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ABSTRACT

Allelic diversity in the wild grass Aegilops tauschii is vastly greater than that in the D genome
of common wheat (Triticum aestivum), of which Ae. tauschii is the source. Since the 1980s,
there have been numerous efforts to harness a much larger share of Ae. tauschii’s extensive
and highly variable gene pool for wheat improvement. Those efforts have followed two
distinct approaches: production of amphiploids, known as “synthetic hexaploids,” between
T. turgidum and Ae. tauschii, and direct hybridization between T. aestivum and Ae. tauschii;
both approaches then involve backcrossing to T. aestivum. Both synthetic hexaploid
production and direct hybridization have led to the transfer of numerous new genes into
common wheat that confer improvements in many traits. This work has led to release of
improved cultivars in China, the United States, and many other countries. Each approach to
D-genome improvement has advantages and disadvantages. For example, production of
synthetic hexaploids can incorporate useful germplasm from both T. turgidum and Ae.
tauschii, thereby enhancing the A, B, and D genomes; on the other hand, direct hybridization

Wheat breeding rapidly restores the recurrent parent’s A and B genomes and avoids incorporation of genes
with adverse effects on threshability, hybrid necrosis, vernalization response, milling and
baking quality, and other traits, which are often transferred when T. turgidum is used as a
parent. Choice of method will depend in part on the type of wheat being developed and the
target environment. However, more extensive use of the so-far underexploited direct

hybridization approach is especially warranted.
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1. Introduction

In the seven decades since Kihara [1] and McFadden and Sears
[2] demonstrated that hexaploid wheat (Triticum aestivum L.,
genomic constitution AABBDD) arose as a natural amphiploid
between the tetraploid wheat species T. turgidum L. (AABB)
and the diploid grass Aegilops tauschii Coss. (DD), evidence has
accumulated that common wheat is not monophyletic. That
is, at the time of wheat’s origin 8000 years ago, the formation
of more than one interspecific amphiploid contributed to
formation of wheat [3]. Although we can never know the
precise number of hybridizations that were at the root of the
hexaploid wheat gene pool, we know that they occurred
within a small geographic range and that a very limited
proportion of Ae. tauschii’s total diversity was incorporated
into common wheat at that time.

For example, by analyzing more than 7000 single-nucleotide
polymorphisms (SNP) in the Ae. tauschii genome, Wang et al. [4]
showed that a very narrow portion of the Ae. tauschii gene pool
accounts for the parentage of T. aestivum’s D genome. Whereas
the geographical range of the 402 Ae. tauschii accessions
analyzed stretched almost 4000 km from Georgia, Turkey, and
Syria in the west to China in the east, accessions with the
shortest genetic distance to hexaploid wheat all had geograph-
ical origins in a small sector of northwestern Iran, along 300 km
of its Caspian seacoast.

In accord with the narrow sampling of D-genome diversity
that occurred at the time common wheat originated, there is
ample evidence that genetic diversity within wheat’s D
genome, which was derived from Ae. tauschii, is much lower
than the diversity found in collections of Ae. tauschii germ-
plasm. Numerous studies covering more than a quarter
century have found that allelic diversity in the D genome of
Ae. tauschii is vastly greater than that in the D genome of
wheat. Studies using various DNA markers, endosperm
storage proteins, and enzyme variation have all reached that
conclusion [4-8]. Diversity in wheat’s D genome is also lower
than in its A and B genomes [9].

Ae. tauschii germplasm collections have been screened
extensively for phenotypic traits as well, with the strongest
focus on resistance to pathogens and pests. Variation was
found for many such traits, and much work has been done to
transfer some of the genes responsible into wheat. Ogbonnaya
et al. [10] and Gill et al. [11] provided lists of the numerous
genetic transfers that have been accomplished, with gene
designations, names of germplasm releases, pedigrees, and
other details. Nevertheless, the bulk of the genetic variation
within the species Ae. tauschii has remained isolated from
wheat and therefore has not been evaluated in the hexaploid
background.

2. Approaches to introducing Ae. tauschii germ-
plasm into the hexaploid gene pool

Two approaches to use Ae. tauschii for improvement of common
wheat have been used. In the “synthetic hexaploid” approach, a
triploid ABD hybrid between T. turgidum and Ae. tauschii is
formed, and either its chromosome number is doubled with a
mitotic agent, or it spontaneously produces hexaploid seeds
through the formation and union of unreduced gametes to
produce an AABBDD hexaploid (Fig. 1) [12,13]. This was the
procedure followed by McFadden and Sears [2] when they
demonstrated the process by which T. aestivum originated. In
the second approach, usually termed “direct hybridization,”
T. aestivum plants are pollinated by Ae. tauschii, the resulting
embryos are rescued, and those ABDD F; plants are backcrossed
to T. aestivum (Fig. 2). The resulting BC; population segregates
for chromosome number. Stable 42-chromosome AABBDD
progeny are obtained through selfing or a second backcross [14].

These initial steps in the two approaches produce plant
populations that can be screened for traits or markers of
interest, and selected plants can be used as parental germ-
plasm in further crosses with common wheat. Typically,
synthetic hexaploids have been crossed and then backcrossed

T. turgidum X Ae. tauschii
AABB i DD

F,(ABD)

/

Synthetic hexaploid
AABBDD

X T aestivum
AABBDD

F, X T. aestivum

AABBDD .
2
Synthetic backcross lines

Fig. 1 - Procedure for producing synthetic hexaploids and
synthetic backcross lines. The synthetic/Triticum aestivum F,
plant carries one set each of A- and B-genome chromosomes
from T. turgidum (gray), one set of D-genome chromosomes
from Aegilops tauschii (gray), and one set each of A-, B-, and
D-genome chromosomes from T. aestivum (black). Therefore,
alleles from both donor species, whether they are advanta-
geous or deleterious, will be segregating throughout all three
genomes in selfed progeny of the F, plant.
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T. aestivum Ae. tauschii
AABBDD / DD
T. aestivum
BC, 1
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Total 49 43 41 42
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Fig. 2 - Procedure for direct hybridization and introgression
between Triticum aestivum and Aegilops tauschii. All BC, plants
carry the full complement of the T. aestivum parent’s A- and
B-genome chromosomes (black), and they carry varying
numbers of D-genome chromsomes from Ae. tauschii (gray).
BC; plants with 49 chromosomes result from formation of
unreduced female gametes in the F, plant; they carry three sets
of D-genome chromosomes, two of them from T. aestivum.
Numbers and origins of D-genome chromosomes carried by
other BC; plants depend upon recombination and transmis-
sion during gamete formation in the F, plant. An expected
70%-75% of the D genome and 100% of the A and B genomes in
BC; plants are derived from T. aestivum. When BC, plants are
crossed to T. aestivum, the bulk of the progeny have 42
chromosomes. Therefore, direct hybridization allows intro-
gression of target genes into only one of T. aestivum’s three
genomes with only two backcrosses.

or topcrossed to elite wheat cultivars or breeding lines to
produce populations of “synthetic backcross lines” (SBLs)
from which breeding lines, or in some cases cultivars, have
been selected [10,13,15]. With direct hybridization, BC,Fy, or
more often BC,Fy, selections are generally moved directly into
breeding programs for use as parents [11].

Although both approaches have been used by many wheat
research groups over the decades, different programs have
employed them to different extents. Of the more than 1500
synthetic hexaploids that have been produced, more than
1300 were developed and released by the International Maize
and Wheat Improvement Center (CIMMYT), which has also
produced numerous large populations of SBLs [10,12]. Most
synthetic hexaploids have had spring-type growth habit,
thanks to genes contributed by their T. turgidum parents. The
largest output of germplasm from direct hybridization has
come from Kansas State University’s Wheat Genetics Re-
source Center [11], and it has been of winter-type growth
habit. Synthetic hexaploids, and to a lesser extent direct
hybridization, have been used by breeding programs in China
for more than 25 years [15,16].

Thanks to CIMMYT’s energetic efforts, dating back to the
1980s, to produce and utilize synthetic hexaploids, along with

its strong international wheat-breeding networks, synthetic
hexaploids have been more widely studied by wheat scien-
tists and used as parents by wheat breeders than have the
products of direct hybridization. But even after extensive
germplasm development using both approaches, much more
D-genome diversity remains to be exploited. Cluster analysis
based on microsatellite data has shown that the development
of the synthetic hexaploid collection left large portions of the
Ae. tauschii gene pool, including a large lineage that was not
involved in the origin of hexaploid wheat, unsampled [17].

We will now examine the contributions that synthetic
hexaploid generation and direct hybridization have so far made
to wheat improvement, the advantages and disadvantages of
using each method in future wheat improvement, and prospects
for renewed utilization of both approaches in the future to
further improve the D genome of wheat.

3. Useful genes transferred from Ae. tauschii via
synthetic hexaploids and direct hybridization

Many genes conferring resistance to pathogens and pests have
been transferred into hexaploid wheat from Ae. tauschii. Both
production of synthetic hexaploids and direct hybridization
brought wide arrays of resistances into wheat, with transfers of
multiple distinct genes in the case of several traits. Table 1 lists
resistances to three insect species, two nematodes, and five
fungal pathogens that were transferred from Ae. tauschii through
synthetic hexaploids. Resistances to two insect species, two
viruses, and five fungal pathogens have been transferred
through direct hybridization. The resistances listed in Table 1
for synthetic hexaploids do not include those conferred by
genes derived from T. turgidum or those for which the
chromosomal locations of genes responsible are not yet
known and that therefore may have come from T. turgidum.
The number of items in this list is therefore conservative.

Introgression into the D genome has also had positive
effects on traits related to grain productivity and end-use
quality (Table 2). Here, improvements have been accom-
plished more often through the synthetic hexaploid route
than through direct hybridization, in part reflecting the
much larger global efforts in germplasm development,
evaluation, and research that have gone into the former
approach.

Both approaches have had significant impact on wheat
genetics and breeding. Synthetic hexaploids have been used
in evaluation, genetic studies, and/or as breeding parents at
CIMMYT and the International Center for Agricultural Re-
search in the Dry Areas (ICARDA) stations around the world
and by other organizations in Australia, France, Japan,
Mexico, Netherlands, the United Kingdom, the United States,
and other countries [7,29,46,47,57,62,63], but perhaps the
strongest impact on cultivar development has been in China,
especially in Sichuan Province, where a series of high-yielding
cultivars derived from synthetic backcross lines have been
released, starting with the highly successful Chuanmai 42 in
2003 [13,15].

Meanwhile, Wheat Genetics Resource Center germplasm
lines derived from direct T. aestivum/Ae. tauschii crosses have
been widely used as parents by winter wheat breeders in the
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Table 1 - Pathogen- and pest-resistance traits that have been improved in hexaploid wheat through introduction of genes

from Aegilops tauschii, through either Triticum turgidum/Ae. tauschii synthetic hexaploid production or through direct

hybridization between T. aestivum and Ae. tauschii.

Approach Trait Selected reference

Synthetic hexaploid Hessian fly Xu et al. [18]
Greenbug Joppa and Williams [19], Porter et al. [20], Lazar et al. [21]
Cereal leaf beetle Joukhadar et al. [22]
Cereal cyst nematode Eastwood et al. [23], Mulki et al. [24]
Root lesion nematode Mulki et al. [24]
Stem rust Kerber and Dyck [25], Marais et al. [26]
Yellow rust Singh et al. [27]
Septoria leaf blotch Mujeeb-Kazi et al. [28], Ghaffary et al. [29]
Powdery mildew Lutz et al. [30]
Karnal bunt Mujeeb-Kazi et al. [31]

Direct hybridization Hessian fly Raupp et al. [32], Cox and Hatchett [33]
Greenbug Gill et al. [34]

Soilborne mosaic virus

Wheat spindle streak mosaic virus
Leaf rust, seedling and adult
Powdery mildew

Septoria leaf blotch

Stagonospora blotch

Tan spot

Gill et al. [35], Cox et al. [36]

Cox et al. [36]

Dyck et al. [37], Kerber [38], Raupp et al. [39], Cox et al. [40,41]
Cox et al. [36], Murphy et al. [42,43]; Yang et al. [16]

Gill et al. [11]

Cox et al. [44]

Brown-Guedira et al. [45]

United States and elsewhere. By 2005, such parents were in
the pedigrees of 25% of elite hard winter wheat lines being
tested in the U.S. Department of Agriculture-coordinated
Southern Regional Performance Nursery [11]. From 1999 to
2011, 19 cultivars released by 11 breeding programs in the
region had Ae. tauschii-derived germplasm in their pedigrees.

4. Advantages and disadvantages of the synthetic-
hexaploid approach

T. turgidum and other tetraploid wheats can easily be
hybridized with Ae. tauschii, and chromosome doubling either
happens spontaneously or can be reliably induced [12,13]. The
resulting synthetic hexaploid carries the entire genome of the
Ae. tauschil parent, is meiotically stable, and can be crossed
and backcrossed with any hexaploid wheat to produce large,
fully fertile recombinant populations [12,15]. Originally, the

primary goal was to introduce diversity into and improve the
D genome; however, research on SBLs has shown that
improvement in phenotype can often be attributed to genes
coming from both the Ae. tauschii and T. turgidum parents, as
well as interaction between genomes derived from the two
parental species [10].

Evaluation of Ae. tauschii accessions themselves for traits
such as seed yield and size, stress tolerances, and in some
cases even resistances to pests and pathogens, is often not
predictive of their usefulness as parents in breeding common
wheat [10]. The rapid incorporation of an accession’s entire
genome into a synthetic hexaploid background for trait
evaluation is therefore very useful. In this and other ways,
synthetic hexaploids have been used to greatly expand our
knowledge of Ae. tauschii and wheat. The large collection
produced by CIMMYT and others is a stable, reproducible
genetic resource that permits trait evaluation and genetic
studies to be done by researchers around the world using

Table 2 - Traits other than pathogen and pest resistance for which hexaploid wheat has been improved through

introduction of genes from Aegilops tauschii, through either Triticum turgidum/Ae. tauschii synthetic hexaploid production or
through direct hybridization between T. aestivum and Ae. tauschii.

Approach Trait Selected reference

Synthetic hexaploid Grain yield Mujeeb-Kazi et al. [12], Yang et al. [13], Li et al. [15]
Kernel size Okamoto et al. [46], Williams and Sorrells [47], Rasheed et al. [48]
Preharvest sprouting Lan and Yen [49], Imtiaz et al. [50]
New HMW glutenin subunits Lagudah et al. [51], Mackie et al. [52], Hsam et al. [53], Tang et al. [54]
Low polyphenol oxidase and lipoxygenase Yang et al. [55], Mares and Mrva [56]
Milling and baking quality Kunert et al. [57], Tang et al. [54]
Salinity tolerance Ogbonnaya et al. [10]
Aluminum tolerance Ryan et al. [58]

Direct hybridization Grain yield Cox et al. [41,59,60]

Kernel weight and weight per volume
Dough mixing properties

New gliadin and HMW glutenin subunits;
improved loaf volume

Cox et al. [41,59,60]
Cox et al. [41,59,60]
Brown-Guedira et al. [61]
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common sets of genotypes. As a result, much has been
learned about useful variation in all three genomes. Identifi-
cation and utilization of molecular markers in particular has
received a boost, thanks to the much greater allelic and
phenotypic variation in synthetic hexaploid/T. aestivum crosses,
compared with standard T. aestivum/T. aestivum crosses [64].

Nevertheless, when useful genes are introgressed from
T. turgidum through use of synthetic hexaploids, deleterious
genes can also be introduced. Genes in many T. turgidum lines
interact with T. aestivum genes to induce lethal hybrid
necrosis; those lines therefore cannot be used as parents of
synthetic hexaploids [65]. The vrn alleles for winter-type
vernalization response in Ae. tauschii are not expressed in
synthetic hexaploids because epistatic Vrn alleles derived
from T. turgidum. Therefore, winter wheat breeding programs
have made more limited use of synthetic hexaploids than
have programs developing spring or intermediate wheat
cultivars. Synthetic hexaploids are homozygous for both the q
allele from their T. turgidum parent and the Tg allele from Ae.
tauschii; therefore, they are not free threshing. Furthermore, for
8000 years, the A and B genomes of common wheat have
undergone divergent natural and artificial selection for adap-
tation to stresses in different ranges of environments, and the
two species have also been selected in very different directions
for grain-quality traits. When common wheat is crossed with a
synthetic hexaploid, these gene complexes and more are
disrupted across all three genomes (Fig. 1). They must be
reassembled at the same time that desired segments of the
T. turgidum and Ae. tauschii genomes are being transferred.

Genes in T. turgidum may also mask or suppress desired
genes in Ae. tauschii, or vice versa. In discussing this, Ogbonnaya
et al. [10] pointed out that amphiploidization delivers the twin
genomic “shocks” of hybridity and polyploidy. Gene expression
may be altered by DNA sequence elimination, methylation,
transposon movement, altered regulation, or other mechanisms.
In synthetic hexaploids, it is more often Ae. tauschii-derived
genes whose expression is reduced [66].

5. Advantages and disadvantages of the direct-
hybridization approach

Most common wheat cultivars or breeding lines when
pollinated by Ae. tauschii will produce a small number of
viable F; embryos. And almost all F; plants, when pollinated
by common wheat, can produce at least a few backcross seed.
The experience of the Wheat Genetics Resource Center is that
F, plants produce approximately one seed per spike pollinat-
ed. Kong et al. [67] obtained similar results with Chinese
wheat parents. Between 25 and 50% of the backcross plants
thus produced come from fertilization of a 28-chromosome
ABDD egg formed by restitution; those 49-chromosome plants
carry a complete copy of the Ae. tauschii parent’s genome.
Chromosome numbers of backcross plants formed without
restitution vary but tend to cluster near 42 [68].

Low seed set on F; plants is a potential bottleneck for
retention of a desired gene; however, given a 25% chance of a
restitution gamete, recovery of as few as four viable BC; seed
confers a 98% chance of at least one BC; plant carrying
the gene. Transmission rates of Ae. tauschii alleles during

backcrossing, and recombination between loci occur as pre-
dicted under the assumptions of non-preferential segregation
and complete homology between D-genome chromosomes
from the two parents [69]. Therefore, the mean proportion of
the D genome derived from Ae. tauschii in the BC; generation is
expected to be between 0.25 and 0.30. The BC, plants are mostly
euploid, with an expected Ae. tauschii contribution of 0.125 to
0.150. However, because the A and B genomes are entirely
derived from the wheat parent, 94%-96% of the wheat parent’s
full hexaploid genome is expected to be restored by the BC,
generation.

The above events lead to the chief advantage conferred by
the direct hybridization approach: rapid introduction of new
germplasm into the D genome accompanied by complete
conservation of the T. aestivum parent’s A and B genomes
(Fig. 2). Loci in the A and B genomes governing important
characteristics such as vernalization and photoperiod re-
sponse, threshability, and plant height, along with quantita-
tive traits related to productivity, stress tolerance, and grain
quality, remain fixed while the D genome undergoes segrega-
tion. BC, and most BC; plants are free- threshing, but plants
that still carry the Tg allele from Ae. tauschii may be somewhat
more difficult to thresh. Resistance genes expressed in the Ae.
tauschii parent are usually expressed similarly in the hexa-
ploid background. In studies at Kansas State University, grain
yields, kernel weights, and milling and baking quality traits
of BC,-derived lines derived from direct hybridization were
found similar to those of the recurrent parent under
disease-free conditions, but significantly better (as much as
50% higher in the case of grain yield) under infection by a
pathogen to which they were resistant [41,59,60].

Direct hybridization also has some disadvantages. Unlike
synthetic hexaploids, direct backcross derivatives do not
immediately form a fixed, reproducible collection of germ-
plasm lines carrying intact introduced D genomes; however,
their progeny, after a few generations of self-pollination and
selection, can be maintained, shared, studied, and utilized
more widely [59]. With about 95% of the wheat genome being
restored, direct crossing is a somewhat conservative ap-
proach, and the ability to keep the T. aestivum A and B
genomes intact comes with a potential cost: the missed
opportunity to introduce useful variation from both Ae.
tauschii and tetraploid wheat species in a single hybridization.

6. Future incorporation of Ae. tauschii germplasm

Genomic diversity studies have shown that Ae. tauschii is a
vast storehouse of potentially useful genetic diversity far
larger than the gene pool that has been exploited to date.
Furthermore, in examining Ae. tauschii’'s genome sequence, Jia
et al. [70] found 1219 protein-coding genes potentially
involved in disease resistance, 485 potentially involved in
abiotic stress tolerance, 216 potentially involved in cold
tolerance, and 14 transcription factors associated with
drought-tolerance genes. All of these totals were greater
than for the same gene categories in the diploid species rice,
sorghum, or maize.

Despite this potential, new hybridization for both synthetic
hexaploid formation and production of hexaploid/diploid
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hybrids has tapered off in recent years. In a recent review of
the utilization of synthetic hexaploids, Ogboyanna et al. [10]
argued that “there is a need to widen the Ae. tauschii
accessions sources by including collections from areas of
particular stresses, for example, drought and thus broaden
the variability for such stress tolerance in addition to choice of
Ae. tauschii on the basis of genotype diversity. These acces-
sions could enter future direct crossing programs that could
target breeding goals more effectively” [10]. In doing this, they
suggested that increased effort be directed toward direct
T. aestivum/Ae. tauschii hybridization, writing, “We opine that
direct crossing for wheat improvement has not received the
attention it deserves. Apart from precision transfers into the D
genome only, the speed with which advanced lines of good
agronomic phenotype are recovered warrants more attention
to this strategy.” Ogbonnaya et al. [10] further suggested that
under-represented Ae. tauschii parents should be hybridized
more widely not only with common wheat and durum but
also with other tetraploids, including the T. turgidum subspe-
cies carthlicum, dicoccum, and dicoccoides.

Use of Ae. tauschii parents collected from the fringes of the
species’ geographical distribution can introduce DNA se-
quences highly diverged from those introduced during com-
mon wheat’s origin. The novel variation could be especially
useful in wheat improvement if the Ae. tauschii parent is
locally adapted. Chinese researchers, for example, have long
made use of Ae. tauschii accessions collected within China. Lan
and Yen [49], for example, produced a synthetic hexaploid by
crossing a Chinese durum cultivar with a Chinese Ae. tauschii
accession. In reviewing the use of Ae. tauschii for wheat
improvement in China over the years, Lang et al. [71]
recommended that the species be exploited even more fully
in the future. Ae. tauschii accessions and synthetic hexaploids
resistant to Fusarium head blight [72] would be of special
interest in China.

A renewal of efforts to capture useful diversity from Ae.
tauschii in hexaploid germplasm can take full advantage of recent
advances in sequencing the D genome [4,70]. Commenting on
the results of Wang et al. [4], Gill [73] wrote, “This paper by Wang
et al. will be of great interest to plant breeders who need to
choose the most diverse Ae. tauschii accessions for genetic
introgression into wheat. Is this the last word on the origin
of the wheat D genome? Probably not, but now that we
are homing in to the place where bread wheat originated,
perhaps a more thorough sampling of these regions or previ-
ously collected samples from these areas may provide additional
data.”

The numerous documented transfers from Ae. tauschii into
the D genome of wheat in past decades (Tables 1 and 2), the
vast portions of this species’ gene pool that have not yet been
utilized, and the increasingly powerful genomic tools avail-
able for improvement of wheat all point toward a renewed
effort to introgress diverse Ae. tauschii germplasm into
common wheat. Choice of introgression method, synthetic
hexaploid or direct hybridization, will depend in part on the
type of wheat being developed and the target environment.
But more extensive use of direct hybridization is especially
warranted, considering that the approach has so far been
underexploited and that it rapidly recaptures the bulk of the
T. aestivum parent’s genome in early backcross progeny.
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