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Abstract When one solves differential equations by a spectral method, it is often convenient to shift from

Chebyshev polynomials Tn(x) with coefficients an to modified basis functions that incorporate the boundary

conditions. For homogeneous Dirichlet boundary conditions, u(±1) = 0, popular choices include the “Chebyshev

difference basis” ςn(x) ≡ Tn+2(x)− Tn(x) with coefficients here denoted by bn and the “quadratic factor basis”

ϱn(x) ≡ (1− x2)Tn(x) with coefficients cn. If u(x) is weakly singular at the boundary, then the coefficients an

decrease proportionally to O(A(n)/nκ) for some positive constant κ, where A(n) is a logarithm or a constant.

We prove that the Chebyshev difference coefficients bn decrease more slowly by a factor of 1/n while the

quadratic factor coefficients cn decrease more slowly still as O(A(n)/nκ−2). The error for the unconstrained

Chebyshev series, truncated at degree n = N , is O(|A(N)|/Nκ) in the interior, but is worse by one power

of N in narrow boundary layers near each of the endpoints. Despite having nearly identical error norms in

interpolation, the error in the Chebyshev basis is concentrated in boundary layers near both endpoints, whereas

the error in the quadratic factor and difference basis sets is nearly uniformly oscillating over the entire interval

in x. Meanwhile, for Chebyshev polynomials, the values of their derivatives at the endpoints are O(n2), but

only O(n) for the difference basis. Furthermore, we give the asymptotic coefficients and rigorous error estimates

of the approximations in these three bases, solved by the least squares method. We also find an interesting fact

that on the face of it, the aliasing error is regarded as a bad thing; actually, the error norm associated with the

downward curving spectral coefficients decreases even faster than the error norm of infinite truncation. But the

premise is under the same basis, and when involving different bases, it may not be established yet.
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1 Introduction

The success of Chebyshev polynomial spectral methods in solving differential and integral equations is

comprehensively cataloged in a variety of standard texts such as [14, 16, 20, 25, 27], and a cornucopia

of others including two by Boyd [6, 8]. There are, however, some areas of spectral methods where

open questions remain and consensus has not been achieved. One is the best way to impose boundary

conditions. Even if we narrow the focus to the “basis recombination”, which is to use basis functions

that are linear combinations of Chebyshev polynomials such that each basis function individually and

exactly satisfies homogeneous linear boundary conditions, it might also have multiple options. Weak

endpoint singularities—“weak” in the sense that the spectral series converges—are still a topic of active

exploration. In this paper, we analyze both issues and show that they are closely interrelated.

The standard Chebyshev coefficients of a function u(x) are the coefficients an in the series

u(x) =

∞∑
n=0

anTn(x). (1.1)

If u(x) has weak endpoint singularities, then its Chebyshev coefficients an asymptotically (as n → ∞)

decrease proportional to 1/nκ for some positive constant κ, which is the “algebraic convergence order”,

perhaps modulo some slower-than-power functions of n such as lnϑ(n), ϑ ∈ N+. Here, “weak” (singularity)

means that u(x) is continuous everywhere on the interval x ∈ [−1, 1], but its first derivative or higher

derivatives are singular.

When a problem satisfies homogeneous Dirichlet boundary conditions u(±1) = 0, it is often desirable

to choose basis functions that satisfy the boundary conditions. Two possibilities are

udiff(x) =
∞∑

n=0

bnςn(x), ςn(x) ≡ Tn+2(x)− Tn(x) (the difference basis) (1.2)

or

uquad(x) =
∞∑

n=0

cnϱn(x), ϱn(x) ≡ (1− x2)Tn(x) (the quadratic factor basis). (1.3)

This was dubbed “basis recombination” in the book of Boyd, who discussed this strategy and its

alternatives in [6, pp. 112–114]. The alternatives are “boundary-bordering”, which is to replace collocation

or Galerkin projection conditions by rows of the discretization matrix that explicitly enforce the boundary

conditions, and “penalty methods” [16]. Karageorghis [17] discussed the relationship between basis

recombination and boundary-bordering for multidimensional problems in single and multiple domains.

Why “desirable”? Boyd gave an answer for eigenvalue problems in [3]. Boundary-bordering for an

eigenvalue problem gives a discretization matrix in which the rows that impose the boundary conditions

are independent of the eigenvalue. This was sufficient to wreck EISPACK, the premier eigensolver of

its day. Forty years later, library matrix eigensolvers are made of sterner stuff, but the rows imposing

boundary conditions are still bad for the condition number.

Heinrichs [15] pointed out that if one constructs the recombined basis functions to be, say, for symmetric

functions for Dirichlet boundary conditions Tn+2(x)−Tn(x) instead of T2n+2(x)−T0(x), the oscillations

of the two Chebyshev polynomials of similar degrees partially cancel, reducing the condition number of

the discretization matrix. The improvement for a k-th order differential equation with a basis truncated

to N Chebyshev polynomials is a factor of Nk reduction in the condition number, which is particularly

significant for higher order differential equations1).

The widespread use of basis recombination is attested by texts like [16] as well as by other literature [13].

Convergence theory for Chebyshev polynomial series has coevolved with Chebyshev algorithms and

applications [6, 16]. Boyd’s review [7] summarizes convergence theory up to 2009. More recent

1) Parenthetically, note that basis recombination is also very convenient when N is small and the discretized problem

is solved by a computer algebra system; reducing the number of basis coefficients from N to (N − 2) greatly reduces the

complexity of the explicit, analytic answer [5].
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contributions include [18,19,27,29,31,35]. There is also active literature on closely related problems such

as Gaussian quadrature and Clenshaw-Curtis quadrature for functions with various types of singularities

[24,26,30,34], which were not included in [7]. It is impossible to review this in detail, but the sheer mass

of theory shows that this vein of mathematics is still being actively mined.

Gaps in the existing theory are: how do basis recombination and interpolation alter the convergence

rate? In this paper, we fill in these gaps.

One unnoticed but significant aspect of spectral methods for problems with weak endpoint singularities

is that all the three expansions have coefficients decreasing as inverse powers of n (or inverse powers of n

multiplied by a factor of a logarithm function), but the exponents are different for each of the three as

expressed by the first theorem below. Indeed, there are also other differences among these three basis

sets when truncated.

Our comparisons employ three different ways to calculate the coefficients in these basis sets.

(1) The Chebyshev inner product projection is

a0 =
1

π

∫ 1

−1

T0(x)√
1− x2

u(x)dx, an =
2

π

∫ 1

−1

Tn(x)√
1− x2

u(x)dx, n > 0, (1.4)

bn and cn are expressed by the difference equations given below. They are consistent with all the degrees

with the infinite Chebyshev series as defined precisely in Lemma 2.1.

(2) The infinite sums are truncated and (N + 1)-point interpolation is applied.

(3) Least squares minimization of constraints is applied at M points, where M > (N + 1).

The least squares method yields a rectangular matrix problem. Interpolation is the limit in which the

matrix is square (M = N + 1), while the infinite series coefficients are the limit M → ∞.

The effects on the errors when each of the expansions is truncated after N terms are subtle. These

subtleties are explained in Section 3.

We compare the basis functions in Figure 1. The qualitative resemblance is strong, which makes the

behavioral differences all the more remarkable.
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Figure 1 (Color online) The left two plots show a typical quadratic factor basis function, plotted versus t at the top and

x = cos(t) at the bottom. Right: Same but for a basis function which is the difference of two Chebyshev polynomials,

ς40(x) = T42(x)− T40(x). The envelope of the bottom right curve is almost a circle of unit radius
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2 Rates of decay of Chebyshev coefficients and basis functions

In this section, we compare the coefficients of the infinite series on each basis. Interpolation and least

squares with a finite number of quadrature points are reserved for later sections.

Lemma 2.1 (Difference equations for infinite series coefficients). Suppose that a function u(x) is zero

at both endpoints but analytic everywhere on [−1, 1] except at the endpoints where u(x) is allowed to be

weakly singular. Here “weakly” is in the sense that v(x) = u(x)/(1−x2) is bounded at the endpoints. Let

u(x) have the three infinite series representations (1.1)–(1.3). Then the following statements hold:

(i) ςn(x) and ϱn(x) are connected by the difference equation and initial conditions, i.e.,

ς0(x) = T2(x)− T0(x) = −2ϱ0(x), ς1(x) = T3(x)− T1(x) = −4ϱ1(x),

ςn(x)− ςn−2(x) = −4ϱn(x), n > 2.
(2.1)

(ii) The condition udiff(x) = u(x) requires that the coefficients bn be connected to an by the difference

equation

b0 = −a0, b1 = −a1, bn−2 − bn = an, n > 2, (2.2)

which implies that

b2n = −
n∑

j=0

a2j , b2n+1 = −
n∑

j=0

a2j+1. (2.3)

(iii) Similarly, uquad(x) = u(x) only if

1

2
c0 −

1

4
c2 = a0,

1

4
c1 −

1

4
c3 = a1, −1

2
c0 −

1

4
c4 +

1

2
c2 = a2,

− 1

4
(cn−2 + cn+2) +

1

2
cn = an, n > 2.

(2.4)

(iv) The condition that uquad(x) = udiff(x) demands that

c0 −
1

2
c2 = −2b0, cn−2 − cn = −4bn−2, n > 3 (2.5)

with the solution

c0 = −2

∞∑
j=0

b2j , c1 = −4

∞∑
j=0

b2j+1, c2n = −4

∞∑
j=n

b2j , c2n+1 = −4

∞∑
j=n

b2j+1, n > 1. (2.6)

Equivalently, using the infinite sums for c0 and c1, we see that the higher coefficients can be written as

finite sums as

c2n = 2c0 + 4
n−1∑
j=0

b2j , c2n+1 = c1 + 4
n−1∑
j=0

b2j+1, n > 1. (2.7)

(v) Given u(x) = uquad(x), the coefficients cn can be defined without ambiguity as the Chebyshev

coefficients of an auxiliary function v(x) :

v(x) ≡ u(x)

1− x2
=

∞∑
n=0

cnTn(x), (2.8)

where cn can be calculated by the formula (1.4).

(vi) If udiff(x) = uquad(x), the relation of bn and cn is

b0 =
c2 − 2c0

4
=

1

2π

∫ 1

−1

√
1

1− x2
v(x)(T2(x)− T0(x))dx, (2.9)

bn =
cn+2 − cn

4
=

1

2π

∫ 1

−1

√
1

1− x2
v(x)ςn(x)dx, n ∈ N+. (2.10)
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Proof. To show the first statement, recall the Chebyshev identity [6, 25]

Tm(x)Tn(x) =
1

2
(Tm+n(x) + T|m−n|(x)).

We can easily verify that the quadratic factor basis can be written as

ϱ0(x) =
1

2
(T0(x)− T2(x)), ϱ1(x) =

1

4
(T1(x)− T3(x)), (2.11)

ϱn(x) = (1− x2)Tn(x) = −1

4
(Tn+2(x) + Tn−2(x)) +

1

2
Tn(x), n > 2. (2.12)

The difference of two difference basis functions is

ςn(x)− ςn−2(x) = Tn+2(x) + Tn−2(x)− 2Tn(x), n > 2,

which is just −4ϱn(x).

The second statement follows from rewriting the series for udiff(x) as

udiff(x) =

∞∑
n=0

bn{Tn+2(x)− Tn(x)} = −b0T0(x)− b1T1(x) +

∞∑
n=2

(bn−2 − bn)Tn(x), (2.13)

and the term-by-term comparison with the standard Chebyshev series (1.1). The solution to the difference

equation can be verified by direct substitution.

The reasoning for the third statement, which is the second-order difference equation for the cn, is

similar to that in the series for uquad(x), and here ϱn(x) is replaced by its explicit expression in terms

of Chebyshev polynomials, the sums are rearranged slightly so as to extract the multiplier of Tn(x), and

this multiplier is equated with an:

uquad(x) =

∞∑
n=0

cnϱn(x)

=

(
1

2
c0 −

1

4
c2

)
T0(x) +

(
1

4
c1 −

1

4
c3

)
T1(x) +

(
1

2
c2 −

1

2
c0 −

1

4
c4

)
T2(x)

+
∞∑

n=3

(
− 1

4
cn−2 −

1

4
cn+2 +

1

2
cn

)
Tn(x).

Comparing this term by term with the Chebyshev series yields the difference equation. The solution to

the difference equation can again be verified by direct substitution.

The fourth statement is demonstrated by similarly rewriting the series for udiff(x) and uquad(x),

substituting the expression for ϱn(x) in terms of differences of ςn(x), and then comparing the two series

[20, Subsection 2.5, Problem 19].

Solving the recurrence is complicated because the lowest degree involves two cn’s. If we assume symbolic

values for c0 and c1, we obtain the formal solution

c2n = 2c0 + 4
n−1∑
j=0

b2j , c2n+1 = c1 + 4
n−1∑
j=0

b2j+1, n > 1, (2.14)

but this is not explicit without numerical values for c0 and c1.

On the other hand, if we truncate the infinite series so that cN+1 = cN+2 = 0, then

cN = −4bN , cN−1 = −4bN−1. (2.15)

The recurrence can now be solved backwards to yield

c0 = −2

Ne∑
j=0

b2j , c2n = −4

Ne∑
j=n

b2j , c2n+1 = −4

No∑
j=n

n2j+1, n > 1, (2.16)
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where Ne = No = (N − 1)/2 if N is odd and Ne = N/2 and No = N/2 − 1 if N is even. The limit

N → ∞ yields the solution (2.6).

The fifth statement follows by dividing the series uquad(x) by (1 − x2) and then applying the usual

integrals for Chebyshev coefficients.

Statement (vi) follows from combining the difference relations connecting bn and cn (the statement (iv)

of this theorem) with the integrals for cn proved as the statement (v).

Before analyzing the asymptotic decay rate of the Chebyshev coefficients of the infinite series for the

functions with endpoint singularities, we shall give the exact representation of the Chebyshev coefficients

for the function with an algebraic endpoint singularity.

Lemma 2.2 (See [28, (4.12)]). For the function u(x) = (x+1)φ with φ > −1
2 and φ /∈ N, the Chebyshev

expansion coefficients are

an =
(−1)n+1

π

sin(φπ)

2φ−1
B(2φ+ 1, n− φ), n > φ+ 1, (2.17)

where B(x, y) denotes the Beta function.

Liu et al. [19] provided a detailed proof in the framework of fractional Sobolev-type spaces based

on the generalized Gegenbauer functions of fractional degree (GGF-Fs). There is also other literature

on the consequences for orthogonal polynomial series to the function u(x) with an algebraic singularity

[10,28,29,31,33,35].

Theorem 2.3 (Orders of convergence for coefficients of infinite series). Suppose that u(x) owns weak

singularities at the endpoints as

u(x;φ, ϑ) = g(x)(1− x2)φ lnϑ(1− x2), x ∈ [−1, 1], (2.18)

where φ > 1
2 , ϑ ∈ N+, u(±1;φ, ϑ) = limx→±1 u(x;φ, ϑ) = 0 and the function g(x) is analytic everywhere

on x ∈ [−1, 1]. Then the coefficients of three expansions (1.1)–(1.3), respectively, satisfy

an ∼ A(n)

n2φ+1
, (2.19)

bn ∼ A(n)

4φ

1

n2φ
, (2.20)

cn ∼ − A(n)

(2φ− 1)(2φ)

1

n2φ−1
(2.21)

for n≫ 1, where A(n) varies more slowly than a power of n such as a logarithm or a constant. Specifically,

A(n) = O(lnϑ−1(n)), when φ ∈ N; A(n) = O(lnϑ(n)) when φ /∈ N. Moreover, we have the following

expressions of A(n) :

(i) If ϑ = 1, one has

A(n) = −2Γ(2φ+ 1)

π
{(−1)ng(−1) + g(1)}{(γ1 − ln 2) sin(φπ) + π cos(φπ)},

where γ1 = 2ψ0(2φ+ 1)− ψ0(n− φ)− ψ0(n+ φ+ 1) and ψn(x)(n ∈ N) is the polygamma function.

(ii) If ϑ = 2, one has

A(n) = −2Γ(2φ+ 1)

π
{(−1)ng(−1) + g(1)}{(γ21 + γ2 − 2 ln(2)γ1 + ln2(2)− π2) sin(φπ)

+ 2π(γ1 − ln(2)) cos(φπ)},

where γ2 = 4ψ1(2φ+ 1) + ψ1(n− φ)− ψ1(n+ φ+ 1).

(iii) If ϑ ∈ N+, one has the general formula

A(n) = − 2

π
γ3n

2φ+1
ϑ∑

k=0

(
ϑ

k

) k∑
j=0

(
k

j

)
πj sin

(
j

2
π + φπ

)
lnk−j

(
1

2

)
dϑ−k

dφϑ−k
B(2φ+ 1, n− φ)

∼ −2Γ(2φ+ 1)

π
γ3{lnϑ(n) sin(φπ) + lnϑ−1(n) cos(φπ)},
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where

γ3 = (−1)ng(−1) + g(1).

Proof. The asymptotic behavior of the Chebyshev coefficients an follows from a theorem of Elliott [11]

(see also [4, 12, 18, 19, 28, 30, 33, 35]). For simplicity, take A(n) and B(n) as constants below. Then

for large n and assuming power-law behavior for bn with the algebraic order of convergence k and the

proportionality constant B, the difference equation (2.2) gives

B

nk

(
1

(1− 2/n)k
− 1

)
=

A

n2φ+1
.

For large n, (1− 2/n)−k ≈ 1 + 2k/n+O(k2/n2) and then

2kB

nk+1
=

A

n2φ+1
,

from which it follows that k = 2φ as claimed and B = A/(2k) = A/(4φ).

To prove the third statement, define v(x) as before by u(x) = (1 − x2)v(x). cn’s are the standard

Chebyshev polynomial coefficients of the modified function v =
∑∞

n=0 cnTn(x), for which the asymptotic

behavior of cn follows from Elliott’s theorem [11].

An alternative proof that gives the relative proportionality constant is as follows. Earlier, we proved

in Lemma 2.1(iii) that

− 1

4
(cn−2 + cn+2) +

1

2
cn = an, n > 2. (2.22)

Assume that asymptotically for large n,

cn ∼ C

nk
, n≫ 1.

Substituting this into the second-order difference equation (2.4) gives

C

2

1

nk

(
− 1

2

(
1

(1− 2/n)k
+

1

(1 + 2/n)k

)
+ 1

)
=

A

n2φ+1
.

Then it is not difficult to see that

Ck(k + 1)

nk+2
=

A

n2φ+1
.

Thus, it follows that k = 2φ−1 and C = −A/{k(k+1)} = −A/(4φ−2)φ. The proof is not substantially

changed if A is allowed to vary slowly, say logarithmically, with the degree.

Recently, Liu et al. [19, Subsection 6.2] gave the optimal decay rate of the Chebyshev expansion

coefficients for this function u(x;φ, ϑ) = (1 + x)φ lnϑ(1 + x) when ϑ = 1. By the idea of this paper, we

prove the optimal estimates of A(n) given above, for the function (2.18) when ϑ = 1, 2. By (1.4), for

n > 0, the Chebyshev expansion coefficients are

an =
2

π

∫ 1

−1

g(x)(1− x2)φ lnϑ(1− x2)
Tn(x)√
1− x2

dx

=
2

π

∫ 1

−1

g(x)(1− x2)φ
{
lnϑ(1 + x) + lnϑ(1− x) +

ϑ−1∑
i=1

(
ϑ

i

)
lni(1 + x) lnϑ−i(1− x)

}
Tn(x)√
1− x2

dx.

As we know, the coefficients are dominated by terms who own the worst singularities, i.e., the terms

whose lowest-order derivatives are unbounded and increase highest at the corresponding singularities.

Thus, for ϑ > 1,

an ≃ 2

π

∫ 1

−1

g(x)(1− x2)φ{lnϑ(1 + x) + lnϑ(1− x)} Tn(x)√
1− x2

dx



198 Zhang X L et al. Sci China Math January 2023 Vol. 66 No. 1

=
2

π

∫ 1

−1

g(x)(1− x2)φ lnϑ(1 + x)
Tn(x)√
1− x2

dx+
2

π

∫ 1

−1

g(x)(1− x2)φ lnϑ(1− x)
Tn(x)√
1− x2

dx. (2.23)

For convenience, we set

an,1 :=
2

π

∫ 1

−1

g(x)(1− x2)φ lnϑ(1 + x)
Tn(x)√
1− x2

dx,

an,2 :=
2

π

∫ 1

−1

g(x)(1− x2)φ lnϑ(1− x)
Tn(x)√
1− x2

dx.

To obtain the asymptotic behavior of an,1, the dominant term of the integrand needs to be considered.

Due to the fact that the function g(x) is analytic on the interval [−1, 1], it can be written as Taylor series

at x = −1. Thus, the dominant contribution comes from the integral

an,1 ≃ 2φ+1

π
g(−1)

∫ 1

−1

(1 + x)φ lnϑ(1 + x)
Tn(x)√
1− x2

dx. (2.24)

By Lemma 2.2, using L’Hospital’s rule, we have

an,1 ≃ 2φ+1

π
g(−1)

∫ 1

−1

(1 + x)φ
{

lim
ε→0

((1 + x)ε −
∑ϑ−1

j=0
lnj(1+x)

j! εj)

εϑ

ϑ!

}
Tn(x)√
1− x2

dx

= (−1)n+1 2

π
g(−1)

ϑ∑
k=0

(
ϑ

k

) k∑
j=0

(
k

j

)
πj sin

(
j

2
π + φπ

)
lnk−j

(
1

2

)
dϑ−k

dφϑ−k
B(2φ+ 1, n− φ).

Similarly, an,2 is equal to an,1 multiplied by a constant factor (−1)ng(1)
g(−1) .

Recall that if y is large and x is fixed, then

B(x, y) ∼ Γ(x)y−x. (2.25)

By the induction method, using (2.25), we obtain

A(n) ∼ −2Γ(2φ+ 1)

π
{(−1)ng(−1) + g(1)}{lnϑ(n) sin(φπ) + lnϑ−1(n) cos(φπ)}.

Note that using the above method, for ϑ = 1, we see that the exact Chebyshev coefficients an can be

obtained; for ϑ = 2, we can obtain the optimal estimate of A(n), i.e., the dominated terms can be

exactly achieved. For a general ϑ ∈ N, the rough estimates of the Chebyshev coefficients can be found

in [33,36].

Here, if ϑ = 0, then u(x;φ, ϑ) is singular only if φ is not an integer, as is mentioned before this

theorem. If not otherwise specified, A(n) in the rest of this paper denotes the expression of A(n) given

in Theorem 2.3.

Remark 2.4. Here, the parameter φ > 1
2 is required to make sure 2φ− 1 > 0 in (2.21). In fact, when

using the Chebyshev basis to approximate the function (2.18), it is only required φ > − 1
2 .

Remark 2.5. Because the natural logarithm function ln(n) increases very slowly as n increases, the

differences in plots between ln(n)/nκ and 1/nκ are subtle in numerical experiments. It is very easy to

believe that A(n) is always a constant for all φ > − 1
2 . However, as demonstrated in this theorem, A(n)

is a constant only when ϑ = 1 and φ ∈ N.
Figure 2 confirms the coefficients’ law in Theorem 2.3. Care must be exercised in interpreting this

theorem. It applies when an’s obey an inverse power law, as is true for the exact Chebyshev coefficients

of the infinite series. We later compute a variety of finite approximations to u(x) and these, when

represented in the Chebyshev basis, do not automatically have the inverse power-law behavior of the

coefficients an.
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Figure 2 (Color online) Coefficients of the infinite series of the function u(x) ≡ (1 + x
2
)(1 − x2)φ ln(1 − x2) in three

different bases with (a) φ = 2 and (b) φ = 1.5

3 Errors in truncating infinite series

Suppose that we truncate each of the three series to a polynomial of degree N , i.e.,

uN (x) =
N∑

n=0

anTn(x), (3.1)

udiffN (x) =

N−2∑
n=0

bn{Tn+2(x)− Tn(x)} (the difference basis), (3.2)

uquadN (x) =

N−2∑
n=0

cn(1− x2)Tn(x) (the quadratic factor basis). (3.3)

We have previously described the behavior of the coefficients an, bn and cn, but here a natural question

arises: what are the errors in these truncations?

For the class of the function (2.18), Theorem 2.3 demonstrates that the Chebyshev coefficients fall as

O(A(n)/n2φ+1) while the quadratic factor basis coefficients cn decrease as O(A(n)/n2φ−1). A well-known

theorem asserts that the truncation error in a Chebyshev series is bounded by the sum of the absolute

values of all the neglected terms; because |Tn(x)| 6 1 on x ∈ [−1, 1], the bound is also the sum of the

absolute values of all the neglected coefficients. One might suppose that the error in the L∞ norm when

the series is truncated at n = N is the magnitude of the largest omitted coefficient, but in fact, the series

error is worse by O(1/N) than the rate of convergence of the Chebyshev coefficients. Near the endpoints,

the terms are all of the same sign or asymptotically strictly alternating. The order of convergence of the

error then comes from the asymptotic sum approximation (3.4) below.

Lemma 3.1. For κ > 2 and ϑ ∈ N, then
∞∑

n=N+1

lnϑ(n)

nκ
∼ lnϑ(N)

(κ− 1)Nκ−1
. (3.4)

The lemma is proved in [1, Lemma 1] when ϑ = 0 and in [36, Lemma 3.3] when ϑ ∈ N.
Figure 3(a) shows that this rises steeply in the error near the endpoints by the comparison of two

different norms. The upper solid (black) curve, falling 1/N slower than the coefficients, is the usual

maximum pointwise error

ET
N = max

x∈[−1,1]
|u(x)− uN (x)|.
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Figure 3 (Color online) (a) Green: the error norm of the Chebyshev polynomial series, truncated at n = N , when the

norm is the maximum over the middle of the interval for u(x) = (1 + x/2)(1 − x2)2 ln(1 − x2). The green dashes are

the reference line, 30/N5. The Chebyshev coefficients (not shown) also exhibit the fifth-order convergence, matching the

power-law exponent of the interior error, for this u(x). Black: same except the error norm is computed over the whole of

the interval, the usual norm. The black dashes are a graph of 1/N4. (b) The errors versus x of the Chebyshev polynomial

series for u(x), truncated after N = 150 terms, i.e., ET
N (x) ≡ |u(x)− uN (x)|

The lower curve, which decreases as rapidly as the coefficients an, represents the maximum error over

the interval’s interior, excluding the neighborhoods of both endpoints, i.e.,

ET,interior
N = max

x∈[−0.8,0.8]
|u(x)− uN (x)|.

Instead of plotting norms versus truncation as in Figure 3(a), we can obtain a direct confirmation of

the large errors in narrow boundary layers at the endpoints by plotting errors versus x as is shown in

Figure 3(b).

Theorem 3.2 (Error in truncation of infinite series). Suppose that we truncate each of the three series

to a polynomial of degree N , as given in (3.1)–(3.3). Then the error estimates of the truncated series

in L∞ norm are presented in the following:

(i) For the Chebyshev series,

EN ≡ max
x∈[−1,1]

|u(x)− uN (x)| ∼ O(|A(N)|/N2φ), N → ∞. (3.5)

(ii) For the difference basis,

Ediff
N ≡ max

x∈[−1,1]
|u(x)− udiffN (x)| ∼ O(|A(N)|/N2φ), N → ∞. (3.6)

(iii) For the quadratic factor basis,

Equad
N ≡ max

x∈[−1,1]
|u(x)− uquadN (x)| ∼ O(|A(N)|/N2φ−1), N → ∞. (3.7)

The A(N) is given in Theorem 2.3.

Proof. The error in the Chebyshev series follows from the discussion preceding the theorem. To prove

the remaining statements, note that the coefficients of the latter two expansions match up to degree

N − 2 when expanded as Chebyshev series. However, the difference relations in Lemma 2.1 show that

with bN−1 = bN = cN−1 = cN = 0,

udiffN (x) =

N−2∑
n=0

anTn(x) + bN−3TN−1(x) + bN−2TN (x),

= uN (x) + (bN−3 − aN−1)TN−1(x) + (bN−2 − aN )TN (x),

= uN (x) + bN−1TN−1(x) + bNTN (x). (3.8)
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Now we know from Theorem 2.3 that

bn ∼ O(A(n)/n2φ).

This implies that bN−1 and bN are proportional to the same power of N as the error in the truncated

Chebyshev series. It follows that the error in the truncated series on the difference basis has the same

rate of convergence as the truncation of the Chebyshev series.

To prove the final statement, observe that the truncated series on the quadratic factor basis can be

written as

uquadN (x) =
N−2∑
n=0

cn(1− x2)Tn(x)

=

(
1

2
c0 −

1

4
c2

)
T0(x) +

(
1

4
c1 −

1

4
c3

)
T1(x) +

(
− 1

2
c0 +

1

2
c2 −

1

4
c4

)
T2(x)

+
N−2∑
n=3

(
1

2
cn − 1

4
cn−2 −

1

4
cn+2

)
Tn(x)−

1

4
cN−3TN−1(x)−

1

4
cN−2TN (x)

+
1

4
cN−1TN−3(x) +

1

4
cNTN−2(x)

= uN (x) +
1

4
cN−1TN−3(x) +

1

4
cNTN−2(x) +

(
1

4
cN+1 −

1

2
cN−1

)
TN−1(x)

+

(
1

4
cN+2 −

1

2
cN

)
TN (x). (3.9)

Lemma 2.1 shows that cN−1 and cN are O(A(N)/N2φ−1). This is larger than the error in the truncated

Chebyshev series by a factor of N . Thus this is the magnitude of the error in the truncated quadratic

factor basis.

Figure 4 confirms the expected rates of decay for an arbitrary but representative example.
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Figure 4 (Color online) Maximum pointwise errors (the L∞ norm) in the truncated infinite series in three different basis

sets for various truncations N for the typical example u(x) = (1 + x/2)(1 − x2)2 ln(1 − x2). The upper solid line (red)

is the error norm for the quadratic factor basis; the dashed red line is 6/N3. The solid blue curve is the error norm for

the difference basis; the dashed blue line is 200/N4. The solid black curve is the error norm for the truncation of the

standard Chebyshev series; the black dashed curve is 25/N4. The green solid curve is the maximum pointwise error for

x ∈ [−1/2, 1/2], the interior of the interval x ∈ [−1, 1]; the dashed green curve is 100/N5
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4 Equivalence theorem

Theorem 4.1 (Dirichlet-enforcing basis equivalence). If two polynomial approximations, constrained

to satisfy homogeneous Dirichlet boundary conditions, are determined by the same set of interpolation

constraints or least squares conditions, then the approximations are identical and must have identical

errors, i.e.,

udiffN (x) = uquadN (x). (4.1)

Proof. By definition, udiffN (x) is a polynomial of degree N which is zero at both endpoints. The

fundamental theorem of algebra asserts that any polynomial can be written in the factored form.

Therefore,

udiffN (x) = (1− x2)pN−2(x), N > 2, (4.2)

where pN−2(x) is a polynomial of degree (N − 2). This is identical in the form to uquadN (x). If, for

example, we determine the approximations by N − 1 interpolation conditions, these constraints uniquely

determine pN−2(x) as the interpolant of v(x), the same as for uquadN (x). Therefore udiffN (x) = uquadN (x) for

interpolation. The argument extends to any other reasonable mechanism to determine the approximations

provided that the same conditions are applied to both udiffN (x) and uquadN (x).

This equivalence theorem greatly simplifies error analysis. However, we have already shown that the

coefficients bn and cn are different. Furthermore, the error of an unconstrained series of Chebyshev

polynomials is different from that of the constrained approximations.

5 Interpolation and aliasing errors in Chebyshev polynomial coefficients

5.1 Grids and uniqueness

There are two canonical interpolation grids associated with Chebyshev polynomials. The “roots” grid is

xk = − cos

(
2k + 1

2N + 2
π

)
, k = 0, 1, . . . , N (“Chebyshev-Gauss” grid). (5.1)

The “endpoints-and-extrema” or “Lobatto” grid is

xk = − cos

(
k

N
π

)
, k = 0, 1, . . . , N (“Chebyshev-Lobatto” grid). (5.2)

If the Lobatto grid is chosen, then the interpolating polynomial must be 0 at x = ±1 in order to satisfy the

interpolation condition at the endpoints. It follows that whether we represent the interpolated polynomial

using Chebyshev polynomials, the difference basis or the quadratic factor basis, we always obtain the

same polynomial.

In contrast, if the interpolation points are those of the roots grid, which does not include the endpoints,

then the standard Chebyshev polynomial interpolation gives an interpolating polynomial which is not

exactly equal to 0 at the endpoints. If we use either the quadratic factor basis or the difference basis, the

result, by the polynomial factorization theorem, can be written in the form

uI,conN (x) = (1− x2)vI,conN−2 (x), (5.3)

where uI,conN (x) and vI,conN−2 (x) are Chevbyshev interpolants on Chebyshev-Lobatto grids for the functions

u(x) and v(x) = u(x)/(1 − x2), respectively, and they satisfy the homogeneous Dirichlet boundary

conditions. Thus, there are two distinct interpolants on the roots grid, being the Chebyshev interpolant

(lacking zeros at the endpoints) and the difference-and-quadratic-factor interpolant (which vanishes at

both endpoints by construction). In contrast, the interpolant on the Lobatto (endpoint-including) grid is

always unique.
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5.2 Aliasing errors in the Chebyshev coefficients of the interpolant

The Chebyshev coefficients of both the interpolant, aIn(N), and the infinite series an can be computed by

Gauss-Chebyshev quadrature as given in [6, p. 99]. When the number of quadrature points M is equal

to N + 1, then the coefficients are the result from interpolation; the coefficients of the infinite series are

an = limM→∞, fixedN aIn(N). But what is the relationship between series and interpolant coefficients for

finite N? The following provides an answer.

Theorem 5.1 (Aliasing formula for Chebyshev coefficients). Let u(x) be Lipschitz continuous on

[−1, 1] and let uIN (x) be its Chebyshev interpolant, i.e.,

uIN (x) =
1

2
aI0 +

N∑
n=1

aInTn(x), (5.4)

which is obtained by choosing the Chebyshev-Gauss grids as interpolation points. Let an (without the

superscript) denote the coefficients of the infinite series

u(x) =
1

2
a0 +

∞∑
n=1

anTn(x). (5.5)

Then one has

(i)

aIn = an + En, En =

∞∑
j=1

(a−n+2j(N+1) + an+2j(N+1))(−1)j , n = 0, 1, . . . , N ; (5.6)

(ii)

aIn ≈ an − a2N+2−n − a2N+2+n +O(a3N ), n = 0, . . . , N,

aI1
2 (N+1) ≈ a 1

2 (N+1) − a 3
2 (N+1) +O(a 5

2 (N+1)), (5.7)

aIN+1−m ≈ aN+1−m − aN+1+m +O(a3N ), m ∈ N+, m≪ N.

Proof. The first statement was proved by Fox and Parker [14, Subsection 4.3]. The second comes from

specializing n to particular ranges in degree and then making obvious approximations.

Theorem 5.2. Suppose that the Chebyshev coefficients in (5.5) for large n are

an ∼ A
lnϑ(n)

nκ
, where n≫ 1, κ > 0, A is a constant and ϑ ∈ N.

Then one has the following estimates:

(i) For small degree n, the aliasing error in Chebyshev coefficients is

En ∼ −A lnϑ(2N)

2κ−1Nκ
, (5.8)

and the relative error is

|En|
|an|

∼ 1

2κ−1

nκ

Nκ

lnϑ(2N)

lnϑ(n)
. (5.9)

Specially, if the coefficients an are well approximated by the power law A/nκ, for small degree n such

that n≪ 2
κ (N + 1), then

En ∼ A

2κ−1

1

Nκ

∞∑
j=1

(−1)j

jκ
,

|En|
|an|

6 1

2κ−1

nκ

Nκ
. (5.10)

(ii) For n = N + 1−m, when m is a small positive integer, the relative error is

|EN+1−m|
|aN+1−m|

∼ 1 +O
(

κm

N + 1

)
. (5.11)
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Proof. Substituting the coefficients into the terms in the error sum gives

a2j(N+1)±n ∼ A lnϑ(2jN)

(2j(N + 1)± n)κ
∼ A lnϑ(2jN)

2κ(N + 1)κ
1

jκ{1± n/(2j(N + 1))}κ
,

a2j(N+1)−n + a2j(N+1)+n ≈ A lnϑ(2jN)

2k−1(N + 1)κ
1

jκ

{
1 +O

(
κ2n2

4j2(N + 1)2

)}
.

The asymptotic expression (5.8) then follows.

If we assume that n is sufficiently large such that an ∼ A/nκ, then the relative coefficient error follows

immediately upon invoking

∞∑
j=1

(−1)j+1

jκ
< 1, ∀κ > 0. (5.12)

To prove the second statement, substitute the coefficients decay law into the equation (5.7) from the

general aliasing theorem, Theorem 5.1. Using asymptotic tools, we see that (5.11) will be obtained.

The second statement implies that coefficients whose degree is near the aliasing limit, n = N , are

badly in error. When the Chebyshev coefficients decay slowly, as O(lnϑ(n)/nκ), aN+1−m ≈ aN+1+m; the

relationship aIN+1−m ≈ aN+1−m − aN+1+m implies strong cancellation so that

|aIN+1−m| ≪ |aN+1−m| (5.13)

and the relative error is near 100%. When ϑ = 0, a log-log plot of the interpolation points |aIn| is a

straight line for the intermediate n, but dives to small values as n → N , curving downward below the

line. For general ϑ ∈ N+, the plot of interpolation coefficients |aIn| still curls downward much more than

the curve of Chebyshev coefficients |an| as n→ N .

The first statement shows that in contrast, low-degree coefficients can be computed with a small relative

error, but for fixed degree n, the relative error falls with N as lnϑ(N)/Nk, the same decay rate as that

of the coefficients. In a word, if an diminishes with lnϑ(n)/nk the coefficient can be computed as the

corresponding coefficient of the (N + 1)-point interpolant with a relative error that is order k in N by a

factor of lnϑ(N).

6 Interpolants and interpolation errors with Dirichlet boundary conditions

6.1 Interpolants and their similarities and differences

Because the Lobatto grid includes the endpoints, the standard, unconstrained Chebyshev interpolant is

zero at both endpoints for any function satisfying u(±1) = 0. As noted in Subsection 5.1, the interpolant

on the Lobatto grid is unique and therefore,

uCheb,Lob,I
N (x) = udiff,Lob,I

N (x) = uquad,Lob,IN (x). (6.1)

So let us turn to the roots grid. Define v(x) ≡ u(x)/(1 − x2) as before. There exists a polynomial

of degree (N − 2), which we will denote by vCheb,I
N−2 (x), that interpolates v(x) at all of the points on the

(N − 1)-point roots grid.

Theorem 6.1 (Interpolants on the roots grid). Suppose that u(x) satisfies Dirichlet boundary

conditions u(±1) = 0 and the (N − 1)-point Chebyshev interpolant of v(x) is

vCheb,I
N−2 (x) =

N−2∑
n=0

c̃InTn(x). (6.2)

Compute uquad,IN (x) by (N − 1)-point interpolation of u(x), where

uquad,IN (x) =
N−2∑
n=0

cIn(1− x2)Tn(x). (6.3)
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Similarly, compute udiff,I
N (x) by (N − 1)-point interpolation, where

udiff,I
N (x) =

N−2∑
n=0

bIn{Tn+2(x)− Tn(x)}. (6.4)

Then it leads to

uquad,IN (x) = (1− x2)vCheb,I
N−2 (x), (6.5)

udiff,I
N (x) = (1− x2)vCheb,I

N−2 (x), (6.6)

udiff,I
N (x) = uquad,IN (x), (6.7)

cIn = c̃In, i = 0, 1, . . . , N − 2 (6.8)

and

bI0 =
cI2 − 2cI0

4
, bIn =

cIn+2 − cIn
4

, n = 1, 2, . . . , (N − 4), bIN−3 = −
cIN−3

4
, bIN−2 = −

cIN−2

4
. (6.9)

Proof. The interpolation conditions for u(x) in the quadratic factor basis are

u(xj) = uquad,IN (xj) =

N−2∑
n=0

cIn(1− x2j )Tn(xj). (6.10)

The same for v(x) multiplied by (1− x2) are

(1− x2j )v(xj) = (1− x2j )v
Cheb,I
N−2 (xj) =

N−2∑
n=0

c̃In(1− x2j )Tn(xj). (6.11)

The left-hand side of (6.11) is u(xj). The right-hand side is identical in the form to the interpolant

of u(x) by uquad,IN (x). Therefore, c̃In = cIn from which uquad,IN (x) = (1−x2)vCheb,I
N−2 (x) follows. The second

and third lines, (6.6) and (6.7), follow from the equivalence Theorem 4.1. The formulas for bIn follow from

the difference equations in Lemma 2.1(vi).

6.2 Interpolation errors and error norms

Suppose that the Chebyshev polynomial coefficients an of a function u(x) are decreasing as

an ∼ A lnϑ(n)/nκ, (6.12)

where κ = 2φ + 1 > 0 and ϑ ∈ N. The error in the Chebyshev interpolant of u(x) is expected to be

O(lnϑ(N)/Nκ) on the interior of the interval, by slowing to O(lnϑ(N)/Nκ−1) in the endpoint boundary

layers.

The Chebyshev polynomial coefficients of v(x) ≡ u(x)/(1−x2) converge more slowly than those of u(x)

by a factor of about n2 (see [28]). Define

Ev
N (x) ≡ |v(x)− vI,conN−1 (x)|. (6.13)

It follows that Ev
N (x) will be O(lnϑ(N)/Nκ−1) on the interior of the interval. To obtain the corresponding

error in u(x), we must multiply by the factor of (1− x2) which is the ratio of u(x) to v(x), i.e.,

Eu
N (x) = (1− x2)Ev

N (x). (6.14)

It follows that

max
x∈[−1,1]

(Eu
N (x)) ∼ A lnϑ(N)

Nκ−1
. (6.15)
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As explained in [6, Chapter 2], the error in truncating the infinite Chebyshev series by discarding all

the terms of degree (N + 1) and higher can be bounded rigorously by the sum of the absolute values of

the neglected coefficients, i.e.,

EN (x) ≡ |u(x)− uN (x)| 6
∞∑

n=N+1

|an|. (6.16)

Chebyshev interpolation on either the roots grid or the Lobatto grid is bounded by twice the sum of the

absolute values of the neglected coefficients, i.e.,

EI
N (x) ≡ |u(x)− uIN (x)| 6 2

∞∑
n=N+1

|an|. (6.17)

It is difficult to make more precise statements; for u(x) = T 3
2 (N+1)(x), for example,

uN+1(x) = 0, EN+1(x) = T 3
2 (N+1)(x),

uIN = −T 1
2 (N+1)(x), EI

N+1(x) = T 3
2 (N+1)(x) + T 1

2 (N+1)(x).

Nevertheless, it follows that EI
N (x) is roughly double the error in truncating the infinite Chebyshev

series and therefore its L∞ norm is O(lnϑ(N)/Nκ−1).

Because of the endpoint singularities, the usual nearly-uniform error for truncated Chebyshev series

(or Chebyshev interpolants) of smooth functions, analytic on the entire interval, is replaced by an error

which is huge in boundary layers near each endpoint and smaller outside of these boundary layers by a

factor of O(1/N) (the bottom curve in Figure 5).

Applying this same reasoning to v(x) ≡ u(x)/(1− x2) gives an error for v(x) which is O(N) times as

large as the error for u(x) (note that the order κ of singularities for v(x) is one less than that for u(x)

and each decrease in κ by one reduces the order of the Chebyshev coefficients by two). To obtain the

approximation in the quadratic factor basis for u(x), we must multiply the Chebyshev series for v(x)

by (1 − x2). Similarly, the highly nonuniform error in v(x) (the blue dotted curve in Figure 5) must be

replaced, to obtain the error for interpolation of u(x) by either of the constrained basis sets, by (1− x2)

times the error for v(x). The zeros at the endpoints wipe out the boundary layers of large errors in v(x)

to yield an error which is nearly uniform over x ∈ [−1, 1] as shown by the gold dashed curve in Figure 5.
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Figure 5 (Color online) Errors versus x for interpolation of u(x) = (1 + x/2)(1 − x2)2 ln(1 − x2), the same function as

employed in the previous figure, by means of 100 interpolation points on the roots grid. Top (blue dots): |v(x)−vCheb,I
N (x)|,

the interpolant of v(x) = u(x)/(1−x2). Bottom (the solid black curve): |u(x)−uCheb,I
N (x)|, the error in the classic Chebyshev

interpolation on the roots grid. The dashed gold line is the error for the quadratic factor basis, the error in uquad,I
N (x) =

(1− x2)vCheb,I
N−2 (x); this is identical to the error in the difference basis since (for interpolation) uquad,I

N (x) = udiff,I
N (x)
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Figure 6 (Color online) (a) Log-log plot of the error norms versus the number of interpolation points N for interpolation

of u(x) = (1 + x/2)(1 − x2)2 ln(1 − x2), the same function as employed in the previous figure. The top circle gold curve:

the error norm maxx∈[−1,1] |v(x) − vCheb,I
N (x)|, the interpolant of v(x) = u(x)/(1 − x2). The gold dashed curve is 5/N2,

proportional to 1/Nκ−3. The bottom three curves, almost superimposed and hard to distinguish, are the error norms for

the approximation of uCheb,I
N (x) by the Chebyshev interpolant (the black curve), uquad,I

N (x) (blue boxes) and udiff,I
N (x)

(red solid disks). The red disks are at the centers of the blue boxes because uquad,I
N (x) is identically equal to udiff,I

N (x), as

asserted by Theorem 4.1. The black dashed curve is 30/N4, proportional to 1/Nκ−1 = 1/N2φ. (b) Odd degree coefficients

versus degrees for interpolation, the same function as employed in the previous figure, by means of 400 interpolation points

on the roots grid. To minimize aliasing contamination, only the coefficients up to degree 199 are plotted. Top (the blue

solid line): cIn, which are simultaneously the Chebyshev coefficients of v(x) and also the coefficients of u(x) in the quadratic

factor basis where v(x) = u(x)/(1 − x2). Middle (the red solid curve): coefficients bIn of the difference basis for u(x).

Bottom (the solid black curve): the Chebyshev coefficients aIN of the interpolant on the roots grid. The dashed lines are

proportional to 1/n3 (top/blue), 1/n4 (middle/red) and 1/n5 (bottom/black). The parameter φ = 2 while κ = 2φ+ 1 = 5

Plain classical Chebyshev interpolation, although not better than the other two basis sets in the L∞
norm, is superior because the pointwise Chebyshev interpolation is as bad as the norm only in boundary

layers whereas the quadratic factor and difference errors are as bad as the norm over the entire interval.

Figure 6(a) displays error norms instead of pointwise errors. The close agreement between the dashed

curves and the matching solid curves confirms the theoretical predictions given above.

6.3 Coefficients of interpolants

Figure 6(b) shows how the coefficients vary. Even though the errors of the difference basis and quadratic

factor basis interpolants are identical, their coefficients obey different power laws. The quadratic factor

coefficients cn decay more slowly by one order than the difference basis coefficients bn. The power laws for

all the three basis sets are the same as those for truncation of the infinite series, so no further discussion

will be given.

7 Least squares

Least squares is a third strategy that provides an alternative to the interpolation and truncation of infinite

series. Is it better? Is it worse? One complication is that least squares is actually a family of methods

because the approximation varies with the choice of the inner product.

The next two subsections describe the basic methods with and without Lagrange multipliers. In the

rest of this section, we shall analyze the least squares for three bases in turn. When the inner product

is integration over the interval, we shall show that least squares yields approximations different from the

interpolation and truncation for the constrained-to-vanish-at-the-endpoints basis sets.
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7.1 Least squares without Lagrange multipliers: The general basis

The goal of least squares is to minimize the “cost function”

J =
1

2
⟨u(x)− uN (x), u(x)− uN (x)⟩ , (7.1)

where

uN (x) =
N∑

n=0

dnϕn(x). (7.2)

For the moment, the choices of the inner product ⟨f(x), g(x)⟩ and the basis functions ϕn(x) are

unspecified.

Proposition 7.1. Suppose that the cost function and uN (x) are as above. Define an (N +1)× (N +1)

matrix G as the matrix with the elements

Gmn = ⟨ϕm(x), ϕn(x)⟩, m, n = 0, 1, . . . , N. (7.3)

Define f as the vector with elements

fn ≡ ⟨ϕn(x), u(x)⟩, n = 0, 1, . . . , N. (7.4)

Then uN (x) is the unique minimizer if and only if the spectral coefficients dn are the elements of the

(N + 1)-dimensional vector d which solves

Gd = f . (7.5)

Proof. Substitute the series into the cost function and apply the condition for a minimum that the

derivatives of the cost function with respect to the coefficients dj are all zero. This gives

∂J

∂dm
= 0 = −⟨u(x), ϕm(x)⟩+

N∑
n=0

dn⟨ϕm(x), ϕn(x)⟩, (7.6)

which is the linear algebra problem (7.5).

Let us suppose that the inner product is approximated by Gaussian quadrature with Ncol points. For

the Chebyshev weight,

⟨f(x), g(x)⟩ ≡
∫ 1

−1

1√
1− x2

f(x)g(x)dx ≈ ⟨f, g⟩Gq ≡ π

Ncol

Ncol∑
j=1

f(xj)g(xj),

xj = cos

(
2j − 1

2Ncol
π

)
, j = 1, 2, . . . , Ncol.

The quadrature approximation has all the properties to be an inner product, so we use ⟨· , · ⟩Gq as the inner

product in the rest of this subsection. This inner product varies from interpolation (when Ncol = N + 1

as explained below) to integration over the interval in the limit Ncol → ∞.

Define an Ncol × (N + 1) matrix H whose elements are

Hjn ≡ ϕn(xj), j = 1, 2, . . . , Ncol, n = 0, 1, . . . , N, (7.7)

and let u denote the vector whose elements are the samples of u(x), i.e.,

uj ≡ u(xj), j = 1, 2, . . . , Ncol. (7.8)

The interpolation problem is

HdI = u. (7.9)

Here, we have added a superscript to the vector of spectral coefficients because the solution to the

interpolation problem is not necessarily the same as the solution that minimizes J. Note that the matrix

problem is an overdetermined system, but still well-posed if Ncol > N + 1.
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Proposition 7.2. The solution d of the least squares with an inner product using Ncol = N + 1

quadrature points is identical to the solution dI to the (N +1)-point interpolation problem. The matrices

for least squares and interpolation are connected by

G =
π

Ncol
HTH, f =

π

Ncol
HTu. (7.10)

To prove this proposition, one can refer to the proof of [8, Theorem 16].

When the basis functions are orthogonal, the n-th element of the solution is independent of N so long

as N > n. The quadratic factor and difference basis are not orthogonal, and the solution elements depend

on N .

7.2 Lagrange multiplier theorem: The equality of minimizers

When a “cost” function J is to be minimized subject to the constraints Ψ = 0 and Ω = 0, it is very

convenient to convert the problem to the unconstrained minimization of the modified “cost” function

J = J + λΨ+ µΩ, (7.11)

where λ and µ are additional unknowns called “Lagrange multipliers”, and Ψ and Ω denote the boundary

constraints u(1) = 0 and u(−1) = 0, respectively. Take the original unknowns to be dj , and the conditions

for a minimum are

∂J

∂dj
= 0, j = 0, 1, . . . , N, (7.12)

∂J

∂λ
= Ψ = 0, (7.13)

∂J

∂µ
= Ω = 0. (7.14)

Here, the constraints are u(±1) = 0; expressed in terms of Chebyshev coefficients, these are

N∑
j=0

dj = 0 (⇔ u(1) = 0),

N∑
j=0

(−1)jdj = 0 (⇔ u(−1) = 0). (7.15)

Theorem 7.3. Consider two minimization problems.

(i) Suppose that uconN (x) is a solution to the cost function

J ≡ ⟨u(x)− uconN (x), u(x)− uconN (x)⟩, (7.16)

where uconN (x) is a polynomial of degree N constructed so that Ψ = 0 and Ω = 0, independent of the

remaining unknowns, are satisfied. For example,

uconN (x) =
N−2∑
n=0

bn {Tn+2(x)− Tn(x)} . (7.17)

(ii) Suppose that uN (x) is a solution to the cost function

J ≡ ⟨u(x)− uN (x), u(x)− uN (x)⟩+ λΨ+ µΩ, (7.18)

where uN (x) is a polynomial of degree N , to be an unconstrained-at-the-endpoints minimizer of the cost

function. Then the two solutions uconN (x) and uN (x) to the minimization problems J and J , respectively,

are identical.

Proof. Now the solution to the second minimization problem is forced to satisfy the constraint as well.

At the minimum, Ψ = Ω = 0, so the cost function reduces to

J ≡ ⟨u(x)− uN (x), u(x)− uN (x)⟩. (7.19)
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It follows that uN (x) and uconN (x) both minimize ⟨u(x)−uapproxN (x), u(x)−uapproxN (x)⟩, where uapproxN (x) is

either uN (x) or uconN (x). Therefore, uN (x) ̸= uconN (x) if and only if uapproxN (x) is not unique. However, the

cost function is quadratic in the unknowns. The gradient of the cost function is therefore a linear function

of the unknowns. The vanishing of its gradient implies it must have a unique solution. Therefore, the

solutions to both the minimization problems are identical.

The theorem shows that the imposition of the zeros at the endpoints by the Lagrange multiplier gives

nothing new when one represents uN (x) as a finite sum in either the difference basis or the quadratic

factor basis.

7.3 Splitting the least squares problem into two via parity

An arbitrary function can always be split into its parts which are symmetric with respect to reflection

about the origin, S(x), and antisymmetric with respect to reflection, A(x) (see [6, Chapter 8]). Symmetry

means S(−x) = S(x), ∀x ∈ Ω, while A(−x) = −A(x), ∀x ∈ Ω, where the Ω is the domain of a function.

The parts are S(x) = (u(x) + u(−x))/2 and A(x) = (u(x)− u(−x))/2.
If we apply this splitting to uN (x), the cost function becomes

J = JS + JA + λΨ+ µΥ, (7.20)

where

JS = ⟨S − SN , S − SN ⟩, JA = ⟨A−AN , A−AN ⟩.

Here, JS is a function of the even degree spectral coefficients only while JA is a function only of

{d1, d3, d5, . . .}. After expanding the integrand of the original cost function to

⟨(S − Sn), (S − Sn)⟩+ ⟨(A−An), (A−An)⟩+ ⟨(S − Sn), (A−An)⟩+ ⟨(A−An), (S − Sn)⟩,

we invoke the fact that the product of a symmetric function and an antisymmetric function is

antisymmetric; the integral of an antisymmetric function over a symmetric interval is always zero.

The cost function is not completely decoupled because the constraints depend on both even and

odd coefficients. However, both constraints are always zero at the solution. It follows that any linear

combination of the constraints is also a legitimate constraint. Define

Θ = (Ψ +Υ)/2 =
∑
n=0

d2n, χ = (Ψ−Υ)/2 =
∑
n=0

d2n+1. (7.21)

Least squares is now split into two completely independent problems. One is to minimize, using only

symmetric basis functions,

JS + λ′Θ (7.22)

and the other, using only basis functions antisymmetric with respect to the origin, is to minimize

JA + µ′χ. (7.23)

Since the methods of attack are similar for each, we shall only discuss the even parity problem in detail.

7.4 Unconstrained least squares with the quadratic factor basis

Define

vquad,LS
N−2 (x) =

N−2∑
n=0

cLS
n Tn(x), (7.24)

uquad,LS
N (x) =

N−2∑
n=0

cLS
n (1− x2)Tn(x) (7.25)
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and the cost function

J =
1

2
⟨u(x)− uquad,LS

N (x), u(x)− uquad,LS
N (x)⟩, (7.26)

and the definition of function v(x) is given in (2.8). Then

J =
1

2
⟨v(x)− vquad,LS(x), (1− x2)2v(x)− vquad,LS(x)⟩

=
1

2

∫ 1

−1

(v(x)− vquad,LS(x))2(1− x2)3/2dx. (7.27)

It follows that vquad,LS(x) is a standard polynomial approximation to v(x), but the weight function is

not the usual Chebyshev weight of 1/
√
1− x2 but rather (1 − x2)3/2. The orthogonal basis with this

weight is the set of Gegenbauer polynomials of order 2. The Gegenbauer polynomials are defined as those

polynomials satisfying the orthogonality condition∫ 1

−1

(1− x2)m−1/2Ĉm
n (x)Ĉm

k (x)dx = 0, k ̸= n, (7.28)

where the subscript is the degree of the polynomial and the polynomials are normalized so that Ĉm
n (1) = 1.

(Warning: this is not the standard textbook normalization, but is convenient for comparing rates of

convergence near the endpoints; we have added a caret to the symbol for the Gegenbauer polynomials to

emphasize this.)

The Gegenbauer coefficients are not equal to the Chebyshev coefficients. However, Theorem 6 of [10]

is a specialization of a theorem in proving a2n ∼ O(1/n2φ−1). Note that a2n’s are not the coefficients

of u(x) but rather are the coefficients of v(x) = u(x)/(1 − x2) which has branch points proportional

to (1 − x2)φ−1 ln(1 − x2) instead of (1 − x2)φ ln(1 − x2) when φ ∈ N; Theorem 2.3 must be applied

with φ → φ − 1 so that the coefficients of v(x) decrease more slowly than those of u(x) by a factor of

1/n2. The error near the endpoints is one order worse than the rate of convergence of the coefficients.

For φ /∈ N and ϑ ∈ N+, by [33, Corollary 3.4], the coefficients decay rate of the standard Gegenbauer

polynomials (Cm
n (x) without the caret) expansion for the function (1−x2)φ−1 lnϑ(1−x2) is proportional to

O(lnϑ(n)/n2φ+2m−2). By the equality Cm
n (x) = Γ(n+2m)

Γ(2m)Γ(n+1) Ĉ
m
n (x), it is easy to see that the normalized

Gegenbauer coefficients decay as

a2n ∼ lnϑ(n)/n2φ−1, n≫ 1. (7.29)

The N -term truncation of the Gegenbauer series has an L∞ error norm for v(x) of O(lnϑ(N)/N2φ−2).

Lemma 3.1 allows us to convert the asymptotic behavior of the Gegenbauer coefficients into a bound on

the slowness of the rate of convergence of the error norm.

Theorem 7.4. Suppose that the coefficients amn of a spectral series in Gegenbauer polynomials Ĉm
n (x)

or Chebyshev polynomials Tn(x) (m = 0) satisfy the bound

|amn | 6W
lnϑ(n)

nκ
, ∀n > 1, fixed m, ϑ ∈ N, and κ > 1, (7.30)

where W is a positive constant. Then the error in truncating the spectral series after the N -th term

satisfies the inequality

∣∣∣∣v(x)− N∑
n=0

amn Ĉ
m
n (x)

∣∣∣∣ 6W
lnϑ(N)

(κ− 1)Nκ−1
. (7.31)

Proof. By the Baszenski-Delvos Lemma 3.1, the theorem is easy to be proved.
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The theorem (combined with Tuan and Elliott’s theorem [28] for Gegenbauer coefficients) yields the

maximum pointwise error for v(x). The error for u(x) ≡ (1− x2)v(x) is

Eu
N (x) =

∞∑
n=N+1

a2n(1− x2)Ĉ2
n(x). (7.32)

To proceed further, we need two additional lemmas.

Lemma 7.5 (Gegenbauer as Chebyshev derivative). Normalize the Gegenbauer polynomials so that

each is one at the right endpoint. Then

Ĉk
n−k(x) =

1∏k−1
j=0

n2−j2

2j+1

dkTn(x)

dxk
. (7.33)

Proof. It has long been known (see [22, Subsection 18.9.19, p. 446]) that the k-th derivative of a

Gegenbauer polynomial Ĉm
n (x) is proportional to Ĉm+k

n−k (x). It only remains to deduce the proportionality

constant. Since the Gegenbauer polynomials are normalized to be one at the right endpoint, this constant

must be the reciprocal of the value of the derivative at the origin which is known analytically to be (see [6,

Appendix A])

dkTn(x)

dxk

∣∣∣∣
x=1

=
k−1∏
j=0

n2 − j2

2j + 1
. (7.34)

This completes the proof.

Applying Lemma 7.5, we see that the error (7.32) in the variational approximation of u(x) is

transformed to

Eu
N (x) =

∞∑
n=N+1

a2n(1− x2)
3

(n+ 2)2((n+ 2)2 − 1)

d2Tn+2(x)

dx2
. (7.35)

Bernstein [2] proved the following elegant theorem in a paper written in French. Here, Pn denotes the

space of all the polynomials whose degrees are not more than n.

Theorem 7.6 (Bernstein polynomial derivative bound). If P (x) is a polynomial of degree less than or

equal to n in Pn, then for k 6 n and x ∈ [−1, 1],∣∣∣∣dkP (x)dxk

∣∣∣∣ 6 B(k)
n ∥P (x)∥∞, (7.36)

where

B(k)
n = sup

P
{|P (k)(x)| : ∥P∥∞ 6 1 and P ∈ Pn}.

Moreover, when n is large, for x ∈ (−1, 1),

B(k)
n ≃

(
n√

1− x2

)k

, n→ ∞. (7.37)

In this theorem, the inequality holds with increasing precision in the asymptotic limit of increasing

degrees. A complete proof in English was given by Whitley [32].

Multiplying the equation (7.36) by (1− x2) and taking k = 2 and P (x) = Tn(x) give∣∣∣∣(1− x2)
d2Tn(x)

dx2

∣∣∣∣ 6 (1 + c)n2, n→ ∞, (7.38)

where the small parameter satisfies 0 < c < 1. It is easy to prove that

(1− x2)
d2Tn(x)

dx2
= n(nTn(x)− xUn−1(x)). (7.39)

Thus, when n ∈ N and n > 2, it holds that∣∣∣∣(1− x2)
d2Tn(x)

dx2

∣∣∣∣ 6 2n2, x ∈ [−1, 1]. (7.40)
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Theorem 7.7 (Error bound for u(x) in the least squares/quadratic factor basis). The error Eu
N (x)

in the degree N approximation in the quadratic factor basis using least squares with the inner product

⟨f(x), g(x)⟩ =
∫ 1

−1
f(x)g(x)dx satisfies the inequality

|Eu
N (x)| 6 6

W

2φ

lnϑ(N)

N2φ
. (7.41)

Proof. To prove this theorem, we use (7.35) again:

Eu
N (x) =

∞∑
n=N+1

a2n
3

(n+ 2)2((n+ 2)2 − 1)
(1− x2)

d2Tn+2(x)

dx2
.

Recall that we previously demonstrated that a2n’s are proportional to lnϑ(n)/n2φ−1 in (7.29). Applying

the bound on the second derivative of the Chebyshev polynomials (7.38), we see that the error bound is

transformed to

|Eu
N (x)| 6 W

∞∑
n=N+1

lnϑ(n)

n2φ−1

6

(n+ 2)2((n+ 2)2 − 1)
(n+ 2)2 6 6W

∞∑
n=N+1

lnϑ(n)

n2φ−1+2
.

Applying Lemma 3.1 with k = 2φ+ 1 proves the theorem.

By (7.37), it is not hard to see that when N is large, one can obtain a sharper estimate

|Eu
N (x)| 6 (3 + c)

W

2φ

lnϑ(N)

N2φ
, N → ∞, (7.42)

where c is a small parameter in (0, 1).

7.5 Least squares with the difference basis

In this basis, the square matrix G has elements

Gmn = ⟨T2m(x)− T2m−2(x), T2n(x)− T2n−2(x)⟩

=


π, m = n > 3,

3π/2, m = n = 1,

−π/2, m = n+ 1,

−π/2, n = m+ 1,

m = 1, 2, . . . , n = 1, 2, . . . (7.43)

Thus, the 6× 6 case is

2

π
G =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(7.44)

and with an denoting Chebyshev coefficients of the usual infinite series, unconstrained to vanish at the

endpoints,

2

π
f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 − 2a0

a4 − a2

a6 − a4

a8 − a6

a10 − a8

a12 − a10

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (7.45)
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Because of its sparsity, the matrix equation Gd = f , with the bLS
2n now denoting the elements of d, can

be written as the difference system

3bLS
0 − bLS

2 = a2 − 2a0, (7.46)

−bLS
2n−2 + 2bLS

2n − bLS
2n+2 = a2n+2 − a2n, n = 1, 2, . . . , (N − 2), (7.47)

−bLS
2N−4 + 2bLS

2N−2 = a2N − a2N−2. (7.48)

The solution is

bLS
2n = − 1− n/N

1 + 1/(2N)

n∑
m=0

a2m +
n+ 1/2

N + 1/2

N∑
m=n+1

a2m, n = 0, . . . , (N − 1).

The infinite series limit, already analyzed in Section 2, is

lim
N→∞, fixed n

b2n = −
n∑

m=0

a2m, n = 0, . . . ,∞.

If both n and N are large but finite, the solution is simplified to

bLS
2n = −

(
1− n

N

) n∑
m=0

a2m +
n

N

N∑
m=n+1

a2m, n = 0, . . . , (N − 1).

Now the Chebyshev coefficients of u(x) must satisfy the condition u(1) = 0 which demands

n∑
m=0

a2m = −
∞∑

m=n+1

a2m. (7.49)

Similarly, the second sum in bLS
2n can be rewritten in terms of infinite summations as

N∑
m=n+1

a2m =
∞∑

m=n+1

a2m −
∞∑

m=N+1

a2m. (7.50)

Then

bLS
2n =

(
1− n

N

) ∞∑
m=n+1

a2m +
n

N

∞∑
m=n+1

a2m − n

N

∞∑
m=N+1

a2m,

bLS
2n =

∞∑
m=n+1

a2m − n

N

∞∑
m=N+1

a2m.

Recall from Lemma 3.1 that (3.4) is equivalent to

∞∑
n=N+1

lnϑ(n)

(2n)κ
∼ 1

(κ− 1)Nκ−1

lnϑ(N)

2κ

{
1 +O

(
1

N

)}
, ϑ ∈ N. (7.51)

If an ∼ O(lnϑ(n)/nκ), then

bLS
2n ∼ A

(κ− 1)

1

2κ

{
lnϑ(n)

nκ−1
− n

N

lnϑ(N)

Nκ−1

}
∼ A lnϑ(n)

(κ− 1)nκ−1

1

2κ

{
1− nκ

Nκ

lnϑ(N)

lnϑ(n)

}
. (7.52)

The coefficients in the infinite series are bLS
2n ∼ O(lnϑ(n)/nκ−1), which is the same power law of the

rate of decay as that for its least squares counterparts. However, the least squares coefficients—but not

the infinite series coefficients—are lnϑ(n)/nκ multiplied by (1 − ( n
N )κ lnϑ(N)

lnϑ(n)
). On a log-log plot, bLS

2n

curves sharply downward as n→ N .
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7.6 Least squares for Chebyshev series with Lagrange multipliers

If a constraint is not built-in to the approximation uN (x), it can alternatively be added by means of a

Lagrange multiplier. The goal is to enforce two boundary conditions, but a function can always be split

by parity and then only one constraint for each symmetry is needed.

The goal of least squares is to minimize the “cost function”

J =
1

2
⟨u(x)− SN (x), u(x)− SN (x)⟩+ λΨ, (7.53)

where, for the even parity case,

SN (x) =
N∑

n=0

aLS
2n T2n(x), Ψ =

N∑
n=0

aLS
2n . (7.54)

Setting the gradients of the cost function with respect to all the unknowns gives

∂J

∂λ
= Ψ = 0, (7.55)

which merely insists that the constraint be satisfied, and also

∂J

∂aLS
2m

= 0 = λ− ⟨u(x), T2m(x)⟩+
N∑

n=0

aLS
2n ⟨T2m(x), T2n(x)⟩. (7.56)

Because of orthogonality of the Chebyshev polynomials and using the identities ⟨T0(x), T0(x)⟩ = π and

⟨T2n(x), T2n(x)⟩ = π/2 for n > 1, we have that the equations are simplified to

λ = ⟨u(x), T0(x)⟩ − aLS
0 π, λ = ⟨u(x), T2n(x)⟩ − aLS

2n π/2, n > 1. (7.57)

Let an denote the Chebyshev coefficients of the infinite series for u(x). Recall that a0 = 1
π ⟨u(x), T0(x)⟩

and a2n = 2
π ⟨u(x), T2n(x)⟩. Then

1

π
λ = a0 − aLS

0 ,
2

π
λ = a2n − aLS

2n , n > 1. (7.58)

Adding these equations and then invoking Ψ = 0 gives

λ =
π

(2N + 1)

N∑
n=0

a2n. (7.59)

The Chebyshev coefficients of the solution to the variational problem are then

aLS
0 = − 1

π
λ+ a0, aLS

2n = − 2

π
λ+ a2n, n > 1. (7.60)

If the a2n ∼ A lnϑ(2n)/(2n)κ (κ > 0, ϑ ∈ N) as demanded by Theorem 2.3, then the error at the

endpoints is

Υ ≡
N∑

n=0

a2n = −
∞∑

n=N+1

a2n ≈ O
(
lnϑ(N)

Nκ−1

)
, (7.61)

the same as the L∞ error norm of the Chebyshev series. (The error norm in fact is Υ for some of our

exemplary u(x).) It follows that

λ ∼ O(lnϑ(N)/Nκ), ϑ ∈ N. (7.62)

It is deserving to point out that the least squares approximation varies with the choice of the weight

function. The Chebyshev weight function above is selected as (1 − x2)−1/2 for any of the three bases.

However, only the Chebyshev basis is orthogonal with the weight function, and the other two are

not. Next, the weight functions to make the difference basis and the quadratic basis orthogonal are,

respectively, given in this subsection.



216 Zhang X L et al. Sci China Math January 2023 Vol. 66 No. 1

Theorem 7.8. If the weight function is chosen as (1 − x2)−3/2, then the difference basis {ςn(x)} is

orthogonal, i.e., ∫ 1

−1

ςm(x)ςn(x)(1− x2)−
3
2 dx = 2πδmn, m, n = 0, 1, . . . (7.63)

Proof. It holds that∫ 1

−1

ςn(x)ςm(x)(1− x2)−
3
2 dx =

∫ π

0

[cos((n+ 2)t)− cos(nt)] · [cos((m+ 2)t)− cos(mt)]
1

sin2(t)
dt

= 4

∫ π

0

sin[(m+ 1)t] sin(t) · sin[(n+ 1)t] sin(t) · 1

sin2(t)
dt

= 4

∫ π

0

sin[(m+ 1)t] · sin[(n+ 1)t]dt

= 2πδmn.

This completes the proof.

Following the steps of least squares in Subsection 7.1, like (7.5), for the difference basis with the weight

function (1− x2)−3/2, one obtains

G̃d̃ = f̃ , (7.64)

where

G̃mn = ⟨ςm(x), ςn(x)⟩ =
∫ 1

−1

ςn(x)ςm(x)(1− x2)−
3
2 dx

= 4

∫ π

0

sin[(m+ 1)t] · sin[(n+ 1)t]dt

≈ 4 · π

Ncol

Ncol∑
k=0

sin

(
(m+ 1)

(2k − 1)π

2Ncol

)
sin

(
(n+ 1)

(2k − 1)π

Ncol

)
= 4 · π

Ncol
· Ncol

2
δmn = 2πδmn, m, n = 0, 1, . . . , N, Ncol > N + 1,

which is a consequence of the orthogonality of the sine function with respect to the points tk = π(2k−1)
Ncol

,

k = 1, 2, . . . , Ncol,

Ncol∑
k=1

sin

(
(m+ 1)

(2k − 1)π

2Ncol

)
sin

(
(n+ 1)

(2k − 1)π

2Ncol

)
=
Ncol

2
δmn

and

f̃n = ⟨u(x), ςn(x)⟩ =
∫ 1

−1

ςn(x)u(x)(1− x2)−
3
2 dx

=

∫ π

0

ςn(cos(t))u(cos(t)) ·
1

sin2(t)
dt

≈ π

Ncol

Ncol∑
k=1

ςn

(
cos

(
2k − 1

2Ncol
π

))
u

(
cos

(
2k − 1

2Ncol
π

))
· sin−2

(
2k − 1

2Ncol
π

)
.

When the number of the interpolation Ncol is bigger than the number of the basis N+1, the coefficients

of the difference basis decrease as O(lnϑ(n)/n2φ) as n→ ∞, which obeys the same law of the counterpart

coefficients in infinite series truncation as is shown in Figure 2. There is no curl up or curl down as

n→ N . Thus the error norm is also the same as the error norm of the infinite series truncation.

In fact, to approximate the function u(x), using the difference basis ςn(x) with the weight function

(1−x2)−3/2 is equivalent to using the second Chebyshev function Un(x) with the weight function
√
1− x2.
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Theorem 7.9. If the weight function is chosen as (1 − x2)−5/2, then the quadratic basis {ϱn(x)} is

orthogonal, i.e.,

∫ 1

−1

ϱm(x)ϱn(x)(1− x2)−
5
2 dx =

π, m = n = 0,

1

2
πδmn, m, n ∈ N+.

(7.65)

The theorem is easy to be proved. In a way similar to the procedure of least squares for the difference

basis with the weight function (1−x2)−3/2, one can also conclude that the least squares coefficients for the

quadratic basis with the weight function (1− x2)−5/2 decrease as O(A(n)/n2φ−1) as n → ∞. The error

decreases as O(|A(N)|/N2φ−1), which is also the same as the error of the infinite series truncation for

the same basis. In the rest of this paper, we still use the inner product ⟨·, ·⟩ mentioned in Subsection 7.1.

8 Comparing different approximations using the difference basis

The spectral coefficients and error norms are so similar that the most illuminating way to compare them

is to tabulate ratios. Table 1 shows that when n≪ N , bn ≈ bIn ≈ bLS
n . When n nears N , the interpolation

coefficients swell to nearly double those of the infinite series while bLS ≪ bn.

We compare the ratio of error norms in Table 2. Least squares with integration as the inner product

is only slightly worse than the truncation of the infinite series (less than 10%). The maximum pointwise

error for interpolation is roughly double that of truncation of the infinite series, independent of N .

9 Comparing different quadratic factor basis approximations

Figure 7(a) shows that the coefficients of all the three approximation schemes in the basis ϱn(x) =

(1−x2)Tn(x) have the same slope, 1/n2φ−1, over most of the range in degree. The interpolant’s coefficients

and those obtained by least squares with the inner product

⟨f(x), g(x)⟩ =
∫ 1

−1

f(x)g(x)/
√

1− x2dx

both bend sharply downward as n→ N .

How do these fast-tail decreases affect the error norms? Figure 7(b) provides an answer.

The aliasing error, which produces the downward curve in the spectral coefficients for interpolation in

Figure 7, is generally regarded as a bad thing. Therefore, the even sharper deviation from a power law

for the least squares coefficients should be an even worse thing. Actually, the error norms associated with

the downward curving spectral coefficients decrease faster by O(N) than the error norm of the truncated

infinite series with its pure power law (the black straight line in Figure 7(a)).

We have no explanation. However, note that some acceleration methods such as Euler acceleration

[9,21,23] taper the high degree coefficients to improve accuracy. Something similar seems to be happening

with aliased spectral series.

Table 1 Coefficient ratios for the difference basis, ςn = Tn+2(x) − Tn(x), for (1 + x/2)(1− x2)φ ln(1 − x2)ϑ with ϑ = 1

and φ = 2. bn’s are the coefficients in the infinite series, bIn’s are the coefficients of the interpolant using 100 collocation

points and bLS
n ’s are the result of least squares with integration as the inner product

n 10 20 30 40 50 60 70 80 90 92 94 96 98 99

bIn/bn 1.00 1.00 1.00 1.00 1.01 1.03 1.08 1.19 1.43 1.51 1.60 1.71 1.83 1.900

bLS
n /bn 1.00 1.00 1.00 0.99 0.97 0.93 0.85 0.71 0.47 0.40 0.34 0.26 0.18 0.095
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Table 2 The function and basis are the same as in the previous table except that the ratios are now of errors in the L∞
norm, and these are listed versus the truncation N rather than degree n

N 10 20 30 40 50 60 70 80 90 100

Einterp
N /EN 1.98 1.96 1.96 1.97 1.94 1.93 1.98 1.98 1.96 1.85

ELS
N /EN 0.96 1.03 1.06 1.07 1.08 1.09 1.07 1.09 1.04 1.07
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Figure 7 (Color online) (a) Odd degree coefficients versus degrees for approximations using the quadratic factor basis

for u(x) = (1 + x/2)(1 − x2)2 ln(1 − x2), the same function as employed in the previous figure, and N = 80. The thick

black curve is the coefficients cn of the infinite series. The thin red curve connects the absolute values of the coefficients

of the 79-point interpolant in the quadratic factor basis. The blue dotted curve is the coefficients of least squares with

the integral inner product. The black dashed line is proportional to nκ−2. (b) Quadratic factor basis, the same as in the

previous figure but showing error norms versus N instead of coefficients versus n. Black dashed circles: errors in truncation

of the infinite series in the basis ϱn(x). The red curve: errors in interpolation. The blue solid curve: errors of least squares

approximations. The blue dash reference line is proportional to N−4

10 Conclusion

The concern of this paper is to address the Chebyshev expansion of the weak singularity functions on

three bases, both theoretically and computationally. The main results are concluded in the following.

1. The coefficients and errors of several kinds of approximations are summarized in Table 3.

2. There are two distinct interpolants on the roots grid, but the interpolant on the Lobatto (endpoint-

including) grid is always unique.

3. The error norms in N -point interpolation on the roots grid are identical for all the three basis sets,

i.e.,

ErrorCheb,Lob,I
N = Errordiff,Lob,I

N = Errorquad,Lob,IN ∼ O(|A(N)|/N2φ). (10.1)

4. The pointwise errors for interpolation using the quadratic factor basis and the difference basis are

identical for all x because udiffN (x) = uquadN (x) for all x.

5. The pointwise error in standard Chebyshev interpolation, unconstrained by uN (±1) = 0, is different

from the errors (not error norms) of the constrained basis sets, the quadratic factor basis and the difference

basis; the errors of the constrained basis sets are nearly-uniform in x whereas the Chebyshev error is one

order smaller than that of the constrained bases except in narrow boundary layers where the Chebyshev

error rises to equal that of the constrained bases.

6. If the Chebyshev coefficients decay as an ∼ A lnϑ(n)/nκ where A is a constant, ϑ is a nonnegative

integer and κ > 0, then



Zhang X L et al. Sci China Math January 2023 Vol. 66 No. 1 219

Table 3 Results for (1 − x2)φ lnϑ(1 − x2) with φ > 1
2

and ϑ ∈ N. The labels “u” and “d”, respectively, denote that

the coefficients an curl up or curl down as n → N , deviating from the correct asymptotic line because of aliasing errors

as described in Theorem 5.2. The expression of A(n) is given in Theorem 2.3. TS, IT, LS, and B.C.s represent Truncated

Series, Interpolation, Least Squares and Boundary Conditions, respectively

Bases Chebyshev Difference Quadratic Chebyshev Lagrange

TS: Coeffs an ∼ A(n)/n2φ+1 bn ∼ A(n)/n2φ cn ∼ −A(n)/n2φ−1 -

TS: Errors |A(N)|/N2φ |A(N)|/N2φ |A(N)|/N2φ−1 -

IT: Coeffs aIn ∼ A(n)/n2φ+1 (d) bIn ∼ A(n)/n2φ (u) cIn ∼ −A(n)/n2φ−1 (d) -

IT: Errors |A(N)|/N2φ |A(N)|/N2φ |A(N)|/N2φ -

LS: Coeffs aLS
n ∼ A(n)/n2φ+1 bLS

n ∼ A(n)/n2φ (d) cLS
n ∼ −A(n)/n2φ−1 (d) aCL

n ∼ A(n)/n2φ+1

LS: Errors |A(N)|/N2φ |A(N)|/N2φ |A(N)|/N2φ |A(N)|/N2φ

B.C.s Not imposed Satisfied Satisfied Imposed by

Lagrange a multiplier

(a) For small degree n (1 < n≪ N), the relative error in the Chebyshev coefficient is

|En|
|an|

6 1

2κ−1

nκ

Nκ

lnϑ(N)

lnϑ(n)
. (10.2)

(b) For n = N −m with m being small, the relative error is

|EN−m|
|aN−m|

∼ 1 +O
(
κm

N

)
. (10.3)

When ϑ = 0, aIn is plotted versus n with logarithmic axes, and as a result the curve on the log-log plot

should, for power-law decay, approach a straight line. The aliasing errors create a sharp downward turn

in aIn as n→ N . (The coefficients for the difference basis exhibit a sharp upturn for similar reasons.)

7. The values of the derivatives at the endpoints are O(n2) for Chebyshev polynomials, but only O(n)

for the difference basis.

The most important conclusion is that those different choices of approximation schemes and bases

can alter the rate of convergence by a factor of N or N2. For series that converge proportionally to

small inverse powers of N due to weak endpoint singularities, this is significant. Knowing how to solve

the singular problems using spectral methods is important, but giving the optimal basis seems more

practically significant, especially in high-dimensional spaces.
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