Then the following statements hold:

(i) sn(x) and o,(x) are connected by the difference equation and initial conditions, i.e.,

so(z) =Ta(z) — To(z) = —200(z), <1(z)=Ts(x) — T1(z) = —4do1(z),

() — sp—a(x) = —4o,(x), n>2. (2.1)

(ii) The condition u®(x) = u(x) requires that the coefficients b, be connected to a, by the difference
equation

bO = —ay, bl = —ai, bn72 - bn = Qnp, n 2 2’ (22)

which implies that

n n
=Y azj, banti=— ) as;i1. (2.3)
=0 =0

(iii) Similarly, v (z) = u(x) only if

1 1 1 1 n
—co— —Ca=ag, -C€—-C3=ai;, —=C—-Ci+-C2=a
50 = €2 =00, 1= 763 = an, 5C0 — 74t 502 = az, 20
1 1 '
— Z(Cn_2 + Cn+2) + §Cn =an, Nn>2.
(iv) The condition that ud®d(z) = ud (x) demands that
1
Co — 562 = —Qbo, Cp—2 — Cp — —4bn_2, n 2 3 (25)

with the solution
co = —22523', €= _4Zb2j+17 Con = —42523'7 Conyl = _4Zb2j+17 n > 1 (2.6)
j=0 7=0 j=n j=n

Equivalently, using the infinite sums for co and cy, we see that the higher coefficients can be written as
finite sums as

n—1 n—1
Con = 2¢p + 4 Z baj, copp1=c1+4 Z bojr1, m=1. (2.7)
=0 =0

(v) Given u(z) = udd(z), the coefficients c, can be defined without ambiguity as the Chebyshev
coefficients of an auzxiliary function v(x):

v(z) = ch n (2.8)

where ¢, can be calculated by the formula (1.4).
(vi) If ul (2) = ud2d (), the relation of b, and c, is

02 — 20()

by = = / Vi xQ z)(T(x) — To(x))dz, (2.9)
Cn /

by, = +2 / — x2 2)sn(x)dz, ne N, (2.10)
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Proof.  To show the first statement, recall the Chebyshev identity [6,25]

1

T (2)Tn(z) = §(Tm+n(x) + Tin—n())-

We can easily verify that the quadratic factor basis can be written as

00(x) = 3(To(x) ~ To(@)),  01(2) = (T3 (2) ~ Ty(x)), (211)
on(z) = (1 — 23T, (z) = —%(Tn+2(a:) +Tho(2)) + %Tn(x), n > 2. (2.12)

The difference of two difference basis functions is
Sn(®) = Gn2(x) = Thnya(w) + Tho(z) — 2T (x), n > 2,

which is just —4p,(z).
The second statement follows from rewriting the series for udf(x) as

ul (@) = b {Tnia(z) — Tn(@)} = —boTo(x) — biTi(x) + Y (bn—2 — bn) T (), (2.13)
n=0 n=2

and the term-by-term comparison with the standard Chebyshev series (1.1). The solution to the difference
equation can be verified by direct substitution.

The reasoning for the third statement, which is the second-order difference equation for the ¢, is
similar to that in the series for u%#d(z), and here g, (z) is replaced by its explicit expression in terms
of Chebyshev polynomials, the sums are rearranged slightly so as to extract the multiplier of T;,(x), and
this multiplier is equated with a,:

o0
ut™ () = " cnon()
n=0
1 1 1 1 1 1 1
— (200 — 402)T0(x) + <401 — 403>T1 (x) + (202 — 3¢~ 404) Ty(x)
(e ]
1 1 1
+ nz:;) ( — ch_z — ch+2 + 2%) T, ().

Comparing this term by term with the Chebyshev series yields the difference equation. The solution to
the difference equation can again be verified by direct substitution.

The fourth statement is demonstrated by similarly rewriting the series for u®iff(z) and w92d(z),
substituting the expression for g, (z) in terms of differences of ¢, (z), and then comparing the two series
[20, Subsection 2.5, Problem 19].

Solving the recurrence is complicated because the lowest degree involves two ¢, ’s. If we assume symbolic
values for ¢y and c¢;, we obtain the formal solution

n—1 n—1
Cop = 260 + 42 bgj, Con+1 = C1 +4 Z b2j+1, n 2 ]., (214)
=0 7=0

but this is not explicit without numerical values for ¢y and c¢;.
On the other hand, if we truncate the infinite series so that cyy+1 = ¢y42 = 0, then

CN = —4bN, CN_1 = —4bN,1. (215)

The recurrence can now be solved backwards to yield

N, Ne N,
co = —Qszj, Cop = —421723'7 Cony1 = _4Zn2j+17 n=>1, (2.16)
7=0 j=n Jj=n
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where N, = N, = (N —1)/2 if N is odd and N, = N/2 and N, = N/2 — 1 if N is even. The limit
N — oo yields the solution (2.6).

The fifth statement follows by dividing the series u9"%d(x) by (1 — 22) and then applying the usual
integrals for Chebyshev coeflicients.

Statement (vi) follows from combining the difference relations connecting b,, and ¢,, (the statement (iv)
of this theorem) with the integrals for ¢, proved as the statement (v). O

Before analyzing the asymptotic decay rate of the Chebyshev coeflicients of the infinite series for the
functions with endpoint singularities, we shall give the exact representation of the Chebyshev coefficients
for the function with an algebraic endpoint singularity.

Lemma 2.2 (See [28, (4.12)]).  For the function u(z) = (z+1)? with ¢ > —% and ¢ ¢ N, the Chebyshev

expansion coefficients are

(—=1)"** sin(er)
T 2p—1

where B(z,y) denotes the Beta function.

ap, = B2p+1,n—¢p), n=e+l1, (2.17)

Liu et al. [19] provided a detailed proof in the framework of fractional Sobolev-type spaces based
on the generalized Gegenbauer functions of fractional degree (GGF-Fs). There is also other literature
on the consequences for orthogonal polynomial series to the function u(x) with an algebraic singularity
[10,28,29,31,33,35].

Theorem 2.3 (Orders of convergence for coefficients of infinite series).  Suppose that u(z) owns weak
singularities at the endpoints as

u($; 90719) - g(l‘)(l - 1'2)90 lnﬂ(l - xz)v HS [717 1}7 (218)

where ¢ > 1,9 € Ny, u(£1;0,9) = limy—, 41 u(z;9,9) = 0 and the function g(z) is analytic everywhere
on x € [—1,1]. Then the coefficients of three expansions (1.1)—(1.3), respectively, satisfy

A(n)

an ~ ot (2.19)
An) 1

b~ S (2.20)

e o AW 1 (2.21)

(20 —1)(2¢) n?¢~1
forn > 1, where A(n) varies more slowly than a power of n such as a logarithm or a constant. Specifically,
A(n) = O(In”(n)), when ¢ € N; A(n) = O(In”(n)) when ¢ ¢ N. Moreover, we have the following
expressions of A(n):
(i) If 9 = 1, one has
2T (20 + 1)
™

A(n) = — {(=1)"g9(=1) + (1) H{ (1 — In2) sin(pm) + 7 cos(om)},

where y1 = 21o(20 + 1) — Yo(n — @) —Yo(n + ¢ + 1) and Y, (x)(n € N) is the polygamma function.
(ii) If 9 = 2, one has

SRR 1yrg(-1) + (HGE 90 — 2@ + ()  7) sin(or)

+ 27 (y1 — In(2)) cos(pm)},

where 2 = 41 (20 + 1) + Y1(n — @) = Y1(n+ ¢ + 1).
(iii) If 9 € N, one has the general formula

y - 9 2ot 9 9 k k i ] | k—j 1 dﬁ—k B(2 .
(n)_—;’y?)n Z . Z ;) s o™ tem|In 2 ) apr (2e+1,n—9)
k=0

Jj=0

A(n) =

o ZREED) 0 ) sinir) + () cos(iom),
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where

73 =(=1)"g(=1) + g(1).
Proof.  The asymptotic behavior of the Chebyshev coefficients a,, follows from a theorem of Elliott [11]
(see also [4,12,18,19, 28, 30, 33, 35]). For simplicity, take A(n) and B(n) as constants below. Then
for large n and assuming power-law behavior for b, with the algebraic order of convergence k and the
proportionality constant B, the difference equation (2.2) gives

B 1 N__4
nk \ (1 —2/n)k T op2etl’

For large n, (1 —2/n)~% ~ 1+ 2k/n 4+ O(k?/n?) and then
2kB A

nk+tl T p2e+17

from which it follows that k = 2p as claimed and B = A/(2k) = A/(4y).

To prove the third statement, define v(z) as before by u(z) = (1 — 2%)v(z). ¢,’s are the standard
Chebyshev polynomial coefficients of the modified function v = ZZOZO cn T (), for which the asymptotic
behavior of ¢, follows from Elliott’s theorem [11].

An alternative proof that gives the relative proportionality constant is as follows. Earlier, we proved
in Lemma 2.1(iii) that

1 1
— Z(cnfz + Cny2) + 5Cn =an, N > 2. (2.22)

Assume that asymptotically for large n,

n> 1.

Cn'\’ﬁa

Substituting this into the second-order difference equation (2.4) gives

2&(‘3((1—;/@'@ + (1+;/n)k) “) = nTil'

Then it is not difficult to see that

Ck(k +1) A

nk+2 T op2etlt

Thus, it follows that k = 20 —1 and C = —A/{k(k+1)} = —A/(4¢ —2)p. The proof is not substantially
changed if A is allowed to vary slowly, say logarithmically, with the degree.

Recently, Liu et al. [19, Subsection 6.2] gave the optimal decay rate of the Chebyshev expansion
coefficients for this function u(x; @, 9) = (14 z)?In”(1 + x) when ¢ = 1. By the idea of this paper, we
prove the optimal estimates of A(n) given above, for the function (2.18) when ¥ = 1,2. By (1.4), for
n > 0, the Chebyshev expansion coefficients are

1
ap = %/71 g(z)(1 — 2’ (1 — 3:2)\/%(&17

:72T/119(96)(1—x2)90{1n19(1+x)+1n19(1_x)+1§ <129> lni(1+$)lnﬁ_i(1—x)}%dx_

As we know, the coefficients are dominated by terms who own the worst singularities, i.e., the terms
whose lowest-order derivatives are unbounded and increase highest at the corresponding singularities.
Thus, for ¥ > 1,

1
a4y ~ %[1g($)(1 — )P {In? (14 ) + I’ (1 - x)}%dm



198 Zhang X L et al. Sci China Math  January 2023 Vol. 66 No.1

= %[1 g(2)(1 — 2%)?In”(1 + x)\/j%dx + % /71 g(z)(1 - 22)? I’ (1 — x)\/%dx. (2.23)

For convenience, we set

2 [t T, (z)
Ap1 = — z)(1 — 22)%? In" (1 + z) —22L_dz,
vi= = [ a0 —a? (14 o)

2 (! T ()
Apo i= — z)(1 —22)?In’(1 — )22
,2 = [1 g( )( ) ( )m
To obtain the asymptotic behavior of a, 1, the dominant term of the integrand needs to be considered.
Due to the fact that the function g(z) is analytic on the interval [—1, 1], it can be written as Taylor series

at x = —1. Thus, the dominant contribution comes from the integral

dx.

e+l 1 T
. 27: g(—l)/_l(l+x)wlnﬁ(1+x)\/%dx. (2.24)

By Lemma 2.2, using L’Hospital’s rule, we have

9—1 1In? (14-x) oJ

. 290“9(_1)/1 i +x)¢{ - (A+a) =3 57— )} To(z)

™ _1 e—0 %9!

i1 2 N = (KN . (] ey (1) d7F
=(-1) ;g(—l)z & Z i 7’ sin 571'—1—@71’ In 3 WB(Q@—&—l,n—gp).
k=0 §=0

(=1"g(1)

Similarly, a2 is equal to a, ; multiplied by a constant factor es))

Recall that if y is large and x is fixed, then
B(z,y) ~ [(z)y™". (2.25)
By the induction method, using (2.25), we obtain

(20 +1)
™

A(n) ~ {(=1)"g(=1) + g(1)}{In" (n) sin(pm) + In”~* (n) cos(m)}.

Note that using the above method, for ¥ = 1, we see that the exact Chebyshev coefficients a,, can be
obtained; for ¥ = 2, we can obtain the optimal estimate of A(n), i.e., the dominated terms can be
exactly achieved. For a general ¢ € N, the rough estimates of the Chebyshev coefficients can be found
in [33,36]. O

Here, if 9 = 0, then u(x;¢,d) is singular only if ¢ is not an integer, as is mentioned before this
theorem. If not otherwise specified, A(n) in the rest of this paper denotes the expression of A(n) given
in Theorem 2.3.

Remark 2.4. Here, the parameter ¢ > % is required to make sure 20 — 1 > 0 in (2.21). In fact, when
using the Chebyshev basis to approximate the function (2.18), it is only required ¢ > —%.

Remark 2.5. Because the natural logarithm function In(n) increases very slowly as n increases, the
differences in plots between In(n)/n" and 1/n" are subtle in numerical experiments. It is very easy to
believe that A(n) is always a constant for all ¢ > —3. However, as demonstrated in this theorem, A(n)
is a constant only when ¥ =1 and ¢ € N.

Figure 2 confirms the coefficients’ law in Theorem 2.3. Care must be exercised in interpreting this
theorem. It applies when a,,’s obey an inverse power law, as is true for the exact Chebyshev coefficients
of the infinite series. We later compute a variety of finite approximations to u(x) and these, when
represented in the Chebyshev basis, do not automatically have the inverse power-law behavior of the
coefficients a,.
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Figure 2 (Color online) Coefficients of the infinite series of the function u(z) = (1 + £)(1 — 2?)?In(1 — 2?) in three
different bases with (a) ¢ =2 and (b) ¢ = 1.5

3 Errors in truncating infinite series

Suppose that we truncate each of the three series to a polynomial of degree N, i.e.,

N
n=0

usf (z) = Z bp{Th+2(x) — Ty (x)} (the difference basis), (3.2)

n=0
N—
ul (z Z (1 — 2®)T, () (the quadratic factor basis). (3.3)

We have previously described the behavior of the coefficients ay, b, and ¢,, but here a natural question
arises: what are the errors in these truncations?

For the class of the function (2.18), Theorem 2.3 demonstrates that the Chebyshev coefficients fall as
O(A(n)/n?#1) while the quadratic factor basis coefficients c¢,, decrease as O(A(n)/n??~1). A well-known
theorem asserts that the truncation error in a Chebyshev series is bounded by the sum of the absolute
values of all the neglected terms; because |T,,(z)] < 1 on = € [—1,1], the bound is also the sum of the
absolute values of all the neglected coefficients. One might suppose that the error in the L., norm when
the series is truncated at n = N is the magnitude of the largest omitted coefficient, but in fact, the series
error is worse by O(1/N) than the rate of convergence of the Chebyshev coefficients. Near the endpoints,
the terms are all of the same sign or asymptotically strictly alternating. The order of convergence of the
error then comes from the asymptotic sum approximation (3.4) below.

Lemma 3.1. For k> 2 and ¥ € N, then

o 9 9
1 In"(N
nk (k—1)Nx-1

n=N+1

The lemma is proved in [1, Lemma 1] when 9 = 0 and in [36, Lemma 3.3] when ¥ € N.

Figure 3(a) shows that this rises steeply in the error near the endpoints by the comparison of two
different norms. The upper solid (black) curve, falling 1/N slower than the coefficients, is the usual
maximum pointwise error

Ey = max |u(z) — uy(z)|.
z€[—1,1]
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1072

Error

10710 . . . . . )
10 50 100 200 —1.0 —-0.5 0 0.5 1.0

(a) (b)

Figure 3 (Color online) (a) Green: the error norm of the Chebyshev polynomial series, truncated at n = N, when the
norm is the maximum over the middle of the interval for u(x) = (1 + x/2)(1 — 22)?In(1 — 22). The green dashes are
the reference line, 30/N®. The Chebyshev coefficients (not shown) also exhibit the fifth-order convergence, matching the
power-law exponent of the interior error, for this u(z). Black: same except the error norm is computed over the whole of
the interval, the usual norm. The black dashes are a graph of 1/N*. (b) The errors versus = of the Chebyshev polynomial
series for u(z), truncated after N = 150 terms, i.e., E%(z) = |u(z) — un (z)|

The lower curve, which decreases as rapidly as the coefficients a,,, represents the maximum error over
the interval’s interior, excluding the neighborhoods of both endpoints, i.e.,

ET,interior _ ma: wz) — un(z)l.
N Ie[_oé’fo.s]‘ () — un(z)]

Instead of plotting norms versus truncation as in Figure 3(a), we can obtain a direct confirmation of
the large errors in narrow boundary layers at the endpoints by plotting errors versus x as is shown in
Figure 3(b).

Theorem 3.2 (Error in truncation of infinite series).  Suppose that we truncate each of the three series
to a polynomial of degree N, as given in (3.1)—(3.3). Then the error estimates of the truncated series
in Lo morm are presented in the following:

(i) For the Chebyshev series,

By = max fu(e) —u(@)] ~ OAN)/N?), N = o (35

(ii) For the difference basis,

E?Viﬁ = max |u(z) — u}i\}ﬁ(x)\ ~ O(|A(N)|/N?%), N — oo. (3.6)

(iii) For the quadratic factor basis,

By = max [u(r) - uF™ ()] ~ O(JA(N)|/N*71), N — oc. (3.7)
ze[—1,

The A(N) is given in Theorem 2.3.

Proof.  The error in the Chebyshev series follows from the discussion preceding the theorem. To prove
the remaining statements, note that the coefficients of the latter two expansions match up to degree
N — 2 when expanded as Chebyshev series. However, the difference relations in Lemma 2.1 show that
with bN,1 = bN = CN—-1 = CN = 0,

N-2
(@) = 3 anTu(@) +by—sTy () + by—2Tv (@),
n=0

=un(z) + (bn-3 —an-1)TN-1(2) + (bn—2 — an)TN (),
=un(x) +by_1Tn-1(x) + bnyTN(z). (3.8)
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Now we know from Theorem 2.3 that
by ~ O(A(n)/n*?).

This implies that by_1 and by are proportional to the same power of N as the error in the truncated
Chebyshev series. It follows that the error in the truncated series on the difference basis has the same
rate of convergence as the truncation of the Chebyshev series.

To prove the final statement, observe that the truncated series on the quadratic factor basis can be

written as

uf*i2) = Y el =2 Tu(w)

1 1 1 1 1 1 1
= =co— - T e T — = —Cy — — T:
(200 482) O(LE) + (481 483> 1(.%) + ( 200 + 202 404) 2(:1:)
+

N—2
1 1 1 1 1
(Cn — —Cp_2 — Cn+2)Tn($) — —cn—3Tn_1(z) — —en—2TN ()

2\ g 1 1 1
1
+ ZCN—lTN—?,(x) + —cenTN—2()
1 1 1 1
=un(z)+ ZCNflTNf?;(-'L') + ZCNTN—Q(-I') + (4CN+1 - 2CN1)TN1($)
1 1
+ <4CN+2 - 2CN> TN(x) (39)

Lemma 2.1 shows that ¢y _1 and cy are O(A(N)/N2?#~1). This is larger than the error in the truncated
Chebyshev series by a factor of N. Thus this is the magnitude of the error in the truncated quadratic
factor basis. O

Figure 4 confirms the expected rates of decay for an arbitrary but representative example.
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10 . —— Quadratic basis
--- 6
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—— Difference basis
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i —— Interior Chebyshev polynomial
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Figure 4 (Color online) Maximum pointwise errors (the Loo norm) in the truncated infinite series in three different basis
sets for various truncations N for the typical example u(x) = (1 + 2/2)(1 — 22)2In(1 — 22). The upper solid line (red)
is the error norm for the quadratic factor basis; the dashed red line is 6/N3. The solid blue curve is the error norm for
the difference basis; the dashed blue line is 200/N*. The solid black curve is the error norm for the truncation of the
standard Chebyshev series; the black dashed curve is 25/N%. The green solid curve is the maximum pointwise error for
x € [~1/2,1/2], the interior of the interval = € [~1, 1]; the dashed green curve is 100/N°
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4 Equivalence theorem

Theorem 4.1 (Dirichlet-enforcing basis equivalence). If two polynomial approximations, constrained
to satisfy homogeneous Dirichlet boundary conditions, are determined by the same set of interpolation
constraints or least squares conditions, then the approximations are identical and must have identical
errors, i.e.,

W (2) = u (@), (4.1)

Proof. By definition, u?\}ﬁ(:c) is a polynomial of degree N which is zero at both endpoints. The
fundamental theorem of algebra asserts that any polynomial can be written in the factored form.
Therefore,

ud(z) = (1 — 2¥)py_o(z), N >2, (4.2)

where py_o(x) is a polynomial of degree (N — 2). This is identical in the form to u®™!(z). If, for

example, we determine the approximations by N — 1 interpolation conditions, these constraints uniquely
determine py_o(z) as the interpolant of v(z), the same as for u%*!(z). Therefore udif (z) = u®*(z) for
interpolation. The argument extends to any other reasonable mechanism to determine the approximations

provided that the same conditions are applied to both u& () and u?\}md(x). O

This equivalence theorem greatly simplifies error analysis. However, we have already shown that the
coefficients b, and ¢, are different. Furthermore, the error of an unconstrained series of Chebyshev
polynomials is different from that of the constrained approximations.

5 Interpolation and aliasing errors in Chebyshev polynomial coefficients

5.1 Grids and uniqueness

There are two canonical interpolation grids associated with Chebyshev polynomials. The “roots” grid is

2k + 1 [43 ” 3
T = — COos <2N n 27r>, k=0,1,...,N (“Chebyshev-Gauss” grid). (5.1)

The “endpoints-and-extrema” or “Lobatto” grid is

Xy = — cos (]1377), k=0,1,...,N (“Chebyshev-Lobatto” grid). (5.2)
If the Lobatto grid is chosen, then the interpolating polynomial must be 0 at x = 41 in order to satisfy the
interpolation condition at the endpoints. It follows that whether we represent the interpolated polynomial
using Chebyshev polynomials, the difference basis or the quadratic factor basis, we always obtain the
same polynomial.

In contrast, if the interpolation points are those of the roots grid, which does not include the endpoints,
then the standard Chebyshev polynomial interpolation gives an interpolating polynomial which is not
exactly equal to 0 at the endpoints. If we use either the quadratic factor basis or the difference basis, the
result, by the polynomial factorization theorem, can be written in the form

un (z) = (1 - 22)oy% (a), (5.3)

where u°" (z) and vy (x) are Chevbyshev interpolants on Chebyshev-Lobatto grids for the functions

u(x) and v(x) = u(x)/(1 — 2?), respectively, and they satisfy the homogeneous Dirichlet boundary
conditions. Thus, there are two distinct interpolants on the roots grid, being the Chebyshev interpolant
(lacking zeros at the endpoints) and the difference-and-quadratic-factor interpolant (which vanishes at
both endpoints by construction). In contrast, the interpolant on the Lobatto (endpoint-including) grid is
always unique.
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5.2 Aliasing errors in the Chebyshev coefficients of the interpolant

The Chebyshev coefficients of both the interpolant, al (), and the infinite series a,, can be computed by
Gauss-Chebyshev quadrature as given in [6, p.99]. When the number of quadrature points M is equal
to N + 1, then the coefficients are the result from interpolation; the coefficients of the infinite series are
ap = liMpr— o0, fixed N a{L(N ). But what is the relationship between series and interpolant coefficients for
finite N? The following provides an answer.

Theorem 5.1 (Aliasing formula for Chebyshev coefficients). Let u(z) be Lipschitz continuous on
[—1,1] and let uk;(z) be its Chebyshev interpolant, i.e.,

1

N
ul(z) = 5a{) +> alTy(x), (5.4)
n=1

which is obtained by choosing the Chebyshev-Gauss grids as interpolation points. Let a, (without the
superscript) denote the coefficients of the infinite series

1 [ee]
u(z) = 540 + nz::lanTn(m). (5.5)
Then one has
() )
I _ _ J _ .
Uy =an + &, En= Z((Lnuj(z\rﬂ) + an+2j(N+1))(_1) , n=0,1,...,N; (5~6)
j=1
(ii)
al ~ a, — aanto—pn — aany2in + Olazy), n=0,...,N,
GI%(NH) N aiN+1) —a3(N+ T O(ag(N+l))a (5.7)

~

AN41—m X ON41—m — ON41+m + Oazy), meNL, m < N.

Proof.  The first statement was proved by Fox and Parker [14, Subsection 4.3]. The second comes from
specializing n to particular ranges in degree and then making obvious approximations. O

Theorem 5.2. Suppose that the Chebyshev coefficients in (5.5) for large n are

In”
an ~ A &n)’ where n>1, k>0, A isaconstant and 9 € N.
n

Then one has the following estimates:
(i) For small degree n, the aliasing error in Chebyshev coefficients is

Aln? (2N)
En ™~ =N (58)
and the relative error is
&, 1 n~ I’ (2N
[€nl n” In”(2N) (5.9)

janl 27T N 1% ()

Specially, if the coefficients a,, are well approzimated by the power law A/n", for small degree n such
that n < 2(N +1), then

A 1 K (-17 &) 1 n"
~ —_ g ——. 1
26—1 N& ; " an| T 281 NE (5.10)

&n

(ii) Forn = N + 1 —m, when m is a small positive integer, the relative error is

|EN+1-m] Km
— ~140 . 5.11
|aN+17m| + N+1 ( )
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Proof.  Substituting the coefficients into the terms in the error sum gives
Aln’(2jN) Aln’(2jN) 1
ag; ~ ~
FEEDE T (N + D) £ n)r 28 (N 4 1 {1 £ n/(2j(N + 1)}

- o ~ Aln”(2jN) 1 140 K2n?
2j(N+1)—n 2j(N+1)+n 2F=1(N + 1)~ j» 452(N +1)2 :

The asymptotic expression (5.8) then follows.
If we assume that n is sufficiently large such that a,, ~ A/n", then the relative coefficient error follows
immediately upon invoking
o~ (1)
Y <1, Ve>0 (5.12)
=t
To prove the second statement, substitute the coefficients decay law into the equation (5.7) from the
general aliasing theorem, Theorem 5.1. Using asymptotic tools, we see that (5.11) will be obtained. O

The second statement implies that coefficients whose degree is near the aliasing limit, n = N, are
badly in error. When the Chebyshev coefficients decay slowly, as (’)(lnl9 (n)/n"), aN4+1—m = AN41+m; the
relationship a{v t1-m N AN+1-m — AN+1+m implies strong cancellation so that

a4 1—m| < [an41-m] (5.13)

and the relative error is near 100%. When 9 = 0, a log-log plot of the interpolation points |al| is a
straight line for the intermediate n, but dives to small values as n — N, curving downward below the
line. For general ¥ € N, the plot of interpolation coefficients |al| still curls downward much more than
the curve of Chebyshev coefficients |a,| as n — N.

The first statement shows that in contrast, low-degree coefficients can be computed with a small relative
error, but for fixed degree n, the relative error falls with N as In? (N)/N*, the same decay rate as that
of the coefficients. In a word, if a,, diminishes with 1n19(n) /nF the coefficient can be computed as the
corresponding coefficient of the (N + 1)-point interpolant with a relative error that is order k in N by a
factor of In” ().

6 Interpolants and interpolation errors with Dirichlet boundary conditions

6.1 Interpolants and their similarities and differences

Because the Lobatto grid includes the endpoints, the standard, unconstrained Chebyshev interpolant is
zero at both endpoints for any function satisfying u(£1) = 0. As noted in Subsection 5.1, the interpolant
on the Lobatto grid is unique and therefore,

u%heb,Lob,I(x) _ u(]i\}H,Lob,I(x) _ u(}\}lad,Lob,I(x). (61)

So let us turn to the roots grid. Define v(x) = u(z)/(1 — 22) as before. There exists a polynomial
of degree (N — 2), which we will denote by vg}fg’l(x), that interpolates v(z) at all of the points on the
(N — 1)-point roots grid.

Theorem 6.1 (Interpolants on the roots grid).  Suppose that u(x) satisfies Dirichlet boundary
conditions u(+1) = 0 and the (N — 1)-point Chebyshev interpolant of v(x) is

N—-2
vy (@) = el T (x). (6.2)
n=0

Compute u(}\}md’l(x) by (N — 1)-point interpolation of u(x), where

N-—-2
uf* (@) =l (1= 2T, (2). (6.3)

n=0
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Similarly, compute u%ﬂ’l(x) by (N — 1)-point interpolation, where

N-2
UV (@) = Y bi{Tusa(w) — Tu(a)}, (6.4)
n=0

Then it leads to

ufy ™ () = (1= 2o (@), (6.5)
diff, I Cheb, I
uy 7 (z) = (1 — 2?)oyS " (z), (6.6)
diff, T ad, I
uy o (z) = uy e (2), (6.7)
ck=e, i=0,1,...,N—2 (6.8)
and
I _ 9.l I I 1
bl = u7 bl = M’ n=1,2,...,(N—4), b 5= _CN7—3, bh_, = _N-2 (6.9)
4 4 4 4
Proof.  The interpolation conditions for u(x) in the quadratic factor basis are
N-2
uad,
u(wy) = uf (@) = Y b (1= a3)Tu(xy). (6.10)
n=0
The same for v(z) multiplied by (1 — 22) are
N—2
Cheb, I .
(1 —a2ole;) = (1 — 2P (@) = 3 e (1 — 22T (a). (6.11)
n=0

The left-hand side of (6.11) is u(z;). The right-hand side is identical in the form to the interpolant

of u(z) by ul®(2). Therefore, & = ¢ from which v (z) = (1 - 22)v "5 (z) follows. The second

and third lines, (6.6) and (6.7), follow from the equivalence Theorem 4.1. The formulas for b. follow from
the difference equations in Lemma 2.1(vi). O

6.2 Interpolation errors and error norms
Suppose that the Chebyshev polynomial coefficients a,, of a function u(z) are decreasing as
an ~ Aln’(n)/n", (6.12)

where Kk = 2p +1 > 0 and ¢ € N. The error in the Chebyshev interpolant of u(z) is expected to be
O(In?(N)/N*) on the interior of the interval, by slowing to @(In”(N)/N*~1) in the endpoint boundary
layers.

The Chebyshev polynomial coefficients of v(z) = u(z)/(1—2?) converge more slowly than those of u(z)
by a factor of about n? (see [28]). Define

E(x) = [o(@) — vy} (). (6.13)

It follows that E% () will be O(In”(N)/N*~1) on the interior of the interval. To obtain the corresponding
error in u(x), we must multiply by the factor of (1 — 22) which is the ratio of u(x) to v(z), i.e.,

EY(z) = (1 — 22)EY (2). (6.14)

It follows that

v
max (B4 () ~ 2 ()

6.15
z€[—1,1] Nr-1 ( )
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As explained in [6, Chapter 2], the error in truncating the infinite Chebyshev series by discarding all
the terms of degree (N + 1) and higher can be bounded rigorously by the sum of the absolute values of
the neglected coefficients, i.e.,

oo

En(z) = |u(z) —un (@) < > |an]|. (6.16)
n=N+1

Chebyshev interpolation on either the roots grid or the Lobatto grid is bounded by twice the sum of the
absolute values of the neglected coefficients, i.e.,

EL(z) = |u(z) — uly(z) < 2 Z |an]- (6.17)
n=N-+1

It is difficult to make more precise statements; for u(z) = T (v 1)(x), for example,

un+1(z) =0, Eny1(x) =Tz vy (2),

uy = =Tinen) (@) Enpr(®) = T (nvin) (@) + Ty () (@)

Nevertheless, it follows that E% (x) is roughly double the error in truncating the infinite Chebyshev
series and therefore its Lo norm is O(In? (N)/N#=1).

Because of the endpoint singularities, the usual nearly-uniform error for truncated Chebyshev series
(or Chebyshev interpolants) of smooth functions, analytic on the entire interval, is replaced by an error
which is huge in boundary layers near each endpoint and smaller outside of these boundary layers by a
factor of O(1/N) (the bottom curve in Figure 5).

Applying this same reasoning to v(z) = u(z)/(1 — 2?) gives an error for v(z) which is O(N) times as
large as the error for u(x) (note that the order x of singularities for v(x) is one less than that for u(x)
and each decrease in k by one reduces the order of the Chebyshev coefficients by two). To obtain the
approximation in the quadratic factor basis for u(x), we must multiply the Chebyshev series for v(x)
by (1 — z?). Similarly, the highly nonuniform error in v(z) (the blue dotted curve in Figure 5) must be
replaced, to obtain the error for interpolation of u(z) by either of the constrained basis sets, by (1 — :2)
times the error for v(x). The zeros at the endpoints wipe out the boundary layers of large errors in v(x)
to yield an error which is nearly uniform over x € [—1, 1] as shown by the gold dashed curve in Figure 5.

Error Ll
107! .
. _ ]
. 1077
L]
. L4
. 10°6 .
- *
e, (SR _—
— — — 10*71
107"
107?
—1.0 —-0.5 0 0.5 1.0
T

Figure 5 (Color online) Errors versus z for interpolation of u(z) = (1 + z/2)(1 — 22)? In(1 — x2), the same function as
employed in the previous figure, by means of 100 interpolation points on the roots grid. Top (blue dots): |v(x) —Ugheb’l(xﬂ,

the interpolant of v(x) = u(z)/(1—22). Bottom (the solid black curve): |u(z)7u§j\,heb’l(x)|, the error in the classic Chebyshev
interpolation on the roots grid. The dashed gold line is the error for the quadratic factor basis, the error in u?\}lad’l(x) =

1- x2)v](\;,}f;’l(x); this is identical to the error in the difference basis since (for interpolation) u(}\;’ad’l(x) = u(}\;ﬁ’l(m)
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Error norms in interpolation . -
. : . Interpolation coefficients
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Figure 6 (Color online) (a) Log-log plot of the error norms versus the number of interpolation points N for interpolation
of u(z) = (1 +2/2)(1 — 22)?In(1 — 22), the same function as employed in the previous figure. The top circle gold curve:
the error norm max,¢(_1,1 [v(z) — v](f,heb’l(x)L the interpolant of v(z) = u(z)/(1 — 22). The gold dashed curve is 5/N2,
proportional to 1/N"”“’3. The bottom three curves, almost superimposed and hard to distinguish, are the error norms for

the approximation of uJCVheb’I(z) by the Chebyshev interpolant (the black curve), u(}\}lad‘l(m) (blue boxes) and u}i\iﬂ’[(x)

(red solid disks). The red disks are at the centers of the blue boxes because u(}\',lad’I(w) is identically equal to uji\;ﬁ’l(m), as
asserted by Theorem 4.1. The black dashed curve is 30/N?, proportional to 1/N*~! = 1/N2#. (b) Odd degree coefficients
versus degrees for interpolation, the same function as employed in the previous figure, by means of 400 interpolation points
on the roots grid. To minimize aliasing contamination, only the coefficients up to degree 199 are plotted. Top (the blue
solid line): ¢!, which are simultaneously the Chebyshev coefficients of v(x) and also the coefficients of u(z) in the quadratic
factor basis where v(z) = wu(z)/(1 — x2). Middle (the red solid curve): coefficients b}, of the difference basis for u(z).
Bottom (the solid black curve): the Chebyshev coeflicients a{v of the interpolant on the roots grid. The dashed lines are
proportional to 1/n3 (top/blue), 1/n* (middle/red) and 1/n® (bottom/black). The parameter ¢ = 2 while k =2+ 1 =5

Plain classical Chebyshev interpolation, although not better than the other two basis sets in the L.,
norm, is superior because the pointwise Chebyshev interpolation is as bad as the norm only in boundary
layers whereas the quadratic factor and difference errors are as bad as the norm over the entire interval.

Figure 6(a) displays error norms instead of pointwise errors. The close agreement between the dashed
curves and the matching solid curves confirms the theoretical predictions given above.

6.3 Coefficients of interpolants

Figure 6(b) shows how the coefficients vary. Even though the errors of the difference basis and quadratic
factor basis interpolants are identical, their coefficients obey different power laws. The quadratic factor
coefficients ¢,, decay more slowly by one order than the difference basis coefficients b,,. The power laws for
all the three basis sets are the same as those for truncation of the infinite series, so no further discussion
will be given.

7 Least squares

Least squares is a third strategy that provides an alternative to the interpolation and truncation of infinite
series. Is it better? Is it worse? One complication is that least squares is actually a family of methods
because the approximation varies with the choice of the inner product.

The next two subsections describe the basic methods with and without Lagrange multipliers. In the
rest of this section, we shall analyze the least squares for three bases in turn. When the inner product
is integration over the interval, we shall show that least squares yields approximations different from the
interpolation and truncation for the constrained-to-vanish-at-the-endpoints basis sets.
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7.1 Least squares without Lagrange multipliers: The general basis

The goal of least squares is to minimize the “cost function”
.1
3= 5 (u(2) —un(2),u(z) —un(2), (7.1)

where
N
UN(LE) = Z dn(bn(z) (72)
n=0

For the moment, the choices of the inner product (f(z),g(x)) and the basis functions ¢, (z) are
unspecified.

Proposition 7.1.  Suppose that the cost function and un(x) are as above. Define an (N +1) x (N +1)
matriz G as the matriz with the elements

Gmn = <¢m(x)a¢n($)>, m,n=20,1,...,N. (7.3)
Define f as the vector with elements
Jo = (Gul@)ul@)), n=0,1,...,N. (7.4)

Then un(z) is the unique minimizer if and only if the spectral coefficients d,, are the elements of the
(N + 1)-dimensional vector d which solves

Gd=f. (7.5)

Proof.  Substitute the series into the cost function and apply the condition for a minimum that the
derivatives of the cost function with respect to the coeflicients d; are all zero. This gives

P N
=0 = (ula), b)) + 3 kb (2,60, (7.6)
m n=0
which is the linear algebra problem (7.5). O

Let us suppose that the inner product is approximated by Gaussian quadrature with N, points. For
the Chebyshev weight,

Necor
m

ega) = [ = @lede ~ (o), = 7 3 Fa)ale,)

col T
25 —1
;Uj—cos<‘7 7r>7 7=1,2,..., Neol.

J
2]Vcol

The quadrature approximation has all the properties to be an inner product, so we use (-, - )4 as the inner
product in the rest of this subsection. This inner product varies from interpolation (when N,y = N + 1
as explained below) to integration over the interval in the limit N., — oo.

Define an Ny X (N 4 1) matrix H whose elements are

Hj, = ¢n(z;), j=1,2,...,Neo;, n=0,1,..., N, (7.7)
and let u denote the vector whose elements are the samples of u(x), i.e.,
uj =u(z;), j=1,2,..., Neol. (7.8)
The interpolation problem is
Hd' =u. (7.9)

Here, we have added a superscript to the vector of spectral coefficients because the solution to the
interpolation problem is not necessarily the same as the solution that minimizes J. Note that the matrix
problem is an overdetermined system, but still well-posed if N, > N + 1.
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Proposition 7.2.  The solution d of the least squares with an inner product using Neog = N + 1
quadrature points is identical to the solution d' to the (N + 1)-point interpolation problem. The matrices
for least squares and interpolation are connected by

7r T
G=—H'H, f=—H"u. 7.10
Ncol Ncol ( )
To prove this proposition, one can refer to the proof of [8, Theorem 16].
When the basis functions are orthogonal, the n-th element of the solution is independent of N so long
as N > n. The quadratic factor and difference basis are not orthogonal, and the solution elements depend

on N.
7.2 Lagrange multiplier theorem: The equality of minimizers

When a “cost” function J is to be minimized subject to the constraints ¥ = 0 and Q = 0, it is very
convenient to convert the problem to the unconstrained minimization of the modified “cost” function

J =T+ U+ g, (7.11)

where A\ and p are additional unknowns called “Lagrange multipliers”, and ¥ and €2 denote the boundary
constraints u(1) = 0 and u(—1) = 0, respectively. Take the original unknowns to be d;, and the conditions
for a minimum are

oJ
— = i =0,1,...,N 12
({9dj Oa .7 07 ) 1) ) (7 )
oJ
N v =0, (7.13)
oJ
— =0=0. .14
i 0 (7.14)

N N
Y di=0 (eu1)=0), Y (-1)d;=0 (& u(-1)=0). (7.15)
j=0 j=0

Theorem 7.3.  Consider two minimization problems.

(1) Suppose that u§"(x) is a solution to the cost function

T = (ule) — u§" (@), u(z) - u()), (7.16)

where uSe™(z) is a polynomial of degree N constructed so that ¥ = 0 and Q = 0, independent of the
remaining unknowns, are satisfied. For example,

N—-2
uy" (z) = Z b {Thr2(x) — To(2)} - (7.17)
n=0

(i) Suppose that un(x) is a solution to the cost function
J = (u(z) —un(z),u(x) —un(x)) + AV + pg, (7.18)

where un (x) is a polynomial of degree N, to be an unconstrained-at-the-endpoints minimizer of the cost
function. Then the two solutions uSe™ (z) and un(x) to the minimization problems J and J, respectively,

are identical.

Proof.  Now the solution to the second minimization problem is forced to satisfy the constraint as well.
At the minimum, ¥ = 2 = 0, so the cost function reduces to

J = (u(z) —uy(z),u(z) — un(z)). (7.19)
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con apprOX( approx approx (1’) is

It follows that un (z) and uQ"(z) both minimize (u(z) —uy x),u(x)—uy’ o (x)), where uyy
either uy (z) or u§P™ (x). Therefore, un (z) # u" (x) if and only if w3 **(z) is not unique. However, the
cost function is quadratic in the unknowns. The gradient of the cost function is therefore a linear function
of the unknowns. The vanishing of its gradient implies it must have a unique solution. Therefore, the
solutions to both the minimization problems are identical. O

The theorem shows that the imposition of the zeros at the endpoints by the Lagrange multiplier gives
nothing new when one represents uy(z) as a finite sum in either the difference basis or the quadratic
factor basis.

7.3 Splitting the least squares problem into two via parity

An arbitrary function can always be split into its parts which are symmetric with respect to reflection
about the origin, S(x), and antisymmetric with respect to reflection, A(x) (see [6, Chapter 8]). Symmetry
means S(—z) = S(x), Vo € Q, while A(—z) = —A(x), YV € , where the € is the domain of a function.
The parts are S(x) = (u(z) + u(—=))/2 and A(z) = (u(x) —u(—=x))/2.

If we apply this splitting to uy (), the cost function becomes

J=Ts+Ta+ AV +uT, (7.20)
where
Js = (S = Sn,S = Sn), Ja=(A-An,A-Ap).

Here, Js is a function of the even degree spectral coefficients only while [J4 is a function only of
{dy,ds,ds,...}. After expanding the integrand of the original cost function to

<(S - Sn)a (S - Sn)> + <(A - An)7 (A - An)> + <(S - Sn)v (A - An)> + <(A - An)a (S - Sn)>7

we invoke the fact that the product of a symmetric function and an antisymmetric function is
antisymmetric; the integral of an antisymmetric function over a symmetric interval is always zero.

The cost function is not completely decoupled because the constraints depend on both even and
odd coefficients. However, both constraints are always zero at the solution. It follows that any linear
combination of the constraints is also a legitimate constraint. Define

O=(T+71)/2=) dn, x=T-1)/2=> dons1. (7.21)

n=0 n=0

Least squares is now split into two completely independent problems. One is to minimize, using only
symmetric basis functions,

Js+ X6 (7.22)
and the other, using only basis functions antisymmetric with respect to the origin, is to minimize

Ta+p'x. (7.23)
Since the methods of attack are similar for each, we shall only discuss the even parity problem in detail.

7.4 Unconstrained least squares with the quadratic factor basis

Define
N-2
U%}Jj,g,LS (.’L’) — CﬁSTn (1’), (724)
n=0
N-—-2
WS (1) = 37 ES(1 - 2T, (2) (7.25)



Zhang X L et al. Sci China Math  January 2023 Vol. 66 No.1 211
and the cost function
1 ad,LS ad,LS
3= Slu@) —uy” (@), u(x) — uy™ (@), (7.26)

and the definition of function v(x) is given in (2.8). Then

1

3= 5lul) - pWadLS () (1 32)2y(z) — oW LS ()
= %[1(v(x) — Uquad,LS(x))z(l _ 5'32)3/2dx. 7o)

It follows that va"2d:L5(z) is a standard polynomial approximation to v(z), but the weight function is
not the usual Chebyshev weight of 1/v/1 — 22 but rather (1 — x2)>/2. The orthogonal basis with this
weight is the set of Gegenbauer polynomials of order 2. The Gegenbauer polynomials are defined as those
polynomials satisfying the orthogonality condition

/1 (1 —22)m 20 (2) O (z)de = 0, K # n, (7.28)
-1

where the subscript is the degree of the polynomial and the polynomials are normalized so that C‘;{L(l) =1.
(Warning: this is not the standard textbook normalization, but is convenient for comparing rates of
convergence near the endpoints; we have added a caret to the symbol for the Gegenbauer polynomials to
emphasize this.)

The Gegenbauer coefficients are not equal to the Chebyshev coefficients. However, Theorem 6 of [10]
is a specialization of a theorem in proving a? ~ O(1/n*¢~1!). Note that a?’s are not the coefficients
of u(x) but rather are the coefficients of v(x) = u(x)/(1 — x?) which has branch points proportional
to (1 — 22)?~!n(1 — 2?) instead of (1 — 22)¥In(1 — 22?) when ¢ € N; Theorem 2.3 must be applied
with ¢ — ¢ — 1 so that the coefficients of v(x) decrease more slowly than those of u(x) by a factor of
1/n%. The error near the endpoints is one order worse than the rate of convergence of the coefficients.
For ¢ ¢ N and ¥ € N, by [33, Corollary 3.4], the coefficients decay rate of the standard Gegenbauer
polynomials (C™(z) without the caret) expansion for the function (1—x2)#~* In” (1—22) is proportional to
O(In?(n) /n2#t2m=2) By the equality C™(z) = %C’ﬁ(m% it is easy to see that the normalized
Gegenbauer coefficients decay as

a2 ~In’(n) /%7, n>1. (7.29)

The N-term truncation of the Gegenbauer series has an L, error norm for v(z) of O(In” (N)/N2#~2).
Lemma 3.1 allows us to convert the asymptotic behavior of the Gegenbauer coefficients into a bound on
the slowness of the rate of convergence of the error norm.

Theorem 7.4. Suppose that the coefficients a)' of a spectral series in Gegenbauer polynomials é;n(l')
or Chebyshev polynomials Ty, (x) (m = 0) satisfy the bound

n?(n

lart| < W#, Vn>1, fizedm, YeN, and k>1, (7.30)
n

where W is a positive constant. Then the error in truncating the spectral series after the N-th term

satisfies the inequality

W In” (V) (7.31)

Kk — 1)N#=L’

N A
v(@) =Y apCi(x)
n=0

Proof. By the Baszenski-Delvos Lemma 3.1, the theorem is easy to be proved. O
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The theorem (combined with Tuan and Elliott’s theorem [28] for Gegenbauer coeflicients) yields the
maximum pointwise error for v(z). The error for u(x) = (1 — z?)v(x) is

oo

Ey(z) = Z a2 (1 — 22 C%(x). (7.32)
n=N-+1

To proceed further, we need two additional lemmas.

Lemma 7.5 (Gegenbauer as Chebyshev derivative). Normalize the Gegenbauer polynomials so that
each is one at the right endpoint. Then
A 1 d* T, ()
Oﬁ—k(z) = k—1 n2_42 "k . (733)
szo 2j+J1 dx

Proof. Tt has long been known (see [22, Subsection 18.9.19, p.446]) that the k-th derivative of a
Gegenbauer polynomial C’,T(x) is proportional to C’;"jf (z). It only remains to deduce the proportionality
constant. Since the Gegenbauer polynomials are normalized to be one at the right endpoint, this constant
must be the reciprocal of the value of the derivative at the origin which is known analytically to be (see [6,
Appendix A))

d*T, (z) 2 - 42
- - H : . (7.34)
dx e=1 g 25+ 1
This completes the proof. O

Applying Lemma 7.5, we see that the error (7.32) in the variational approximation of w(z) is
transformed to

= 2 2 3 d2Tn 2\T
el = 2 el ey a7 - i (7.35)

Bernstein [2] proved the following elegant theorem in a paper written in French. Here, P, denotes the
space of all the polynomials whose degrees are not more than n.

Theorem 7.6 (Bernstein polynomial derivative bound).  If P(x) is a polynomial of degree less than or
equal to n in Py, then for k < n and x € [-1,1],
d*P(x)

| < BOIP@) e, (7.36)

where
B =sup{|[PW (@) - | Pl < 1 and P € P,}.
P

Moreover, when n is large, for x € (—1,1),

k
B%) ~ <n) , M — 00. 7.37
Vi (7.37)
In this theorem, the inequality holds with increasing precision in the asymptotic limit of increasing
degrees. A complete proof in English was given by Whitley [32].
Multiplying the equation (7.36) by (1 — z?) and taking k = 2 and P(x) = T,,(x) give

d*T,,
‘(1 - xg)Tgx) <(1+e)n?, n— oo, (7.38)
where the small parameter satisfies 0 < ¢ < 1. It is easy to prove that
d?T,
(1- xZ)Tgx) =n(nT,(x) — 2Uy—1(x)). (7.39)
x

Thus, when n € N and n > 2, it holds that

‘(1—3:2)d2T”(:”)

7o <2n?, zel-1,1]. (7.40)




Zhang X L et al. Sci China Math  January 2023 Vol. 66 No.1 213

Theorem 7.7 (Error bound for u(z) in the least squares/quadratic factor basis). The error E%(x)
m the degree N approa:imation in the quadratic factor basis using least squares with the inner product
(f(x f f(z)g(x)dx satisfies the inequality
W In”(N)
|Ex(z)] < 6% N2s (7.41)

Proof.  To prove this theorem, we use (7.35) again:

3

By n%;la mr s E— T ) T

Recall that we previously demonstrated that a2’s are proportional to In”(n)/n?#~1 in (7.29). Applying
the bound on the second derivative of the Chebyshev polynomials (7.38), we see that the error bound is
transformed to

6
i@l < W (n+2)% <6W
" n ;-H n2<p 1 (n+2)2((n+2)2-1) . §+1 n2<p 1+2
Applying Lemma 3.1 with k = 2 + 1 proves the theorem. -

By (7.37), it is not hard to see that when N is large, one can obtain a sharper estimate

. W In?(N)
BN ()] < (3‘*‘0)% N2

N — o0, (7.42)

where ¢ is a small parameter in (0, 1).
7.5 Least squares with the difference basis

In this basis, the square matrix G has elements

Gmn = <T2m(1') - T2m72(x)7T2n(x) - T2n72(1')>
, m=mn >3,
3n/2, m=n=1,
= m=12,..., n=12... (7.43)
/2, m=n+1,

/2, m=m+1,
Thus, the 6 x 6 case is

3100 00

12 -10 0 0
2 0 -12-10 0
el (7.44)
™ 00 -12-10

0 0 0 -1 2 -1
0 0 0 0 -1 2

and with a,, denoting Chebyshev coefficients of the usual infinite series, unconstrained to vanish at the
endpoints,

as — 2(10
aq4 — a9
Zpo| o (7.45)
™ ag — ae . )
aip — as
a2 — aio
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bLS

Because of its sparsity, the matrix equation Gd = f, with the b5 now denoting the elements of d, can

be written as the difference system

3b5° — b5 = ag — 2ay, (7.46)
bgg 2 + 2b§5 - b§7§+2 = Q2n42 — G2, N = 17 27 RN (N - 2)7 (747)
—b5N_4 + 2055y = asn — asn 2. (7.48)
The solution is
n/N - n+1/2 al
by = — am aom, n=0,...,(N—1).

The infinite series limit, already analyzed in Section 2, is

N—o0, fixed n

n
lim an:—E aom, n=20,...,00.

If both n and N are large but finite, the solution is simplified to
n n n N
LS _ —
= (1- ) Dt 5 3 @ n=0. (V1)
m=0 m=n+1

Now the Chebyshev coefficients of w(z) must satisfy the condition «(1) = 0 which demands
Z agm — — Z a2m,- (749)
m=0 m=n+1

Similarly, the second sum in b%? can be rewritten in terms of infinite summations as

N 00 oo
Z agm — Z agm — Z agm, - (750)

m=n+1 m=n-+1 m=N-+1
Then

béf(l;) Z a2m+% Z azm*% Z azm,

m=n+1 m=n+1 m=N-+1

[e%S) 9]
n
E a2m — N § a2m, -

m=n-+1 m=N-+1

LS
b2n

Recall from Lemma 3.1 that (3.4) is equivalent to

5 1?21975;1) - 11)M_1 IHZiN){1+O<le>}7 9EN. (7.51)

n=N+1

If a, ~ O(In”(n)/n"), then

s oA 1{1n0(n) nmﬂ(N)}N(Aln”(n) 1{1 n" In” (N)}'

m T (k—1)28 N Kk — 1)nr—1 2k N* 1p? (n)

T TN N (7.52)

The coefficients in the infinite series are LS ~ O(In”(n)/n"~1), which is the same power law of the

rate of decay as that for its least squares counterparts. However, the least squares coefficients—but not
bLS

the infinite series coefficients—are In”(n)/n" multiplied by (1 — (%)“1;2((]:)) ). On a log-log plot,
curves sharply downward as n — N.
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7.6 Least squares for Chebyshev series with Lagrange multipliers

If a constraint is not built-in to the approximation uy(z), it can alternatively be added by means of a
Lagrange multiplier. The goal is to enforce two boundary conditions, but a function can always be split
by parity and then only one constraint for each symmetry is needed.

The goal of least squares is to minimize the “cost function”

J = —(u(z) — Sy (z),u(x) — Sy (z)) + A\, (7.53)

where, for the even parity case,

Z a5, (z), U= Z aks. (7.54)

Setting the gradients of the cost function with respect to all the unknowns gives

aJ
o = ¥=0 7.55
B ’ (7.55)
which merely insists that the constraint be satisfied, and also
aJ
5aL5 — V= A = (u(z), Tom () + Z agy (Tam (), Tan (). (7.56)
2m

Because of orthogonality of the Chebyshev polynomials and using the identities (Tp(x), To(x)) = 7 and
(Ton (), Ton(2z)) = 7/2 for n > 1, we have that the equations are simplified to

A= (u(x), To(z)) — abm, X = (u(x), Ton(x)) —akdn/2, n>1. (7.57)
Let a,, denote the Chebyshev coefficients of the infinite series for u(z). Recall that ag = +(u(z), To(x))
and az, = 2(u(z), Ton(z)). Then

1 2
N=ag—al®, “X=as, —adkS n>1 (7.58)
™ T

Adding these equations and then invoking ¥ = 0 gives

2N — Z aon. (7.59)

The Chebyshev coefficients of the solution to the variational problem are then

1 2
CLO = *;A + aop, CL%;? = 7;)\ + A2y n > ]- (760)

If the ag, ~ Aln”(2n)/(2n)" (k > 0,9 € N) as demanded by Theorem 2.3, then the error at the
endpoints is

Téa% Z a27,~(9< Nf l)), (7.61)

n=N+1

the same as the Lo, error norm of the Chebyshev series. (The error norm in fact is T for some of our
exemplary u(z).) It follows that

A~ O(”(N)/N*), 9 eN. (7.62)

It is deserving to point out that the least squares approximation varies with the choice of the weight
function. The Chebyshev weight function above is selected as (1 — 22)~'/2 for any of the three bases.
However, only the Chebyshev basis is orthogonal with the weight function, and the other two are
not. Next, the weight functions to make the difference basis and the quadratic basis orthogonal are,
respectively, given in this subsection.
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Theorem 7.8.  If the weight function is chosen as (1 — x2)~3/2, then the difference basis {s,(z)} is
orthogonal, i.e.,

1
/ Sm(x)sn(2)(1 — xz)_%dm =2m0mn, m,n=0,1,... (7.63)

—1

Proof. It holds that

/ 6o ()5 (2)(1 — 2?) " 2da = /Oﬂ[cos((n + 2)t) — cos(nt)] - [cos((m + 2)t) — cos(mt)]— !

sin?(t)

= /0 sin[(m + 1)¢] sin(t) - sin[(n + 1)¢] sin(¢) - SITZ(t)

=4 /7T sin[(m + 1)¢] - sin[(n + 1)t]d¢
=270 mn.-

This completes the proof. O

Following the steps of least squares in Subsection 7.1, like (7.5), for the difference basis with the weight
function (1 — 22)~3/2, one obtains

Gd=f, (7.64)
where
Giun = (5 (), n(2)) = /11 6o (@)5m(2) (1 = ) "2 da
—4 /O " sin(m + 1)4] - sin[(n + 1)t]dt
o 2k — )7\ . 2k — )7
~4- N kZ:Osm ((m + 1)2Ncol> sin ((n + 1)7]\[COl )
—q. . NCOlémn =276mn, m,n=0,1,...,N, N >N+1,
Neot 2

which is a consequence of the orthogonality of the sine function with respect to the points t; = %

k=1,2,..., Neol,

=

=g 2k — )7\ . (2k — D)7 Neol
1) ————— 1 =
1 sin ((m +1) ON sin [ (n+41) N 5 Smn

=~
Il

and
fo = @) sue)) = [ @@ —a?)His

= [ steostiyuteostt) -

77 fi 2% —1 2% — 1 L, (2k—1
~ n| cos m ) Jul cos m ] ) -sin .
Ncol =1 ° 2-N'col 2—]\'fcol 2AN'col
When the number of the interpolation N is bigger than the number of the basis N +1, the coefficients
of the difference basis decrease as O(In” (n)/n2%) as n — oo, which obeys the same law of the counterpart

coefficients in infinite series truncation as is shown in Figure 2. There is no curl up or curl down as
n — N. Thus the error norm is also the same as the error norm of the infinite series truncation.

In fact, to approximate the function w(z), using the difference basis ¢, (z) with the weight function
(1—22)~3/2 is equivalent to using the second Chebyshev function U, () with the weight function v/1 — 2.
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Theorem 7.9.  If the weight function is chosen as (1 — x2)~%/2 then the quadratic basis {0, ()} is
orthogonal, i.e.,

1 . T, m=mn =0,
/ om(x)on(2)(1 — 2%)"2dr = { 1 (7.65)
-1 §7T(Smn, m,n € N+'

The theorem is easy to be proved. In a way similar to the procedure of least squares for the difference
basis with the weight function (1—x2)~3/2 one can also conclude that the least squares coefficients for the
quadratic basis with the weight function (1 — 22)~%/2 decrease as O(A(n)/n?#~1) as n — oo. The error
decreases as O(|]A(N)|/N?#~1), which is also the same as the error of the infinite series truncation for
the same basis. In the rest of this paper, we still use the inner product (-, -) mentioned in Subsection 7.1.

8 Comparing different approximations using the difference basis

The spectral coefficients and error norms are so similar that the most illuminating way to compare them
is to tabulate ratios. Table 1 shows that when n < N, b, ~ b}, ~ b%%. When n nears N, the interpolation
coeflicients swell to nearly double those of the infinite series while bys < b,.

We compare the ratio of error norms in Table 2. Least squares with integration as the inner product
is only slightly worse than the truncation of the infinite series (less than 10%). The maximum pointwise
error for interpolation is roughly double that of truncation of the infinite series, independent of N.

9 Comparing different quadratic factor basis approximations

Figure 7(a) shows that the coefficients of all the three approximation schemes in the basis g,(z) =
(1—2%)T,, () have the same slope, 1/n2?~1, over most of the range in degree. The interpolant’s coefficients

and those obtained by least squares with the inner product

(@), g(x)) = / f@)o(@) VT s

both bend sharply downward as n — N.

How do these fast-tail decreases affect the error norms? Figure 7(b) provides an answer.

The aliasing error, which produces the downward curve in the spectral coefficients for interpolation in
Figure 7, is generally regarded as a bad thing. Therefore, the even sharper deviation from a power law
for the least squares coefficients should be an even worse thing. Actually, the error norms associated with
the downward curving spectral coefficients decrease faster by O(N) than the error norm of the truncated
infinite series with its pure power law (the black straight line in Figure 7(a)).

We have no explanation. However, note that some acceleration methods such as Euler acceleration
[9,21,23] taper the high degree coefficients to improve accuracy. Something similar seems to be happening
with aliased spectral series.

Table 1 Coefficient ratios for the difference basis, ¢, = Tht2(z) — Th(x), for (1 +z/2)(1 — 22)% In(1 — 22)? with 9 = 1
and ¢ = 2. by’s are the coefficients in the infinite series, bl’s are the coefficients of the interpolant using 100 collocation

points and b%s’s are the result of least squares with integration as the inner product

n 10 20 30 40 50 60 70 80 90 92 94 96 98 99
bl /b, 1.00 100 100 1.00 101 103 1.08 1.19 143 151 160 171 1.83 1.900
bkS/b, 1.00 1.00 1.00 0.99 097 0.93 0.85 071 047 040 034 0.26 0.18 0.095




218 Zhang X L et al. Sct China Math  January 2023 Vol. 66 No.1

Table 2 The function and basis are the same as in the previous table except that the ratios are now of errors in the Lo
norm, and these are listed versus the truncation N rather than degree n

N 10 20 30 40 50 60 70 80 90 100
E}\r;tcrp/EN 1.98 1.96 1.96 1.97 1.94 1.93 1.98 1.98 1.96 1.85
EI%,S/EN 0.96 1.03 1.06 1.07 1.08 1.09 1.07 1.09 1.04 1.07

_ Error norms
10 ¢ '

Quadratic factor basis coefficients

10—3

Errors

o

—_
o

Absolute values of coefficients

5 10 20 40 80
n N
(a) (b)

Figure 7 (Color online) (a) Odd degree coefficients versus degrees for approximations using the quadratic factor basis
for u(z) = (1 + z/2)(1 — 22)?In(1 — 2?), the same function as employed in the previous figure, and N = 80. The thick
black curve is the coefficients ¢,, of the infinite series. The thin red curve connects the absolute values of the coefficients
of the 79-point interpolant in the quadratic factor basis. The blue dotted curve is the coefficients of least squares with
the integral inner product. The black dashed line is proportional to n®~2. (b) Quadratic factor basis, the same as in the
previous figure but showing error norms versus NV instead of coefficients versus n. Black dashed circles: errors in truncation
of the infinite series in the basis o, (). The red curve: errors in interpolation. The blue solid curve: errors of least squares
approximations. The blue dash reference line is proportional to N4

10 Conclusion

The concern of this paper is to address the Chebyshev expansion of the weak singularity functions on
three bases, both theoretically and computationally. The main results are concluded in the following.

1. The coefficients and errors of several kinds of approximations are summarized in Table 3.

2. There are two distinct interpolants on the roots grid, but the interpolant on the Lobatto (endpoint-
including) grid is always unique.

3. The error norms in N-point interpolation on the roots grid are identical for all the three basis sets,
ie.,

Error ™o ! = BrrorQihoP ! — Error ot o O(|A(N)|/N?#). (10.1)

4. The pointwise errors for interpolation using the quadratic factor basis and the difference basis are
identical for all 2 because udif (z) = ul(z) for all .

5. The pointwise error in standard Chebyshev interpolation, unconstrained by ux (£1) = 0, is different
from the errors (not error norms) of the constrained basis sets, the quadratic factor basis and the difference
basis; the errors of the constrained basis sets are nearly-uniform in x whereas the Chebyshev error is one
order smaller than that of the constrained bases except in narrow boundary layers where the Chebyshev
error rises to equal that of the constrained bases.

6. If the Chebyshev coefficients decay as a, ~ Aln” (n)/n" where A is a constant, ¥ is a nonnegative

integer and x > 0, then
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Table 3 Results for (1 — 22)?In?(1 — x2) with ¢ > % and ¥ € N. The labels “u” and “d”, respectively, denote that
the coefficients a, curl up or curl down as n — N, deviating from the correct asymptotic line because of aliasing errors
as described in Theorem 5.2. The expression of A(n) is given in Theorem 2.3. TS, IT, LS, and B.C.s represent Truncated

Series, Interpolation, Least Squares and Boundary Conditions, respectively

Bases Chebyshev Difference Quadratic Chebyshev Lagrange
TS: Coeffs an ~ A(n)/n2¢t1 bn ~ A(n)/n%¢ cn ~ —A(n)/n2¢"1 -
TS: Errors |A(N)|/N?# |A(N)|/N2%# |A(N)|/N2#—1 -
IT: Coeffs al ~ A(n)/n?¢t+1 (d) bl ~ A(n)/n?? (u) cl ~ —A(n)/n?*=1 (d) -
IT: Errors |A(N)|/N?# |A(N)|/N?%# |A(N)|/N?%# -
LS: Coeffs akS ~ A(n)/n2et1 bLS ~ A(n)/n2% (d) ckS ~ —A(n)/n2¢—1 (d) aSl ~ A(n)/n2#t1
LS: Errors |A(N)|/N?# |A(N)|/N?% |A(N)|/N?# |A(N)|/N?#
B.Cs Not imposed Satisfied Satisfied Imposed by

Lagrange a multiplier

(a) For small degree n (1 < n < N), the relative error in the Chebyshev coefficient is

[& 1 m" In? ()

S . 10.2

lan] ~ 2571 N® In?(n) (10.2)
(b) For n = N — m with m being small, the relative error is
|EN—m] (&m)

— ~1+0 . 10.3

|aN7m‘ N ( )

When 9 = 0, al is plotted versus n with logarithmic axes, and as a result the curve on the log-log plot
should, for power-law decay, approach a straight line. The aliasing errors create a sharp downward turn
in al as n — N. (The coefficients for the difference basis exhibit a sharp upturn for similar reasons.)

7. The values of the derivatives at the endpoints are O(n?) for Chebyshev polynomials, but only O(n)
for the difference basis.

The most important conclusion is that those different choices of approximation schemes and bases
can alter the rate of convergence by a factor of N or N2. For series that converge proportionally to
small inverse powers of N due to weak endpoint singularities, this is significant. Knowing how to solve
the singular problems using spectral methods is important, but giving the optimal basis seems more
practically significant, especially in high-dimensional spaces.
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