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THE LEAST SQUARES FINITE ELEMENT METHOD FOR ELASTICITY
INTERFACE PROBLEM ON UNFITTED MESH

Fanyi Yang*

Abstract. In this paper, we propose and analyze the least squares finite element methods for the
linear elasticity interface problem in the stress-displacement system on unfitted meshes. We consider
the cases that the interface is 𝐶2 or polygonal, and the exact solution (𝜎,𝑢) belongs to 𝐻𝑠(div; Ω0 ∪
Ω1) × 𝐻1+𝑠(Ω0 ∪ Ω1) with 𝑠 > 1/2. Two types of least squares functionals are defined to seek the
numerical solutions. The first is defined by simply applying the 𝐿2 norm least squares principle, and
requires the condition 𝑠 ≥ 1. The second is defined with a discrete minus norm, which is related to
the inner product in 𝐻−1/2(Γ). The use of this discrete minus norm results in a method of optimal
convergence rates and allows the exact solution has the regularity of any 𝑠 > 1/2. The stability near
the interface for both methods is guaranteed by the ghost penalty bilinear forms and we can derive the
robust condition number estimates. The convergence rates under 𝐿2 norm and the energy norm are
derived for both methods. We illustrate the accuracy and the robustness of the proposed methods by
a series of numerical experiments for test problems in two and three dimensions.
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1. Introduction

In this paper, we develop the least squares finite element methods (LSFEMs) for linear elasticity interface
problems, which model the elasticity structure with different or even singular material properties, and have
many applications in fields of materials science and continuum mechanics [2, 4, 25, 26, 39]. For such problems,
the governing equations usually have discontinuous coefficients and involve the inhomogeneous jump conditions.
Because of the discontinuity near the interface and the irregular geometry of the interface, it is still challenging
to design efficient numerical methods for such equations.

The finite element method is an important numerical method for solving interface problems. In the last
decades, various numerical schemes have been developed for the elliptic interface problem, and we refer to
[6, 10, 11, 16, 33, 36, 40, 53] for some typical methods. The finite element methods can be roughly classified into
fitted and unfitted methods based on types of grids. The body-fitted method requires the mesh to be aligned
with the interface for representing the geometry of the interface accurately. For complex geometries, it is a
challenging and time-consuming task to generate a high quality body-fitted mesh especially in high dimensions
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[36]. In the unfitted method, the interface description is decoupled from the generation of the mesh, which
provides a good flexibility when handling the problem with complex geometries. Examples of such methods
are the cut finite element method [6, 10, 11, 30, 33, 58], the immersed finite element method [28, 40, 41] and the
aggregated finite element method [3, 17,37].

Recently, the unfitted finite element methods are also been applied to solve the linear elasticity interface
problem. In [34], Hansbo and Hansbo proposed a linear finite element method and derived the optimal con-
vergence rates in error measurements under the assumption that the exact solution 𝑢 is piecewise 𝐻2. In [4],
Becker et al. developed a mixed finite element method with the linear accuracy for the displacement-pressure
formulation. The inf-sup condition and the optimal error estimates are verified. Both methods are also called
Nitsche extended finite element methods (Nitsche-XFEM), where the jump conditions are weakly imposed by
the Nitsche penalty method [33]. In [58], Zhang followed the interface-penalty idea and presented a high-order
unfitted method for the elasticity interface problem. Combining with the penalty method and the hybridizable
discontinuous Galerkin approximation, Han et al. developed an X-HDG method for this problem [32]. Another
type of unfitted finite element methods is the immersed finite element method [40], which mainly modifies the
basis functions near the interface to capture the jump of the solution. In [45,46], the authors presented the non-
conforming immersed finite element methods for the linear elasticity interface problem. Other types of immersed
finite element methods can be found in [28, 38]. We note that all above mentioned methods derive the error
estimates under the assumption that the exact solution 𝑢 has at least piecewise 𝐻2 regularity. Many analysis
techniques that are developed for piecewise 𝐻2 solutions in the elliptic interface problem can be used in this
case. But these techniques may be unavailable for the solution that has only piecewise 𝐻1+𝑠(𝑠 < 1) regularity.
In addition, for piecewise 𝐻1(div) or piecewise 𝐻1(curl) functions, applying these techniques to estimate the
errors will result in a suboptimal convergence rate, see [43, 48] for unfitted methods in solving 𝐻(curl)- and
𝐻(div)-interface problems. To our best knowledge, there are few works on the interface problem of low regu-
larity. In [29], the author presented an immersed finite element method for 𝐻(curl)-interface problem with the
optimal convergence rates. Only piecewise 𝐻1(curl) regularity of the exact solution is required in the analysis.

In this paper, we develop least squares finite element methods on unfitted meshes for the linear elasticity
interface problem, based on the stress-displacement formulation. For traditional linear elasticity problems, the
LSFEMs have been investigated in [8, 12–14, 42, 52]. The LSFEM can offer the advantage of circumventing the
inf-sup condition arising in mixed methods and ensure the resulting linear system is always symmetric positive
definite. As the standard LSFEM, we define a least squares functional and seek the numerical solution by
minimizing the functional over finite element spaces. Two types of least squares functionals are used in this
paper. The first is defined by simply applying the 𝐿2 norm least squares principle to the stress-displacement.
The defined functional only involves the 𝐿2 norms and the jump conditions are also enforced in the sense of 𝐿2

norms. This method requires the exact solution (𝜎, 𝑢) has the regularity 𝐻𝑠(div; Ω0∪Ω1)×𝐻1+𝑠(Ω0∪Ω1) with
𝑠 ≥ 1. The convergence rate in the 𝐻(div) ×𝐻1 norm is shown to be half order lower than the optimal rate.
From the embedding theory, we know that any 𝜏 ∈ 𝐻(div; Ω0 ∪Ω1) has the normal trace 𝑛 · 𝜏 ∈ 𝐻−1/2(Γ), but
the stronger 𝐿2 norm is applied to handle the normal trace in this method. This is the reason that the condition
𝑠 ≥ 1 is required and the convergence rate is not optimal. To overcome this difficulty, we define another least
squares functional with a discrete minus inner product. This method follows the ideas in [7,8], where the discrete
minus norms corresponding to 𝐻−1(Ω) are used. In this paper, we define a discrete minus inner product that
is related to the inner product in the space 𝐻−1/2(Γ). The use of this inner product allows us to relax the
regularity condition as 𝑠 > 1/2, and gives the optimal convergence rate under the error measurement with
respect to the required regularity. It is noticeable that the optimal convergence rate under the 𝐻(div) norm
is achieved for functions in 𝐻𝑠(div; Ω0 ∪ Ω1). We also point out that in the unfitted methods, the 𝐻1 trace
estimate is usually the main tool to estimate the numerical error on the interface. For the low regularity case
𝑠 < 1, this estimate is unavailable, and we use the embedding theory in the error estimation instead.

Another important issue for unfitted methods is the presence of small cuts near the interface. In our method,
we employ the ghost penalty method [9] to cure the effects bringing by small cuts. The ghost penalty bilinear
forms also correspond to 𝐿2 norms, and they can be naturally added in the least squares functional. We can
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prove a uniform upper bound of the condition number to the resulting linear system with proper penalty forms.
We give a suitable penalty bilinear form with the polynomial local extension, and also the standard penalty
forms given in [9, 30] can be used in our methods.

The rest of this article is organized as follows. In Section 2, we give the basic notation and introduce the
stress-displacement formulation for the linear elasticity interface problem. The ghost penalty forms are also
presented in this section. In Section 3, we define the associated least squares functional of the interface problem.
Section 4 develops the numerical schemes. The least squares finite element methods with 𝐿2 norms and with
the discrete minus norm are established in Sections 4.1 and 4.2, respectively. The error estimations are also
included. Finally, numerical results of test problems in two and three dimensions are presented in Section 5.

2. Problem setting and preliminaries

Let Ω ⊂ R𝑑(𝑑 = 2, 3) be a convex polygonal (polyhedral) domain with the boundary 𝜕Ω. Let Ω0 b Ω be
a polygonal (polyhedral) subdomain or a subdomain with a 𝐶2-smooth boundary. We denote by Γ := 𝜕Ω0

the topological boundary, which can be regarded as an interface dividing Ω into two disjoint domains Ω0 and
Ω1, where Ω1 := Ω∖Ω0, Ω0 ∩ Ω1 = ∅ and Ω0 ∪ Ω1 = Ω. The model problem considered in this paper is the
linear elasticity interface problem defined on Ω, which reads: seek the stress 𝜎 = (𝜎𝑖𝑗)𝑑×𝑑 and the displacement
𝑢 = (𝑢𝑗)𝑑 such that

𝒜𝜎 − 𝜀(𝑢) = 0, in Ω0 ∪ Ω1,

∇ · 𝜎 + 𝑓 = 0, in Ω0 ∪ Ω1,

𝑢 = 0, on 𝜕Ω,

[[𝜎]]𝑁 = 𝑎, [[𝑢]] = 𝑏, on Γ,

(1)

where 𝑓 is the source term, and 𝑎, 𝑏 are the jump conditions on the interface. The jump operators are defined
as (6). The Lamé parameters 𝜆, 𝜇 are assumed to be piecewise positive constant functions,

(𝜆(𝑥), 𝜇(𝑥)) :=

{︃
(𝜆0, 𝜇0), in Ω0,

(𝜆1, 𝜇1), in Ω1,
𝜆0, 𝜆1, 𝜇0, 𝜇1 > 0. (2)

The constitutive law is expressed by the linear operator 𝒜 : R𝑑×𝑑 → R𝑑×𝑑:

𝒜𝜏 :=
1

2𝜇

(︂
𝜏 − 𝜆

𝑑𝜆 + 2𝜇
tr(𝜏 )I

)︂
, ∀𝜏 ∈ R𝑑×𝑑,

where tr(·) denotes the trace operator, and I := (𝛿𝑖𝑗)𝑑×𝑑 is the identity tensor. The function 𝜀(𝑢) denotes the
symmetric strain tensor:

𝜀(𝑢) = (𝜀𝑖,𝑗(𝑢))𝑑×𝑑, 𝜀𝑖,𝑗(𝑢) :=
1
2

(︂
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖

)︂
, 1 ≤ 𝑖, 𝑗 ≤ 𝑑.

We assume that the interface problem (1) admits a unique solution (𝜎, 𝑢) ∈ Σ𝑠 ×V𝑠+1 with 𝑠 > 1/2, where

Σ𝑠 := H𝑠(div; Ω0 ∪ Ω1), V𝑠+1 :=
{︀
𝑣 ∈ H𝑠+1(Ω0 ∪ Ω1) : 𝑣|𝜕Ω = 0

}︀
. (3)

For 𝑖 = 0, 1, we let 𝜎𝑖 := 𝜎|Ω𝑖
, 𝑢𝑖 := 𝑢|Ω𝑖

. We further assume that 𝜎𝑖 and 𝑢𝑖 can be extended to the
whole domain Ω in the sense that there exist ̃︀𝜎𝑖 ∈ H𝑠(div; Ω) and ̃︀𝑢𝑖 ∈ H𝑠+1(Ω) such that ̃︀𝜎𝑖|Ω𝑖

= 𝜎𝑖 with
‖̃︀𝜎𝑖‖𝐻𝑠(div;Ω) ≤ 𝐶‖𝜎𝑖‖𝐻𝑠(div;Ω𝑖) and ̃︀𝑢𝑖|Ω𝑖 = 𝑢𝑖 with ‖̃︀𝑢𝑖‖𝐻𝑠+1(Ω) ≤ 𝐶‖𝑢𝑖‖𝐻𝑠+1(Ω𝑖). Consequently, 𝜎 and 𝑢 can
be decomposed as

𝜎 = ̃︀𝜎0 · 𝜒0 + ̃︀𝜎1 · 𝜒1, 𝑢 = ̃︀𝑢0 · 𝜒0 + ̃︀𝑢1 · 𝜒1, (4)
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where 𝜒𝑖 is the characteristic function corresponding to the domain Ω𝑖. We refer to [1, 20, 35] for more details
about the extension of Sobolev spaces. From (4), we formally introduce two projection operators 𝜋𝑖(𝑖 = 0, 1)
that 𝜋𝑖𝜎 := ̃︀𝜎𝑖 ∈ H𝑠(div; Ω) and 𝜋𝑖𝑢 := ̃︀𝑢𝑖 ∈ H𝑠+1(Ω).

Let us introduce the notation required in the definition to the scheme. We denote by 𝒯ℎ a quasi-uniform
partition of Ω into triangle (tetrahedron) elements. The mesh 𝒯ℎ is unfitted that the element faces in 𝒯ℎ are
not required to be aligned with the interface Γ. For any element 𝐾 ∈ 𝒯ℎ, we denote by ℎ𝐾 its diameter and
by 𝜌𝐾 the radius of the largest disk (ball) inscribed in 𝐾. Let ℎ := max𝐾∈𝒯ℎ

ℎ𝐾 be the mesh size, and let
𝜌 := min𝐾∈𝒯ℎ

𝜌𝐾 . The mesh 𝒯ℎ is quasi-uniform in the sense that there exists a constant 𝐶𝜈 independent of ℎ
such that ℎ ≤ 𝐶𝜈𝜌.

Next, we give the notation related to subdomains Ω0 and Ω1. For 𝑖 = 0, 1, we define 𝒯ℎ,𝑖 := {𝐾 ∈ 𝒯ℎ |𝐾∩Ω𝑖 ̸=
∅} as the minimal subset of 𝒯ℎ that entirely covers Ω𝑖, and define 𝒯 ∘ℎ,𝑖 := {𝐾 ∈ 𝒯ℎ,𝑖 | 𝐾 ⊂ Ω𝑖} as the set of
interior elements inside the domain Ω𝑖. We define 𝒯 Γ

ℎ := {𝐾 ∈ 𝒯ℎ | 𝐾 ∩ Γ ̸= ∅} as the collection of all cut
elements. Their corresponding domains are defined as Ωℎ,𝑖 := Int(

⋃︀
𝐾∈𝒯ℎ,𝑖

𝐾), Ω∘ℎ,𝑖 := Int(
⋃︀

𝐾∈𝒯 ∘ℎ,𝑖
𝐾), and

ΩΓ
ℎ := Int(

⋃︀
𝐾∈𝒯 Γ

ℎ
𝐾), respectively. Notice that there holds ΩΓ

ℎ = Ωℎ,𝑖∖Ω∘ℎ,𝑖. For any element 𝐾 ∈ 𝒯ℎ, we let
𝐾𝑖 := 𝐾 ∩ Ω𝑖 and for any cut element 𝐾 ∈ 𝒯 Γ

ℎ , we let Γ𝐾 := 𝐾 ∩ Γ.
For any 𝐾 ∈ 𝒯ℎ, we define ∆(𝐾) := {𝐾 ′ ∈ 𝒯ℎ | 𝐾 ′ ∩𝐾 ̸= ∅} as the set of elements touching 𝐾. We denote

by 𝐵(𝑧, 𝑟) the disk (ball) centered at the point 𝑧 with the radius 𝑟. Since 𝒯ℎ is quasi-uniform, there exists a
generic constant 𝐶Δ such that

⋃︀
𝐾′∈Δ(𝐾) 𝐾 ′ ⊂ 𝐵(𝑥𝐾 , 𝐶Δℎ) for ∀𝐾 ∈ 𝒯ℎ, where 𝑥𝐾 is the barycenter of 𝐾. We

set 𝐵Δ(𝐾) := 𝐵(𝑥𝐾 , 𝐶Δℎ) for ∀𝐾 ∈ 𝒯ℎ.
Throughout this paper, 𝐶 and 𝐶 with subscripts are denoted to be generic positive constants that may vary

in different lines, but are always independent of the mesh size ℎ, how the interface Γ cuts the mesh 𝒯ℎ, and the
Lamé parameter 𝜆 defined in (2).

We make the following geometrical assumption on the mesh:

Assumption 1. For any cut element 𝐾 ∈ 𝒯 Γ
ℎ , the sets ∆(𝐾) ∩ 𝒯 ∘ℎ,0 and ∆(𝐾) ∩ 𝒯 ∘ℎ,1 are not empty.

From Assumption 1, we can assign two interior elements 𝐾 int
0 ∈ ∆(𝐾)∩𝒯 ∘ℎ,0 and 𝐾 int

1 ∈ ∆(𝐾)∩𝒯 ∘ℎ,1 for any
cut element 𝐾 ∈ 𝒯 Γ

ℎ . In principle, 𝐾 int
𝑖 (𝑖 = 0, 1) can be anyone in ∆(𝐾) ∩ 𝒯 ∘ℎ,𝑖. In practice, one can select 𝐾 int

𝑖

to share a common face with 𝐾 whenever possible. Consequently, Assumption 1 allows us to define two maps
𝑀 𝑖(·)(𝑖 = 0, 1) : 𝒯 Γ

ℎ → 𝒯 ∘ℎ,𝑖 such that 𝑀 𝑖(𝐾) = 𝐾 int
𝑖 for ∀𝐾 ∈ 𝒯 Γ

ℎ .

Remark 1. Assumption 1 can be relaxed as: for any cut element 𝐾 ∈ 𝒯 Γ
ℎ , there exists a wide patch 𝑆(𝐾) of

diam(𝑆(𝐾)) ≤ 𝐶ℎ𝐾 such that 𝐾 ∈ 𝑆(𝐾) and 𝑆(𝐾) contains two elements 𝐾*
0 and 𝐾*

1 satisfying

|𝐾*
𝑖 ∩ Ω𝑖| ≥ 𝐶𝑝|𝐾*

𝑖 |, 𝑖 = 0, 1, (5)

where 𝐶𝑝 ∈ (0, 1) is a user-defined constant. Then, we can let 𝑀 𝑖(𝐾) be anyone in 𝑆(𝐾) satisfying (5) for
𝑖 = 0, 1. Clearly, Assumption 1 coincides with the case that 𝑆(𝐾) = ∆(𝐾) and 𝐶𝑝 = 1. By (5), there holds
‖𝑣‖𝐿2(𝑀𝑖(𝐾)) ≤ 𝐶‖𝑣‖𝐿2(𝑀𝑖(𝐾)∩Ω𝑖), and the properties P1 and P2 for the forms (12) with such 𝑀 𝑖(𝐾) can be
verified similarly. If we take 𝑆(𝐾) = ∆(𝐾) and select 𝐶𝑝 < 1, then 𝑀 𝑖(𝐾) can be a cut element, which has
a large intersection to Ω𝑖. This idea is similar to the idea of merging small elements with neighbouring large
elements to ensure the stability near the interface, see [17,30,37] for more details.

Let us introduce the notation of trace operators on the interface. Let 𝑣 be a vector- or tensor-valued function,
we define the jump operators [[·]] and [[·]]𝑁 as

[[𝑣]]|Γ := 𝑣0|Γ − 𝑣1|Γ, [[𝑣]]𝑁 |Γ := 𝑛Γ ·
(︀
𝑣0|Γ − 𝑣1|Γ

)︀
, (6)

where 𝑣0 := 𝑣|Ω0 , 𝑣
1 := 𝑣|Ω1 , and 𝑛Γ denotes the unit outward normal vector pointing to Ω1 on Γ.

For an open bounded domain 𝐷, we let 𝐻𝑟(𝐷) denote the usual Sobolev spaces with the exponent 𝑟 ≥ 0,
and we follow their corresponding inner products, seminorms and norms. We define H𝑟(𝐷) := (𝐻𝑟(𝐷))𝑑 and
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H𝑟(𝐷) := (𝐻𝑟(𝐷))𝑑×𝑑 as the Sobolev spaces of vector and tensor fields, respectively. Let 𝐿2(𝐷) coincide
with 𝐻𝑟(𝐷) for 𝑟 = 0. Further, we introduce 𝐻𝑟(div; 𝐷) := {𝑣 ∈ H𝑟(𝐷) | ∇ · 𝑣 ∈ 𝐻𝑟(𝐷)} with the norm
‖𝑣‖2𝐻𝑟(div;𝐷) := ‖𝑣‖2𝐻𝑟(𝐷) + ‖∇ · 𝑣‖2𝐻𝑟(𝐷), and let H𝑟(div; 𝐷) := (𝐻𝑟(div; 𝐷))𝑑 be the spaces of tensor fields.
Each column of functions in H𝑟(div; 𝐷) belongs to 𝐻𝑟(div; 𝐷). Let 𝐻−1/2(𝜕𝐷) be the dual space of 𝐻1/2(𝜕𝐷)
with the norm

‖𝑣‖𝐻−1/2(𝜕𝐷) := sup
0̸=𝜙∈𝐻1/2(𝜕𝐷)

(𝑣, 𝜙)𝐿2(𝜕𝐷)

‖𝜙‖𝐻1/2(𝜕𝐷)

, ∀𝑣 ∈ 𝐻−1/2(𝜕𝐷). (7)

From the trace theory, we know that any function 𝑣 ∈ 𝐻(div; 𝐷) has a normal trace 𝑛 · 𝑣 ∈ 𝐻−1/2(𝜕𝐷) with
‖𝑛 · 𝑣‖𝐻−1/2(𝜕𝐷) ≤ 𝐶‖𝑣‖𝐻(div;𝐷). For vector fields, we let H−1/2(𝜕𝐷) be the dual space of H1/2(𝜕𝐷), and the
corresponding norm is analogous to (7).

To cure the effect bringing by small cuts near the interface, we follow the idea in the ghost penalty method
[9,30], which uses the data from the interior domain to ensure the stability near the interface. For this goal, we
assume that we can construct two bilinear forms 𝑠𝑟

ℎ,0 : 𝐿2(Ωℎ,0)×𝐿2(Ωℎ,0) ↦→ R and 𝑠𝑟
ℎ,1 : 𝐿2(Ωℎ,1)×𝐿2(Ωℎ,1) ↦→

R, with the induced seminorms |𝑣|2𝑠𝑟
ℎ,𝑖

:= 𝑠𝑟
ℎ,𝑖(𝑣, 𝑣)(𝑖 = 0, 1) for ∀𝑣 ∈ 𝐿2(Ωℎ,𝑖). In our method, we assume that

the forms satisfy the following two properties:

P1: the 𝐿2 norm extension property:

‖𝑣‖𝐿2(Ωℎ,𝑖) ≤ 𝐶
(︁
‖𝑣‖𝐿2(Ω𝑖) + |𝑣|𝑠𝑟

ℎ,𝑖

)︁
≤ 𝐶‖𝑣‖𝐿2(Ωℎ,𝑖), ∀𝑣 ∈ 𝐿2(Ωℎ,𝑖), 𝑖 = 0, 1. (8)

P2: the weak consistency:

|𝑣|𝑠𝑟
ℎ,𝑖
≤ 𝐶ℎ𝑡‖𝑣‖𝐻𝑠+1(Ω), ∀𝑣 ∈ 𝐻𝑠+1(Ω), 𝑖 = 0, 1, 𝑡 = min(𝑠 + 1, 𝑟 + 1). (9)

The suitable penalty forms 𝑠𝑟
ℎ,𝑖(·, ·) can be constructed by the face-based penalties and the projection-based

penalties, see [10,30]. In Section 2.7 of [30], the penalty forms constructed for elliptic interface problems satisfy
P1 and P2, which can be used in our method. We also note that extra properties of the penalty form in solving
elliptic interface problems are required, as the 𝐻1 seminorm extension property and the inverse estimate, see
EP1–EP4 of [30]. In our method, P1 and P2 are enough to ensure the stability near the interface. Thus, the
required ghost penalty may be more simple.

Here, we outline a method to construct the penalty bilinear forms by the local polynomial extension, and
the implementation is easy. The idea of the local extension has also been widely used in unfitted methods, see
[3, 11,17,36,37,57].

For any element 𝐾 ∈ 𝒯ℎ, we define a local extension operator 𝐸𝑟
𝐾(𝑟 ≥ 0) that extends the function in 𝐿2(𝐾)

to the ball 𝐵Δ(𝐾) by
𝐸𝑟

𝐾 : 𝐿2(𝐾) → P𝑟

(︀
𝐵Δ(𝐾)

)︀
,

𝑣 → 𝐸𝑟
𝐾𝑣,

𝐸𝑟
𝐾𝑣 := (ℰ𝐾(Π𝑟

𝐾𝑣))|𝐵Δ(𝐾) , (10)

where ℰ𝐾 : P𝑟(𝐾) → P𝑟(R𝑑) is the canonical extension of a polynomial to R𝑑, and Π𝑟
𝐾 : 𝐿2(𝐾) → P𝑟(𝐾) is the

𝐿2 projection operator on 𝐾. Since 𝐾 ∈ 𝐵Δ(𝐾), for any 𝑣 ∈ 𝐿2(𝐾), 𝐸𝑟
𝐾𝑣 is the direct extension of Π𝑟

𝐾𝑣 from
𝐾 to 𝐵Δ(𝐾). Particularly, for any polynomial 𝑣 ∈ P𝑟(𝐾), 𝐸𝑟

𝐾𝑣 is the direct polynomial extension of 𝑣 to the
ball 𝐵Δ(𝐾). From the definition (10), we can prove the following basic property of 𝐸𝑟

𝐾 ,

‖𝐸𝑟
𝐾𝑣‖𝐿2(𝐵Δ(𝐾))

≤ 𝐶‖Π𝑟
𝐾𝑣‖𝐿2(𝐾) ≤ 𝐶‖𝑣‖𝐿2(𝐾), ∀𝑣 ∈ 𝐿2(𝐾), ∀𝐾 ∈ 𝒯ℎ. (11)

The norm equivalence on the finite dimensional space gives us that ‖𝑣‖𝐿2(𝐵(0,𝐶Δ𝐶𝜈)) ≤ 𝐶‖𝑣‖𝐿2(𝐵(0,1)) for
∀𝑣 ∈ P𝑟(𝐵(0, 𝐶Δ𝐶𝜈)). Considering the affine mapping from 𝐵(0, 1) to 𝐵(𝑥𝐾 , 𝜌), we derive that

‖𝐸𝑟
𝐾𝑣‖𝐿2(𝐵Δ(𝐾))

≤ 𝐶‖𝐸𝑟
𝐾𝑣‖𝐿2(𝐵(𝑥𝐾 ,𝜌)) = 𝐶‖Π𝑟

𝐾𝑣‖𝐿2(𝐵(𝑥𝐾 ,𝜌)) ≤ 𝐶‖Π𝑟
𝐾𝑣‖𝐿2(𝐾), ∀𝑣 ∈ 𝐿2(𝐾),
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which leads to the stability property (11). We refer to [17] for more discussion on the constants 𝐶 appearing in
(11).

For any 𝑣 ∈ 𝐿2(Ωℎ,𝑖)(𝑖 = 0, 1), there holds 𝑣|𝐾 ∈ 𝐿2(𝐾) and 𝐸𝑟
𝐾(𝑣|𝐾) ∈ P𝑟(𝐵Δ(𝐾)) for ∀𝐾 ∈ 𝒯ℎ,𝑖. From

(10), 𝐸𝑟
𝐾(𝑣|𝐾) is the direct polynomial extension of Π𝑟

𝐾(𝑣|𝐾) from 𝐾 to the ball 𝐵Δ(𝐾). Hereafter, we simply
write 𝐸𝑟

𝐾(𝑣|𝐾) as 𝐸𝑟
𝐾𝑣 for ∀𝑣 ∈ 𝐿2(Ωℎ,𝑖). This notation is most frequently used for 𝑣 is a piecewise polynomial

function of degree 𝑟 on the mesh 𝒯ℎ,𝑖. In this case, 𝐸𝑟
𝐾𝑣 ∈ P𝑟(𝐵Δ(𝐾)) is just the direct extension of 𝑣|𝐾 from

𝐾 to 𝐵Δ(𝐾) for ∀𝐾 ∈ 𝒯ℎ,𝑖.
Based on 𝐸𝑟

𝐾 , two bilinear forms 𝑠𝑟
ℎ,0(·, ·) and 𝑠𝑟

ℎ,1(·, ·) that satisfy the properties P1 and P2 can be con-
structed as

𝑠𝑟
ℎ,𝑖(𝑣, 𝑤) :=

∑︁
𝐾∈𝒯 Γ

ℎ

∫︁
𝐾

(︁
𝑣 − 𝐸𝑟

𝑀𝑖(𝐾)𝑣
)︁(︁

𝑤 − 𝐸𝑟
𝑀𝑖(𝐾)𝑤

)︁
d𝑥, ∀𝑣, 𝑤 ∈ 𝐿2(Ωℎ,𝑖), 𝑖 = 0, 1. (12)

Notice that any cut element 𝐾 ∈ 𝒯 Γ
ℎ has that 𝐾 ⊂ 𝐵Δ(𝑀𝑖(𝐾)). Therefore, 𝐸𝑟

𝑀𝑖(𝐾)𝑣 ∈ P𝑟(𝐵Δ(𝑀𝑖(𝐾))) is well
defined on 𝐾. Then, we verify the properties P1 and P2 for the forms (12). By (11), we know that⃦⃦⃦

𝐸𝑟
𝑀𝑖(𝐾)𝑣

⃦⃦⃦
𝐿2(𝐾)

≤
⃦⃦⃦
𝐸𝑟

𝑀𝑖(𝐾)𝑣
⃦⃦⃦

𝐿2(𝐵Δ(𝑀𝑖(𝐾)))
≤ 𝐶‖𝑣‖𝐿2(𝑀𝑖(𝐾)), ∀𝑣 ∈ 𝐿2(Ωℎ,𝑖), ∀𝐾 ∈ 𝒯ℎ,𝑖.

Combining with the triangle inequality, one can find that for ∀𝑣 ∈ 𝐿2(Ωℎ,𝑖),

𝑠𝑟
ℎ,𝑖(𝑣, 𝑣) ≤

∑︁
𝐾∈𝒯 Γ

ℎ

(︂
‖𝑣‖2𝐿2(𝐾) +

⃦⃦⃦
𝐸𝑟

𝑀𝑖(𝐾)𝑣
⃦⃦⃦2

𝐿2(𝐾)

)︂
≤ 𝐶

∑︁
𝐾∈𝒯 Γ

ℎ

(︁
‖𝑣‖2𝐿2(𝐾) + ‖𝑣‖2𝐿2(𝑀𝑖(𝐾))

)︁
≤ 𝐶‖𝑣‖2𝐿2(Ωℎ,𝑖)

,

which gives the upper bound in (8). Again by (11) and the triangle inequality, there holds

‖𝑣‖2𝐿2(ΩΓ
ℎ) =

∑︁
𝐾∈𝒯 Γ

ℎ

‖𝑣‖2𝐿2(𝐾) ≤ 𝐶
∑︁

𝐾∈𝒯 Γ
ℎ

(︂⃦⃦⃦
𝑣 − 𝐸𝑟

𝑀𝑖(𝐾)𝑣
⃦⃦⃦2

𝐿2(𝐾)
+

⃦⃦⃦
𝐸𝑟

𝑀𝑖(𝐾)𝑣
⃦⃦⃦2

𝐿2(𝐾)

)︂
≤ 𝐶𝑠𝑟

ℎ,𝑖(𝑣, 𝑣) + 𝐶
∑︁

𝐾∈𝒯 Γ
ℎ

‖𝑣‖2𝐿2(𝑀𝑖(𝐾)) ≤ 𝐶
(︁
|𝑣|2𝑠𝑟

ℎ,𝑖
+ ‖𝑣‖2𝐿2(Ω∘ℎ,𝑖)

)︁
, ∀𝑣 ∈ 𝐿2(Ωℎ,𝑖).

The lower bound of (8) is reached and the property P1 holds for (12). We turn to the weak consistency P2.
Given any 𝑣 ∈ 𝐻𝑠+1(Ω), and for any 𝐾 ∈ 𝒯 Γ

ℎ , there exists 𝑝𝐾 ∈ P𝑟(𝐵Δ(𝐾)) such that ‖𝑣 − 𝑝𝐾‖𝐿2(𝐵Δ(𝐾)) ≤
𝐶ℎ𝑡‖𝑣‖𝐻𝑠+1(𝐵Δ(𝐾)) [22]. From (11), we obtain that⃦⃦⃦

𝑣 − 𝐸𝑟
𝑀𝑖(𝐾)𝑣

⃦⃦⃦
𝐿2(𝐾)

≤ ‖𝑣 − 𝑝𝐾‖𝐿2(𝐾) +
⃦⃦⃦
𝐸𝑟

𝑀𝑖(𝐾)(𝑝𝐾 − 𝑣)
⃦⃦⃦

𝐿2(𝐾)

≤ ‖𝑣 − 𝑝𝐾‖𝐿2(𝐾) + 𝐶‖𝑝𝐾 − 𝑣‖𝐿2(𝑀𝑖(𝐾)) ≤ 𝐶‖𝑣 − 𝑝𝐾‖𝐿2(𝐵Δ(𝐾))
≤ 𝐶ℎ𝑡‖𝑣‖𝐻𝑠+1(𝐵Δ(𝐾)).

Summation over all cut elements indicates the estimate (9), i.e. the property P2 is reached.
Now the penalty forms 𝑠𝑟

ℎ,𝑖(·, ·)(𝑖 = 0, 1) are defined for scalar-valued functions in 𝐿2(Ωℎ,𝑖), and it is natural
to extend 𝑠𝑟

ℎ,𝑖(·, ·) for vector- and tensor-valued functions in a componentwise manner. Let 𝑣, 𝑤 ∈ L2(Ωℎ,𝑖) with
𝑣 = (𝑣𝑗)𝑑, 𝑤 = (𝑤𝑗)𝑑 be the vector-valued functions, and let 𝜏 , 𝜌 ∈ L2(Ωℎ,𝑖) with 𝜏 = (𝜏𝑗𝑘)𝑑×𝑑, 𝜌 = (𝜌𝑗𝑘)𝑑×𝑑

be the tensor-valued functions, we define

𝑠𝑟
ℎ,𝑖(𝑣, 𝑤) :=

𝑑∑︁
𝑗=1

𝑠𝑟
ℎ,𝑖(𝑣𝑗 , 𝑤𝑗), 𝑠𝑟

ℎ,𝑖(𝜏 , 𝜌) :=
∑︁

1≤𝑗,𝑘≤𝑑

𝑠𝑟
ℎ,𝑖(𝜏𝑗𝑘, 𝜌𝑗𝑘),

with the induced seminorms |𝑣|2𝑠𝑟
ℎ,𝑖

:= 𝑠𝑟
ℎ,𝑖(𝑣, 𝑣) and |𝜏 |2𝑠𝑟

ℎ,𝑖
:= 𝑠𝑟

ℎ,𝑖(𝜏 , 𝜏 ). The properties P1 and P2 can be
extended for vector- and tensor-valued functions without any difficulty. In the computer implementation, the
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bilinear forms are always with piecewise polynomial spaces. The operator 𝐸𝑟
𝐾 is equivalent to the direct extension

operator, and there is no need to implement the 𝐿2 projection in (10).
We close this section by giving the 𝐻1 trace estimate [31,33,53] on the interface.

Lemma 1. There exists a constant 𝐶 such that

‖𝑤‖2𝐿2(Γ𝐾) ≤ 𝐶
(︁
ℎ𝐾‖𝑤‖2𝐻1(𝐾) + ℎ−1

𝐾 ‖𝑤‖2𝐿2(𝐾)

)︁
, ∀𝑤 ∈ 𝐻1(𝐾), ∀𝐾 ∈ 𝒯 Γ

ℎ . (13)

We refer to [31] for the proof only assuming Γ is Lipschitz. The 𝐻1 trace estimate is fundamental in the
penalty-type unfitted finite element methods, as the main tool to handle the numerical error on the interface,
such as [3, 10, 30, 33, 36, 37, 49, 53]. By (13), the error on the interface can be bounded by the estimates on
elements. However, this trace estimate (13) requires the 𝐻1 regularity. For the problem with the exact solution
in 𝐻𝑠(div; Ω0∪Ω1) or 𝐻𝑠(curl; Ω0∪Ω1), applying (13) to estimate the numerical errors on the interface will lead
to a suboptimal convergence rate. The optimal convergence needs a higher regularity assumption that the exact
solution is piecewise 𝐻𝑠+1-smooth. see [43,48] for unfitted methods on 𝐻(div)- and 𝐻(curl)-interface problems.
In addition, the trace estimate (13) is not suitable for the solution of low regularity, such as the solution belongs
to the space 𝐻𝑠(Ω0 ∪ Ω1) with 𝑠 < 1.

3. Least squares functional for the interface problem

In this section, we introduce an associated least squares functional to the interface problem (1). Let Σ := Σ0

and V := V1 be the spaces coinciding with 𝑠 = 0 in (3). We define the quadratic functional 𝒥 (·; ·) by

𝒥 (𝜏 , 𝑣; 𝑓 , 𝑎, 𝑏) := 𝐽(𝜏 , 𝑣; 𝑓) + 𝐵𝜎(𝜏 ; 𝑎) + 𝐵𝑢(𝑣; 𝑏), ∀(𝜏 , 𝑣) ∈ Σ×V, (14)

where
𝐽(𝜏 , 𝑣; 𝑓) := ‖𝒜𝜏 − 𝜀(𝑣)‖2𝐿2(Ω0∪Ω1)

+ ‖∇ · 𝜏 + 𝑓‖2𝐿2(Ω0∪Ω1)
,

𝐵𝜎(𝜏 ; 𝑎) := ‖[[𝜏 ]]𝑁 − 𝑎‖2𝐻−1/2(Γ), 𝐵𝑢(𝑣; 𝑏) := ‖[[𝑣]]− 𝑏‖2𝐻1/2(Γ),
∀(𝜎, 𝑣) ∈ Σ×V. (15)

The trace terms 𝐵𝜎(·; ·) and 𝐵𝑢(·; ·) are well-defined since [[𝜏 ]]𝑁 |Γ ∈ 𝐻−1/2(Γ) and [[𝑣]]|Γ ∈ 𝐻1/2(Γ) for
∀(𝜏 , 𝑣) ∈ Σ × V from the trace theory. The exact solution (𝜎, 𝑢) clearly minimizes the functional 𝒥 (·; ·)
since 𝒥 (𝜎, 𝑢; 𝑓 , 𝑎, 𝑏) = 0. In fact, we can prove that (𝜎, 𝑢) is also the unique solution to the minimization
problem inf(𝜏 ,𝑣)∈Σ×V 𝒥 (𝜏 , 𝑣; 𝑓 , 𝑎, 𝑏). For this purpose, we will give a norm equivalence property of 𝒥 (·, ·), and
the norm equivalence is also crucial for the error analysis in the least squares finite element method [5]. The
pair of spaces Σ×V can be naturally equipped with the norm

‖(𝜏 , 𝑣)‖2e := ‖𝜏‖2𝐻(div;Ω0∪Ω1)
+ ‖𝑣‖2𝐻1(Ω0∪Ω1)

, ∀(𝜏 , 𝑣) ∈ Σ×V.

The equivalence between 𝒥 (·; ·) and ‖ · ‖e is given in the following lemma.

Lemma 2. There exist constants 𝐶 such that

‖(𝜏 , 𝑣)‖e ≤ 𝐶
(︁
‖𝒜𝜏 − 𝜀(𝑣)‖𝐿2(Ω0∪Ω1)

+ ‖∇ · 𝜏‖𝐿2(Ω0∪Ω1)

+ ‖[[𝜏 ]]𝑁‖𝐻−1/2(Γ) + ‖[[𝑣]]‖𝐻1/2(Γ)

)︁
≤ 𝐶‖(𝜏 , 𝑣)‖e, ∀(𝜏 , 𝑣) ∈ Σ×V. (16)

Proof. By the definition of 𝒜, we have that

‖𝒜𝜏‖2𝐿2(Ω) =
1

(2𝜇)2

(︂
‖𝜏‖2𝐿2(Ω) −

𝜆(𝑑𝜆 + 4𝜇)
(𝑑𝜆 + 2𝜇)2

‖tr(𝜏 )‖2𝐿2(Ω)

)︂
≤ 1

(2𝜇)2
‖𝜏‖2𝐿2(Ω) ≤ 𝐶‖𝜏‖2𝐿2(Ω). (17)
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The term ‖𝒜𝜏 − 𝜀(𝑣)‖𝐿2(Ω0∪Ω1) can be bounded by ‖(𝜏 , 𝑣)‖e, following from the triangle inequality and (17).
From the embedding theory, we know that

‖[[𝜏 ]]𝑁‖𝐻−1/2(Γ) ≤ ‖𝑛 · 𝜏 |Ω0‖𝐻−1/2(Γ) + ‖𝑛 · 𝜏 |Ω1‖𝐻−1/2(Γ) ≤ 𝐶‖𝜏‖𝐻(div;Ω0∪Ω1).

Similarly, there holds ‖[[𝑣]]‖𝐻1/2(Γ) ≤ 𝐶‖𝑣‖𝐻1(Ω0∪Ω1). The upper bound in (16) is reached.
From Theorem 3.1 of [13], the lower bound in (16) holds for 𝜏 ∈ H(div; Ω) and 𝑣 ∈ H1(Ω), i.e. the lower

bound holds for 𝜏 and 𝑣 satisfying [[𝜏 ]]𝑁 |Γ = [[𝑣]]|Γ = 0. For the general case, we construct two auxiliary functions̃︀𝜏 and ̃︀𝑣 to prove (16). Consider the elliptic problems

−∆𝑤0 = 0, in Ω0, 𝜕𝑛𝑤0 = −[[𝜏 ]]𝑁 |Γ, on Γ,

and
−∆𝑤1 = 0, in Ω0, 𝑤1 = −[[𝑣]]|Γ, on Γ.

Since [[𝜏 ]]𝑁 |Γ ∈ H−1/2(Γ) and [[𝑣]]|Γ ∈ 𝐻1/2(Γ), we can know that both problems have solutions in H1(Ω0) with
‖𝑤0‖𝐻1(Ω0) ≤ 𝐶‖[[𝜏 ]]𝑁‖𝐻−1/2(Γ) and ‖𝑤1‖𝐻1(Ω0) ≤ 𝐶‖[[𝑣]]‖𝐻1/2(Γ). We then extend 𝑤0 and 𝑤1 to the domain
Ω by zero. Let ̃︀𝜏 := 𝜏 +∇𝑤0 and ̃︀𝑣 := 𝑣 + 𝑤1, we have that [[̃︀𝜏 ]]𝑁 |Γ = [[̃︀𝑣]]|Γ = 0, which allows us to derive that

‖(𝜏 , 𝑣)‖e ≤ ‖(̃︀𝜏 , ̃︀𝑣)‖e + ‖(𝜏 − ̃︀𝜏 , 𝑣 − ̃︀𝑣)‖e ≤ ‖(̃︀𝜏 , ̃︀𝑣)‖e + 𝐶
(︁
‖[[𝜏 ]]𝑁‖𝐻−1/2(Γ) + ‖[[𝑣]]‖𝐻1/2(Γ)

)︁
,

and

‖(̃︀𝜏 , ̃︀𝑣)‖e ≤ 𝐶
(︁
‖𝒜̃︀𝜏 − 𝜀(̃︀𝑣)‖𝐿2(Ω0∪Ω1)

+ ‖∇ · ̃︀𝜏‖𝐿2(Ω0∪Ω1)

)︁
≤ 𝐶

(︁
‖𝒜𝜏 − 𝜀(𝑣)‖𝐿2(Ω0∪Ω1)

+ ‖∇ · 𝜏‖𝐿2(Ω0∪Ω1)

)︁
+ 𝐶

(︁
‖𝜏 − ̃︀𝜏‖𝐻(div;Ω0∪Ω1)

+ ‖𝑣 − ̃︀𝑣‖𝐻1(Ω0∪Ω1)

)︁
≤ 𝐶

(︁
‖𝒜𝜏 − 𝜀(𝑣)‖𝐿2(Ω0∪Ω1)

+ ‖∇ · 𝜏‖𝐿2(Ω0∪Ω1)
+ ‖[[𝜏 ]]𝑁‖𝐻−1/2(Γ) + ‖[[𝑣]]‖𝐻1/2(Γ)

)︁
.

Combining the above two estimates leads to the lower bound in (16), which completes the
proof. �

It is noted that the generic constants in (16) are independent of 𝜆, which ensure the proposed methods are
robust when 𝜆 →∞.

From the definition to 𝒥 (·; ·), it can be observed that

𝒥 (𝜏 , 𝑣; 0,0,0) = ‖𝒜𝜏 − 𝜀(𝑣)‖2𝐿2(Ω0∪Ω1)
+ ‖∇ · 𝜏‖2𝐿2(Ω0∪Ω1)

+ ‖[[𝜏 ]]𝑁‖2𝐻−1/2(Γ) + ‖[[𝑣]]‖2𝐻1/2(Γ).

Therefore, 𝒥 (𝜏 , 𝑣; 0,0,0) is equivalent to ‖(𝜏 , 𝑣)‖2e. Let (𝜏 , 𝑣) ∈ Σ × V be the solution to the problem (1)
with 𝑓 = 𝑎 = 𝑏 = 0, which implies that 𝒥 (𝜏 , 𝑣; 0,0,0) = 0. From the equivalence (16), we immediately find
that 𝜏 and 𝑣 are zero functions. Hence, the minimization problem inf(𝜏 ,𝑣)∈Σ×V 𝒥 (𝜏 , 𝑣; 𝑓 , 𝑎, 𝑏) admits a unique
solution.

4. Least squares finite element methods

In this section, we present the numerical schemes for solving the elasticity interface problem (1). We begin by
introducing the approximation finite element spaces. For the mesh 𝒯ℎ,𝑖(𝑖 = 0, 1), we define Σ𝑚

ℎ,𝑖 ⊂ H(div; Ωℎ,𝑖) as
the 𝐻(div)-conforming tensor-valued piecewise polynomial space of degree 𝑚. As the definition of H(div; Ωℎ,𝑖),
each column of functions in Σ𝑚

ℎ,𝑖 belongs to 𝐻(div; Ωℎ,𝑖), i.e. the BDM𝑚 space or the RT𝑚 space. In this paper,
the schemes are established on Σ𝑚

ℎ,𝑖 is the BDM𝑚 space. The methods and the analysis can be extended to the
RT𝑚 space without any difficulty. We define V𝑚

ℎ,0 ⊂ H1(Ωℎ,0) as the vector-valued 𝐶0 finite element space of
degree 𝑚, and define V𝑚

ℎ,1 ⊂ H1(Ωℎ,1) as the 𝐶0 finite element space with zero trace on 𝜕Ω, i.e. V𝑚
ℎ,1|𝜕Ω = 0.
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We define the extended approximation spaces Σ𝑚
ℎ := Σ𝑚

ℎ,0 · 𝜒0 + Σ𝑚
ℎ,1 · 𝜒1 and V𝑚

ℎ := V𝑚
ℎ,0 · 𝜒0 + V𝑚

ℎ,1 · 𝜒1 for
the stress and the displacement, respectively, where the characteristic function 𝜒𝑖 is defined in (4). Then, any
𝜏ℎ ∈ Σ𝑚

ℎ and any 𝑣ℎ ∈ V𝑚
ℎ admit a unique decomposition that

𝜏ℎ = 𝜏ℎ,0 · 𝜒0 + 𝜏ℎ,1 · 𝜒1, 𝑣ℎ = 𝑣ℎ,0 · 𝜒0 + 𝑣ℎ,1 · 𝜒1, (18)

where 𝜏ℎ,𝑖 ∈ Σ𝑚
ℎ,𝑖, 𝑣ℎ,𝑖 ∈ V𝑚

ℎ,𝑖. As the decomposition (4), we also formally let 𝜋𝑖(𝑖 = 0, 1) be the projection
operator such that 𝜋𝑖𝜏ℎ := 𝜏ℎ,𝑖 ∈ Σ𝑚

ℎ,𝑖(∀𝜏ℎ ∈ Σ𝑚
ℎ ) and 𝜋𝑖𝑣ℎ := 𝑣ℎ,𝑖 ∈ V𝑚

ℎ,𝑖(∀𝑣ℎ ∈ V𝑚
ℎ ).

The approximation spaces are conforming in the sense that Σ𝑚
ℎ ⊂ Σ and V𝑚

ℎ ⊂ V. A natural idea
to seek numerical solutions is minimizing the functional 𝒥 (·; ·) over the discrete conforming spaces, i.e.
inf(𝜏ℎ,𝑣ℎ)∈Σ𝑚

ℎ ×V𝑚
ℎ
𝒥 (𝜏ℎ, 𝑣ℎ; 𝑓 , 𝑎, 𝑏), which, however, is not an easy task. It is impossible to directly compute

the trace terms 𝐵𝜎(·; ·) and 𝐵𝑢(·; ·) in (15), and the minimization problem cannot be readily rewritten into
a variational problem by the means of Euler–Lagrange equation because of the presence of ‖ · ‖𝐻1/2(Γ) and
‖ · ‖𝐻−1/2(Γ). The main idea of the proposed method is to apply some computational trace terms to replace
𝐵𝜎(·; ·) and 𝐵𝑢(·; ·) in 𝒥 (·; ·) to define new functionals. The numerical approximations are then obtained by
minimizing the new functionals.

For the convergence analysis, we define the spaces Σℎ := {𝜎}∪Σ𝑚
ℎ and Vℎ := {𝑢}∪V𝑚

ℎ , which contain the
exact solution and all finite element functions, respectively. Here, we introduce the ghost penalty forms for the
spaces Σℎ and Vℎ from the forms (12). By the definition of 𝜋𝑖(𝑖 = 0, 1), there holds 𝜋𝑖𝜏ℎ ∈ L2(Ωℎ,𝑖)(∀𝜏ℎ ∈ Σℎ)
and 𝜋𝑖𝑣ℎ ∈ L2(Ωℎ,𝑖)(∀𝑣ℎ ∈ Vℎ). From (12), we define the forms 𝒮𝑚

ℎ (·, ·) and 𝒢𝑚
ℎ (·, ·) for Σℎ and Vℎ, respectively,

as
𝒮𝑚

ℎ (𝜏ℎ, 𝜌ℎ) := 𝑠𝑚
ℎ,0(𝜋0𝜏ℎ, 𝜋0𝜌ℎ) + 𝑠𝑚

ℎ,1(𝜋1𝜏ℎ, 𝜋1𝜌ℎ), ∀𝜏ℎ, 𝜌ℎ ∈ Σℎ,

with the induced seminorm |𝜏ℎ|2𝒮𝑚
ℎ

:= 𝒮𝑚
ℎ (𝜏ℎ, 𝜏ℎ)(∀𝜏ℎ ∈ Σℎ), and

𝒢𝑚
ℎ (𝑣ℎ, 𝑤ℎ) := 𝑠𝑚

ℎ,0(𝜋0𝑣ℎ, 𝜋0𝑤ℎ) + 𝑠𝑚
ℎ,1(𝜋1𝑣ℎ, 𝜋1𝑤ℎ), ∀𝑣ℎ, 𝑤ℎ ∈ Vℎ,

with the induced seminorm |𝑣ℎ|2𝒢𝑚
ℎ

:= 𝒢𝑚
ℎ (𝑣ℎ, 𝑣ℎ)(∀𝑣ℎ ∈ Vℎ). From properties P1 and P2, we have the

following estimates,

‖𝜋0𝜏ℎ‖𝐿2(Ωℎ,0)
+ ‖𝜋1𝜏ℎ‖𝐿2(Ωℎ,1)

≤ 𝐶
(︁
‖𝜏ℎ‖𝐿2(Ω) + |𝜏ℎ|𝒮𝑚

ℎ

)︁
≤ 𝐶

(︁
‖𝜋0𝜏ℎ‖𝐿2(Ωℎ,0)

+ ‖𝜋1𝜏ℎ‖𝐿2(Ωℎ,1)

)︁
, ∀𝜏ℎ ∈ Σℎ, (19)

‖𝜋0𝑣ℎ‖𝐿2(Ωℎ,0)
+ ‖𝜋1𝑣ℎ‖𝐿2(Ωℎ,1)

≤ 𝐶
(︁
‖𝑣ℎ‖𝐿2(Ω) + |𝑣ℎ|𝒢𝑚

ℎ

)︁
≤ 𝐶

(︁
‖𝜋0𝑣ℎ‖𝐿2(Ωℎ,0)

+ ‖𝜋1𝑣ℎ‖𝐿2(Ωℎ,1)

)︁
, ∀𝑣ℎ ∈ Vℎ, (20)

and

|𝜏 |𝒮𝑚
ℎ
≤ 𝐶ℎ𝑡‖𝜏‖𝐻𝑠(Ω), ∀𝜏 ∈ H𝑠(Ω), 𝑡 = min(𝑚, 𝑠),

|𝑣|𝒢𝑚
ℎ
≤ 𝐶ℎ𝑡‖𝑣‖𝐻𝑠+1(Ω), ∀𝑣 ∈ H𝑠+1(Ω), 𝑡 = min(𝑚 + 1, 𝑠 + 1).

4.1. 𝐿2 norm least squares finite element method for 𝑠 ≥ 1

We present the numerical method that defines the least squares functional using only 𝐿2 norms. This method
requires the exact solution has the regularity 𝑠 ≥ 1. As mentioned earlier, we will bound the trace terms 𝐵𝜎(·; ·)
and 𝐵𝑢(·; ·) by applying stronger and easily-computational norms. In this case, the space H𝑠(Ω𝑖) continuously
embeds into L2(Γ), which indicates that [[𝜏 ]]𝑁 |Γ = 𝑛 ·((𝜏 |Ω0−𝜏 |Ω1))|Γ ∈ L2(Γ) for ∀𝜏 ∈ Σ𝑠. From the definition
(7), one can find that

‖[[𝜏 ]]𝑁‖𝐻−1/2(Γ) ≤ 𝐶‖[[𝜏 ]]𝑁‖𝐿2(Γ), ∀𝜏 ∈ Σ𝑠. (21)
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For the displacement variable, we also give a stronger norm for ‖·‖𝐻1/2(Γ). We first consider the case that Γ is 𝐶2-
smooth. By the embedding relationship H𝑠+1(Ω𝑖) →˓ H1(Γ), we know that [[𝑣]]|Γ ∈ H1(Γ) for ∀𝑣 ∈ V𝑠+1. Here
the norm ‖𝑣‖2𝐻1(Γ) = ‖𝑣‖2𝐿2(Γ)+‖∇Γ𝑣‖2𝐿2(Γ), where ∇Γ denotes the tangential gradient on the interface [23]. The
tangential gradient ∇Γ𝑣(𝑥) for ∀𝑣 ∈ H1(Γ) only depends on values of 𝑣 on Γ∩𝑈 , where 𝑈 is a neighbourhood
of 𝑥. For 𝑖 = 0, 1, we note that any finite element function 𝑣ℎ,𝑖 ∈ V𝑚

ℎ,𝑖(𝑖 = 0, 1) is continuous and piecewise
smooth on Γ, i.e. 𝑣ℎ,𝑖|Γ ∈ 𝐶0(Γ) and 𝑣ℎ,𝑖|Γ𝐾

∈ 𝐶2(Γ𝐾)(∀𝐾 ∈ 𝒯 Γ
ℎ ), which gives that 𝑣ℎ,𝑖 ∈ H1(Γ). Thus, we

have that [[𝑣ℎ]]|Γ = (𝜋0𝑣ℎ)|Γ− (𝜋1𝑣ℎ)|Γ ∈ H1(Γ) for ∀𝑣ℎ ∈ V𝑚
ℎ . Consequently, we conclude that [[𝑣ℎ]]|Γ ∈ H1(Γ)

for ∀𝑣ℎ ∈ Vℎ. By the Sobolev interpolation inequality ([47], Thm. 7.4) and the Cauchy–Schwarz inequality, we
have that

‖[[𝑣]]‖2𝐻1/2(Γ) ≤ 𝐶‖[[𝑣]]‖𝐿2(Γ)‖[[𝑣]]‖𝐻1(Γ) ≤ 𝐶
(︁
ℎ−1‖[[𝑣]]‖2𝐿2(Γ) + ℎ‖[[∇Γ𝑣]]‖2𝐿2(Γ)

)︁
, ∀𝑣 ∈ Vℎ. (22)

The right hand side of (22) only involves the 𝐿2 norms, and can be easily computed.
For the case that Γ is polygonal (polyhedral), we let Γ𝑗(1 ≤ 𝑗 ≤ 𝐽) denote the sides of Γ, where every side Γ𝑗

is a line segment (polygon). Since Γ has corners, the estimate (22) will be modified in a piecewise manner. From
the embedding theory ([27], Thm. 1.5.2.1), we have that H𝑠+1(Ω𝑖) →˓ Π𝐽

𝑗=1H
1(Γ𝑗)(𝑖 = 0, 1), which brings us

that [[𝑣]]|Γ𝑗
∈ H1(Γ𝑗)(1 ≤ 𝑗 ≤ 𝐽) for ∀𝑣 ∈ V𝑠+1. Moreover, any 𝑣𝑚

ℎ,𝑖 ∈ V𝑚
ℎ,𝑖(𝑖 = 0, 1) is continuous and piecewise

smooth on each Γ𝑗 . We can know that (𝜋𝑖𝑣ℎ)|Γ𝑗 ∈ H1(Γ𝑗) and [[𝑣ℎ]]|Γ𝑗 ∈ H1(Γ𝑗) for ∀𝑣ℎ ∈ V𝑚
ℎ . Similar to (22),

the norm ‖ · ‖𝐻1/2(Γ) can be bounded by

‖[[𝑣]]‖2𝐻1/2(Γ) ≤ 𝐶

𝐽∑︁
𝑗=1

‖[[𝑣]]‖2𝐻1/2(Γ𝑗)
≤ 𝐶

𝐽∑︁
𝑗=1

‖[[𝑣]]‖𝐿2(Γ𝑗)
‖[[𝑣]]‖𝐻1(Γ𝑗)

≤ 𝐶

𝐽∑︁
𝑗=1

(︁
ℎ−1‖[[𝑣]]‖2𝐿2(Γ𝑗)

+ ℎ‖[[∇Γ𝑣]]‖2𝐿2(Γ𝑗)

)︁

≤ 𝐶ℎ−1‖[[𝑣]]‖2𝐿2(Γ) + 𝐶ℎ

𝐽∑︁
𝑗=1

‖[[∇Γ𝑣]]‖2𝐿2(Γ𝑗)
, ∀𝑣 ∈ Vℎ. (23)

The second inequality follows from the Sobolev interpolation inequality on each Γ𝑗 . Compared with (22), the
norm for the tangential gradient on Γ in (23) can be understood in a piecewise manner, i.e. we can formally let
‖∇Γ · ‖2𝐿2(Γ) :=

∑︀𝐽
𝑗=1 ‖∇Γ · ‖2𝐿2(Γ𝑗)

for the case Γ is polygonal. Then, the upper bound of the estimate (23) will
seem the same as the upper bound of (22). To simplify the representation, we use the notation consistent with
the case that Γ is 𝐶2.

Now, we define the discrete least squares functional 𝒥ℎ(·; ·) that only involves the 𝐿2 norms by

𝒥ℎ(𝜏ℎ, 𝑣ℎ; 𝑓 , 𝑎, 𝑏) := 𝐽(𝜏ℎ, 𝑣ℎ; 𝑓) + 𝐵𝜎
ℎ (𝜏ℎ; 𝑎) + 𝐵𝑢

ℎ (𝑣ℎ; 𝑏) + |𝜏ℎ|2𝒮𝑚
ℎ

+ |𝑣ℎ|2𝒢𝑚
ℎ

, ∀(𝜏ℎ, 𝑣ℎ) ∈ Σℎ ×Vℎ, (24)

where 𝐽(·; ·) is defined in (15), and

𝐵𝜎
ℎ (𝜏ℎ; 𝑎) := ‖[[𝜏ℎ]]𝑁 − 𝑎‖2𝐿2(Γ), 𝐵𝑢

ℎ (𝑣ℎ; 𝑏) := ℎ−1‖[[𝑣ℎ]]− 𝑏‖2𝐿2(Γ) + ℎ‖[[∇Γ𝑣ℎ]]−∇Γ𝑏‖2𝐿2(Γ). (25)

The last two seminorms in (24) are applied to guarantee the uniform upper bound of the condition number of
the resulting linear system.

The numerical solutions are sought by solving the minimization problem

inf
(𝜏ℎ,𝑣ℎ)∈Σ𝑚

ℎ ×V𝑚
ℎ

𝒥ℎ(𝜏ℎ, 𝑣ℎ; 𝑓 , 𝑎, 𝑏). (26)

Since all terms in 𝒥ℎ(·; ·) are defined with 𝐿2 norms, the problem (26) can be solved by writing the corresponding
Euler–Lagrange equation, which reads: seek (𝜎ℎ, 𝑢ℎ) ∈ Σ𝑚

ℎ ×V𝑚
ℎ such that

𝑎𝒥ℎ
(𝜎ℎ, 𝑢ℎ; 𝜏ℎ, 𝑣ℎ) = 𝑙𝒥ℎ

(𝜏ℎ, 𝑣ℎ), ∀(𝜏ℎ, 𝑣ℎ) ∈ Σ𝑚
ℎ ×V𝑚

ℎ , (27)



LSFEM FOR ELASTICITY INTERFACE PROBLEM ON UNFITTED MESH 705

where the forms 𝑎𝒥ℎ
(·; ·) and 𝑙𝒥ℎ

(·) are defined as

𝑎𝒥ℎ
(𝜏ℎ, 𝑣ℎ; 𝜌ℎ, 𝑤ℎ) := (𝒜𝜏ℎ − 𝜀(𝑣ℎ),𝒜𝜌ℎ − 𝜀(𝑤ℎ))𝐿2(Ω0∪Ω1)

+ (∇ · 𝜏ℎ,∇ · 𝜌ℎ)𝐿2(Ω0∪Ω1)

+ ([[𝜏ℎ]]𝑁 , [[𝜌ℎ]]𝑁 )𝐿2(Γ) + ℎ−1([[𝑣ℎ]], [[𝑤ℎ]])𝐿2(Γ) + ℎ([[∇Γ𝑣ℎ]], [[∇Γ𝑤ℎ]])𝐿2(Γ)

+ 𝒮𝑚
ℎ (𝜏ℎ, 𝜌ℎ) + 𝒢𝑚

ℎ (𝑣ℎ, 𝑤ℎ),

and

𝑙𝒥ℎ
(𝜏ℎ, 𝑣ℎ) := −(∇ · 𝜏ℎ, 𝑓)𝐿2(Ω0∪Ω1)

+ ([[𝜏ℎ]]𝑁 , 𝑎)𝐿2(Γ) + ℎ([[𝑣ℎ]], 𝑏)𝐿2(Γ) + ℎ−1([[∇Γ𝑣ℎ]],∇Γ𝑏)𝐿2(Γ).

For the convergence analysis, we are aiming to show that 𝑎𝒥ℎ
(·; ·) is bounded and coercive, and satisfies a

weakened Galerkin orthogonality property. Then, the error estimate can be reached in a standard argument.
We introduce the energy norm ‖ · ‖eℎ

by

‖(𝜏ℎ, 𝑣ℎ)‖2eℎ
:= ‖𝜏ℎ‖2𝐻(div;Ω0∪Ω1)

+ ‖𝑣ℎ‖2𝐻1(Ω0∪Ω1)
+ ‖[[𝜏ℎ]]𝑁‖2𝐿2(Γ)

+ ℎ−1‖[[𝑣ℎ]]‖2𝐿2(Γ) + ℎ‖[[∇Γ𝑣ℎ]]‖2𝐿2(Γ) + |𝜏ℎ|2𝒮𝑚
ℎ

+ |𝑣ℎ|2𝒢𝑚
ℎ

, ∀(𝜏ℎ, 𝑣ℎ) ∈ Σℎ ×Vℎ.

By (21)–(23), we have that

𝐵𝜎(𝜏ℎ; 0) = ‖[[𝜏ℎ]]𝑁‖2𝐻−1/2(Γ) ≤ 𝐶𝐵𝜎
ℎ (𝜏ℎ; 0), ∀𝜏ℎ ∈ Σℎ, (28)

and
𝐵𝑢(𝑣ℎ; 0) = ‖[[𝑣ℎ]]‖2𝐻1/2(Γ) ≤ 𝐶𝐵𝑢

ℎ (𝑣ℎ; 0), ∀𝑣ℎ ∈ Vℎ. (29)

Combining the definitions to 𝒥 (·; ·) and 𝒥ℎ(·; ·) and the above two estimates, there holds

𝒥 (𝜏ℎ, 𝑣ℎ; 0,0,0) ≤ 𝐶𝒥ℎ(𝜏ℎ, 𝑣ℎ; 0,0,0) = 𝑎𝒥ℎ
(𝜏ℎ, 𝑣ℎ; 𝜏ℎ, 𝑣ℎ), ∀(𝜏ℎ, 𝑣ℎ) ∈ Σ𝑚

ℎ ×V𝑚
ℎ .

From Lemma 2, we find that

‖𝜏ℎ‖2𝐻(div;Ω0∪Ω1)
+ ‖𝑣ℎ‖2𝐻1(Ω0∪Ω1)

≤ 𝐶𝑎𝒥ℎ
(𝜏ℎ, 𝑣ℎ; 𝜏ℎ, 𝑣ℎ), ∀(𝜏ℎ, 𝑣ℎ) ∈ Σ𝑚

ℎ ×V𝑚
ℎ . (30)

The boundedness and the coercivity of the bilinear form 𝑎𝒥ℎ
(·; ·) directly follows from the Cauchy–Schwarz

inequality, the estimate (17) and the estimate (30).

Lemma 3. There exist constants 𝐶 such that

𝑎𝒥ℎ
(𝜏ℎ, 𝑣ℎ; 𝜌ℎ, 𝑤ℎ) ≤ 𝐶‖(𝜏ℎ, 𝑣ℎ)‖eℎ

‖(𝜌ℎ, 𝑤ℎ)‖eℎ
, ∀(𝜏ℎ, 𝑣ℎ), (𝜌ℎ, 𝑤ℎ) ∈ Σℎ ×Vℎ, (31)

𝑎𝒥ℎ
(𝜏ℎ, 𝑣ℎ; 𝜏ℎ, 𝑣ℎ) ≥ 𝐶‖(𝜏ℎ, 𝑣ℎ)‖2eℎ

, ∀(𝜏ℎ, 𝑣ℎ) ∈ Σ𝑚
ℎ ×V𝑚

ℎ . (32)

Bringing the exact solution (𝜎, 𝑢) into the discrete variational problem (27) yields that

𝑎𝒥ℎ
(𝜎ℎ, 𝑢ℎ; 𝜏ℎ, 𝑣ℎ) = 𝑙𝒥ℎ

(𝜏ℎ, 𝑣ℎ) = 𝑎𝒥ℎ
(𝜎, 𝑢; 𝜏ℎ, 𝑣ℎ)− 𝒮𝑚

ℎ (𝜎, 𝜏ℎ)− 𝒢𝑚
ℎ (𝑢, 𝑣ℎ),

which leads to a weakened Galerkin orthogonality property of 𝑎𝒥ℎ
(·; ·).

Lemma 4. Let (𝜎, 𝑢) ∈ Σ𝑠×V𝑠+1 be the exact solution to (1), and let (𝜎ℎ, 𝑢ℎ) ∈ Σ𝑚
ℎ ×V𝑚

ℎ be the numerical
solution to (27), there holds

𝑎𝒥ℎ
(𝜎 − 𝜎ℎ, 𝑢− 𝑢ℎ; 𝜏ℎ, 𝑣ℎ) = 𝒮𝑚

ℎ (𝜎, 𝜏ℎ) + 𝒢𝑚
ℎ (𝑢, 𝑣ℎ). (33)
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To complete the error estimation, we present an approximation estimate under the norm ‖ · ‖eℎ
.

Lemma 5. Let (𝜎, 𝑢) ∈ Σ𝑠 ×V𝑠+1 be the exact solution to the problem (1), there exists (𝜎𝐼 , 𝑢𝐼) ∈ Σ𝑚
ℎ ×V𝑚

ℎ

such that

‖(𝜎 − 𝜎𝐼 , 𝑢− 𝑢𝐼)‖eℎ
≤ 𝐶ℎ𝑡−1/2

(︁
‖𝜎‖𝐻𝑠(div;Ω0∪Ω1)

+ ‖𝑢‖𝐻𝑠+1(Ω0∪Ω1)

)︁
, 𝑡 = min(𝑚, 𝑠). (34)

Moreover, if 𝜎 ∈ H𝑠+1(Ω0 ∪ Ω1), there holds

‖(𝜎 − 𝜎ℎ, 𝑢− 𝑢𝐼)‖eℎ
≤ 𝐶ℎ𝑡

(︁
‖𝜎‖𝐻𝑠+1(Ω0∪Ω1)

+ ‖𝑢‖𝐻𝑠+1(Ω0∪Ω1)

)︁
, 𝑡 = min(𝑚, 𝑠). (35)

Proof. For 𝑖 = 0, 1, we let 𝜎𝐼,𝑖 ∈ Σ𝑚
ℎ,𝑖 be the interpolant of 𝜋𝑖𝜎 into the space Σ𝑚

ℎ,𝑖, and let 𝑢𝐼,𝑖 ∈ V𝑚
ℎ,𝑖 be the

interpolant of 𝜋𝑖𝑢 into the space V𝑚
ℎ,𝑖. From the approximation properties of finite element spaces [19, 51], we

have that

‖𝜋𝑖𝜎 − 𝜎𝐼,𝑖‖𝐻(div;Ωℎ,𝑖)
≤ 𝐶ℎ𝑡‖𝜋𝑖𝜎‖𝐻𝑠(div;Ωℎ,𝑖)

≤ 𝐶ℎ𝑡‖𝜎‖𝐻𝑠(div;Ω0∪Ω1)
,

‖𝜋𝑖𝑢− 𝑢𝐼,𝑖‖𝐻1(Ωℎ,𝑖)
≤ 𝐶ℎ𝑡‖𝜋𝑖𝑢‖𝐻𝑠+1(Ωℎ,𝑖)

≤ 𝐶ℎ𝑡‖𝑢‖𝐻𝑠+1(Ω0∪Ω1). (36)

Let 𝜎𝐼 := 𝜎𝐼,0 ·𝜒0+𝜎𝐼,1 ·𝜒1 and 𝑢𝐼 := 𝑢𝐼,0 ·𝜒0+𝑢𝐼,1 ·𝜒1. The errors ‖𝜎−𝜎𝐼‖𝐻(div;Ω0∪Ω1) and ‖𝑢−𝑢𝐼‖𝐻1(Ω0∪Ω1)

can be bounded directly by (36). The trace term ‖[[𝜎−𝜎𝐼 ]]𝑁‖𝐿2(Γ) is split into two parts by the triangle inequality
that

‖[[𝜎 − 𝜎𝐼 ]]𝑁‖𝐿2(Γ) ≤ ‖𝜋0𝜎 − 𝜎𝐼,0‖𝐿2(Γ) + ‖𝜋1𝜎 − 𝜎𝐼,1‖𝐿2(Γ).

Since 𝑠 ≥ 1, we are allowed to apply the 𝐻1 trace estimate (13) and the approximation property (36) to find
that

‖𝜋𝑖𝜎 − 𝜎𝐼,𝑖‖2𝐿2(Γ) =
∑︁

𝐾∈𝒯 Γ
ℎ

‖𝜋𝑖𝜎 − 𝜎𝐼,𝑖‖2𝐿2(Γ𝐾) ≤ 𝐶
∑︁

𝐾∈𝒯 Γ
ℎ

(︁
ℎ−1‖𝜋𝑖𝜎 − 𝜎𝐼,𝑖‖2𝐿2(𝐾) + ℎ‖𝜋𝑖𝜎 − 𝜎𝐼,𝑖‖2𝐻1(𝐾)

)︁
≤ 𝐶ℎ2𝑡−1‖𝜎‖2𝐻𝑠(Ω0∪Ω1)

, 𝑖 = 0, 1. (37)

Similarly, we apply the trace estimate (13) to obtain that

ℎ−1‖[[𝑢− 𝑢𝐼 ]]‖2𝐿2(Γ) + ℎ‖[[∇Γ(𝑢− 𝑢𝐼)]]‖2𝐿2(Γ) ≤ 𝐶ℎ2𝑡‖𝑢‖2𝐻𝑠+1(Ω0∪Ω1)
. (38)

Finally, we apply the 𝐿2 extension property (19) and (20) to deduce that

|𝜎 − 𝜎𝐼 |𝒮𝑚
ℎ
≤ 𝐶

(︁
‖𝜋0𝜎 − 𝜎𝐼,0‖𝐿2(Ωℎ,0)

+ ‖𝜋1𝜎 − 𝜎𝐼,1‖𝐿2(Ωℎ,1)

)︁
≤ 𝐶ℎ𝑡‖𝜎‖𝐻𝑠(Ω0∪Ω1)

|𝑢− 𝑢𝐼 |𝒢𝑚
ℎ
≤ 𝐶

(︁
‖𝜋0𝑢− 𝑢𝐼,0‖𝐿2(Ωℎ,0)

+ ‖𝜋1𝑢− 𝑢𝐼,1‖𝐿2(Ωℎ,1)

)︁
≤ 𝐶ℎ𝑡+1‖𝑢‖𝐻𝑠+1(Ω0∪Ω1)

.

Combining all above estimates yields the desired estimate (34). In addition, if 𝜎 has a higher regularity that
𝜎 ∈ H𝑠+1(Ω0∪Ω1), the upper bound in (37) can be replaced by 𝐶ℎ2𝑡‖𝜎‖2𝐻𝑠+1(Ω0∪Ω1)

, which leads to the estimate
(35). This completes the proof. �

The error estimation to the numerical solution of (24) follows from Lemmas 3 to 5.

Theorem 1. Let (𝜎, 𝑢) ∈ Σ𝑠×V𝑠+1 be the exact solution to the problem (1), and let (𝜎ℎ, 𝑢ℎ) ∈ Σ𝑚
ℎ ×V𝑚

ℎ be
the numerical solution to the problem (24), there holds

‖(𝜎 − 𝜎ℎ, 𝑢− 𝑢ℎ)‖eℎ
≤ 𝐶ℎ𝑡−1/2

(︁
‖𝜎‖𝐻(div;Ω0∪Ω1)

+ ‖𝑢‖𝐻𝑠+1(Ω0∪Ω1)

)︁
, 𝑡 = min(𝑚, 𝑠). (39)
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Moreover, if 𝜎 ∈ H𝑠+1(Ω0 ∪ Ω1), there holds

‖(𝜎 − 𝜎ℎ, 𝑢− 𝑢ℎ)‖eℎ
≤ 𝐶ℎ𝑡

(︁
‖𝜎‖𝐻(div;Ω0∪Ω1)

+ ‖𝑢‖𝐻𝑠+1(Ω0∪Ω1)

)︁
, 𝑡 = min(𝑚, 𝑠). (40)

Proof. The proof is standard. For any (𝜏ℎ, 𝑣ℎ) ∈ Σ𝑚
ℎ ×V𝑚

ℎ , we apply (31)–(33) to find that

‖(𝜎ℎ − 𝜏ℎ, 𝑢ℎ − 𝑣ℎ)‖2eℎ
≤ 𝐶𝑎ℎ(𝜎ℎ − 𝜏ℎ, 𝑢ℎ − 𝑣ℎ; 𝜎ℎ − 𝜏ℎ, 𝑢ℎ − 𝑣ℎ)
= 𝐶(𝑎ℎ(𝜎 − 𝜏ℎ, 𝑢− 𝑣ℎ; 𝜎ℎ − 𝜏ℎ, 𝑢ℎ − 𝑣ℎ)− 𝑠ℎ(𝜎, 𝜎ℎ − 𝜏ℎ)− 𝑠ℎ(𝑢, 𝑢ℎ −𝑤ℎ))
≤ 𝐶

(︀
‖(𝜎 − 𝜏ℎ, 𝑢− 𝑣ℎ)‖eℎ

+ |𝜎|𝒮𝑚
ℎ

+ |𝑢|𝒢𝑚
ℎ

)︀
‖(𝜎ℎ − 𝜏ℎ, 𝑢ℎ − 𝑣ℎ)‖eℎ

≤ 𝐶
(︁
‖(𝜎 − 𝜏ℎ, 𝑢− 𝑣ℎ)‖eℎ

+ ℎ𝑠‖𝜎‖𝐻𝑠(Ω0∪Ω1)
+ ℎ𝑠+1‖𝑢‖𝐻𝑠+1(Ω0∪Ω1)

)︁
× ‖(𝜎ℎ − 𝜏ℎ, 𝑢ℎ − 𝑣ℎ)‖eℎ

.

Applying the triangle inequality, we find that

‖(𝜎 − 𝜎ℎ, 𝑢− 𝑢ℎ)‖eℎ
≤ 𝐶‖(𝜎 − 𝜏ℎ, 𝑢− 𝑣ℎ)‖eℎ

+ 𝐶ℎ𝑠
(︁
‖𝜎‖𝐻𝑠(div;Ω0∪Ω1)

+ ‖𝑢‖𝐻𝑠+1(Ω0∪Ω1)

)︁
.

Since (𝜏ℎ, 𝑣ℎ) is arbitrary, the error estimate under the norm ‖ · ‖eℎ
follows from the approximation properties

in Lemma 5. This completes the proof. �

We estimate the condition number for the linear system (27), which is especially desired in the unfitted
method.

Theorem 2. There exists a constant 𝐶 such that

𝜅(𝐴𝒥ℎ
) ≤ 𝐶ℎ−2, (41)

where 𝐴𝒥ℎ
is the linear system with respect to 𝑎𝒥ℎ

(·; ·).

Proof. Since the bilinear form 𝑎𝒥ℎ
(·; ·) is bounded and coercive with respect to the norm ‖·‖eℎ

. From Section 3.2
of [24], the main step is to show the relationship between the energy norm ‖ · ‖eℎ

and the 𝐿2 norm. Note that
the finite element spaces Σ𝑚

ℎ and V𝑚
ℎ are the combinations of Σ𝑚

ℎ,0 and Σ𝑚
ℎ,1 and of V𝑚

ℎ,0 and V𝑚
ℎ,1, respectively,

where the spaces Σ𝑚
ℎ,𝑖 and V𝑚

ℎ,𝑖 are defined on the domain Ωℎ,𝑖. Hence, our goal is to show that∑︁
𝑖=0,1

(︁
‖𝜋𝑖𝜏ℎ‖2𝐿2(Ωℎ,𝑖)

+ ‖𝜋𝑖𝑣ℎ‖2𝐿2(Ωℎ,𝑖)

)︁
≤ 𝐶‖(𝜏ℎ, 𝑣ℎ)‖2eℎ

≤ 𝐶ℎ−2
∑︁

𝑖=0,1

(︁
‖𝜋𝑖𝜏ℎ‖2𝐿2(Ωℎ,𝑖)

+ ‖𝜋𝑖𝑣ℎ‖2𝐿2(Ωℎ,𝑖)

)︁
, ∀(𝜏ℎ, 𝑣ℎ) ∈ Σ𝑚

ℎ ×V𝑚
ℎ . (42)

Since ‖ · ‖eℎ
is stronger than ‖ · ‖e, we have that

‖𝜏ℎ‖𝐿2(Ω0∪Ω1)
+ ‖𝑣ℎ‖𝐿2(Ω0∪Ω1)

≤ 𝐶‖(𝜏ℎ, 𝑣ℎ)‖e ≤ 𝐶‖(𝜏ℎ, 𝑣ℎ)‖eℎ
.

The lower bound in (42) then follows from the estimates (19) and (20). For the upper bound, we apply the
triangle inequality and the inverse estimate to find that

‖(𝜏ℎ, 𝑣ℎ)‖2eℎ
≤ 𝐶

∑︁
𝑖=0,1

(︁
‖𝜋𝑖𝜏ℎ‖2𝐻1(Ωℎ,𝑖)

+ ‖𝜋𝑖𝑣ℎ‖2𝐻1(Ωℎ,𝑖)

)︁
≤ 𝐶ℎ−2

∑︁
𝑖=0,1

(︁
‖𝜋𝑖𝜏ℎ‖2𝐿2(Ωℎ,𝑖)

+ ‖𝜋𝑖𝑣ℎ‖2𝐿2(Ωℎ,𝑖)

)︁
.

From Corollary 3.4 of [24] and Section 2.6 of [30], the estimate (41) comes from (42), which completes the
proof. �
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We have completed the error analysis for the discrete variational form (27). The scheme is robust in the sense
that the constants appearing in the error bounds (39) and (40) are independent of 𝜆, and also are independent
of how the interface Γ cuts the mesh. From Theorem 1, the convergence rate of the numerical error under the
energy norm is half order lower than the optimal rate without the higher regularity assumption. The major
reason is that we use the stronger 𝐿2 norm to replace the minus norm ‖ · ‖𝐻−1/2(Γ) to define the new quadratic
functional, and the errors on the interface are essentially established by the 𝐻1 trace estimate as (37) and (38).
In addition, both estimates require the exact solution (𝜎, 𝑢) has at least 𝐻1(div)×𝐻2 regularity. Consequently,
this method and the analysis cannot be extended to the case of low regularity that 𝑠 < 1.

4.2. Least squares finite element method with the discrete minus norm for 𝑠 > 1/2

In this subsection, we give the numerical method that has the optimal convergence speed for 𝑠 > 1/2. As
stated before, the replacement of the 𝐿2 norm cannot work and the 𝐻1 trace estimate is also inappropriate
for the case of low regularity. The natural choice is to involve the ‖ · ‖𝐻−1/2(Γ) in the discrete least squares
functional, but the minus norm is not easy to compute. Here we follow the idea in [7, 8] to employ a discrete
inner product, which is related to the minus norm ‖ · ‖𝐻−1/2(Γ). We first give an inner product in H−1/2(Γ).

For any 𝑣 ∈ H−1/2(Γ), consider the elliptic problem 𝑤 − ∆𝑤 = 0 in Ω0 with 𝜕𝑛𝑤 = 𝑣 on Γ = 𝜕Ω0. The
corresponding weak form reads

(∇𝑤,∇𝑡)𝐿2(Ω0)
+ (𝑤, 𝑡)𝐿2(Ω0)

= (𝑣, 𝑡)𝐿2(Γ), ∀𝑡 ∈ H1(Ω0). (43)

The elliptic regularity theory indicates that the problem (43) admits a unique solution 𝑤 ∈ H1(Ω0) with
‖𝑤‖𝐻1(Ω0) ≤ 𝐶‖𝑣‖𝐻−1/2(Γ). This fact allows us to define an operator 𝑇 : H−1/2(Γ) → H1(Ω0) such that 𝑇𝑣 is
the solution to (43) for ∀𝑣 ∈ H−1/2(Γ). From 𝑇 and (43), we define an inner product in H−1/2(Γ) as

(𝑣, 𝑞)−1/2,Γ := (𝑣, 𝑇𝑞)𝐿2(Γ), ∀𝑣, 𝑞 ∈ 𝐻−1/2(Γ), (44)

with the induced norm ‖𝑣‖2−1/2,Γ := (𝑣, 𝑣)−1/2,Γ. We then show that ‖ · ‖−1/2,Γ and ‖ · ‖𝐻−1/2(Γ) are equivalent.

For ∀𝑣 ∈ H−1/2(Γ), we let 𝑡 = 𝑇𝑣 in (43), which directly gives that ‖𝑇𝑣‖𝐻1(Ω0) = ‖𝑣‖−1/2,Γ. From the trace
estimate ‖𝑤‖𝐻1/2(Γ) ≤ 𝐶‖𝑤‖𝐻1(Ω0)(∀𝑤 ∈ H1(Ω0)), we derive that

‖𝑣‖−1/2,Γ =
(𝑣, 𝑇𝑣)𝐿2(Γ)

‖𝑇𝑣‖𝐻1(Ω0)
≤ 𝐶

(𝑣, 𝑇𝑣)𝐿2(Γ)

‖𝑇𝑣‖𝐻1/2(Γ)

≤ 𝐶‖𝑣‖𝐻−1/2(Γ), ∀𝑣 ∈ H−1/2(Γ).

For any 𝑧 ∈ H1/2(Γ), there exists 𝜙𝑧 ∈ H1(Ω0) such that 𝜙𝑧|Γ = 𝑧 and ‖𝜙𝑧‖𝐻1(Ω0) ≤ 𝐶‖𝑧‖𝐻1/2(Γ). Given
𝑣 ∈ H−1/2(Γ), we find that

(𝑣, 𝑧)𝐿2(Γ) = (𝑣, 𝜙𝑧)𝐿2(Γ) = (∇𝑇𝑣,∇𝜙𝑧)𝐿2(Ω0)
+ (𝑇𝑣, 𝜙𝑧)𝐿2(Ω0)

≤ ‖𝑇𝑣‖𝐻1(Ω0)‖𝜙𝑧‖𝐻1(Ω0)
= 𝐶‖𝑣‖−1/2,Γ‖𝑧‖𝐻1/2(Γ), ∀𝑧 ∈ H1/2(Γ),

which indicates that ‖𝑣‖𝐻−1/2(Γ) ≤ 𝐶‖𝑣‖−1/2,Γ. The equivalence between both norms is reached.
Roughly speaking, we have defined an equivalent norm and an inner product for the space H−1/2(Γ), although

the operator 𝑇 and the inner product (·, ·)−1/2,Γ still cannot be directly computed. In the numerical scheme,
we introduce a discrete operator 𝑇ℎ to replace 𝑇 to make the method computationally feasible. The discrete
operator 𝑇ℎ is established with the space V1

ℎ,0, which is the 𝐶0 linear finite element space defined on the
partition 𝒯ℎ,0. Given any 𝑣 ∈ H−1/2(Γ), we define the following discrete weak form: seek 𝑤ℎ ∈ V1

ℎ,0 such that

(∇𝑤ℎ,∇𝑡ℎ)𝐿2(Ω0)
+ (𝑤ℎ, 𝑡ℎ)𝐿2(Ω0)

+ 𝑠1
ℎ,0(𝑤ℎ, 𝑡ℎ) = (𝑣, 𝑡ℎ)𝐿2(Γ), ∀𝑡ℎ ∈ V1

ℎ,0. (45)
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Remark 2. The discrete variational form (45) can be regarded as an unfitted scheme for the elliptic system
(43) based on the mesh 𝒯ℎ,0. The ghost penalty form 𝑠1

ℎ,0(·, ·) ensures the uniform upper bound of the condition
number to the corresponding linear system. From Theorem 2.16 of [30], the upper bound is 𝑂(ℎ−2) for (45).

It can be easily seen that the problem (45) admits a unique solution in V1
ℎ,0. Similarly, this property allows

us to define an operator 𝑇ℎ : H−1/2(Γ) → V1
ℎ,0 that 𝑇ℎ𝑣 is the solution to the discrete problem (45) for

∀𝑣 ∈ H−1/2(Γ). As (44), we define the discrete inner product (·, ·)−1/2,ℎ and the induced norm ‖ · ‖−1/2,ℎ as

(𝑣, 𝑞)−1/2,ℎ := (𝑣, 𝑇ℎ𝑞)𝐿2(Γ), ‖𝑣‖2−1/2,ℎ := (𝑣, 𝑣)−1/2,ℎ, ∀𝑣, 𝑞 ∈ H−1/2(Γ). (46)

Let 𝑡ℎ = 𝑤ℎ in (45), together with the property (8), it can be seen that

‖𝑣‖2−1/2,ℎ = (𝑣, 𝑇ℎ𝑣)−1/2,ℎ = ‖𝑇ℎ𝑣‖2𝐻1(Ω0)
+ |𝑇ℎ𝑣|2𝑠1

ℎ,0
≥ ‖𝑇ℎ𝑣‖2𝐻1(Ω0)

, (47)

and
‖𝑣‖2−1/2,ℎ = ‖𝑇ℎ𝑣‖2𝐻1(Ω0)

+ |𝑇ℎ𝑣|2𝑠1
ℎ,0
≤ 𝐶‖𝑇ℎ𝑣‖2𝐻1(Ωℎ,0)

. (48)

Then, we give the relationship between 𝑇 and 𝑇ℎ.

Lemma 6. There exist constants 𝐶 such that

‖𝑣‖−1/2,ℎ ≤ 𝐶‖𝑣‖−1/2,Γ, ∀𝑣 ∈ H−1/2(Γ), (49)

and
‖𝑣‖−1/2,Γ ≤ 𝐶(‖𝑣‖−1/2,ℎ + ℎ1/2‖𝑣‖𝐿2(Γ)), ∀𝑣 ∈ L2(Γ). (50)

Proof. For ∀𝑣 ∈ H−1/2(Γ), from (43) and (47), we have that

‖𝑣‖−1/2,ℎ =
(𝑣, 𝑇ℎ𝑣)𝐿2(Γ)

‖𝑣‖−1/2,ℎ
≤

(𝑣, 𝑇ℎ𝑣)𝐿2(Γ)

‖𝑇ℎ𝑣‖𝐻1(Ω0)
≤ sup

𝑡∈H1(Ω0)

(𝑣, 𝑡)𝐿2(Γ)

‖𝑡‖𝐻1(Ω0)
≤ ‖𝑇𝑣‖𝐻1(Ω0) ≤ ‖𝑣‖−1/2,Γ,

which brings us the estimate (49).
From the Sobolev extension theory [1], there exists a linear extension operator 𝐸0 : H1(Ω0) → H1(Ω) such

that (𝐸0𝑤)|Ω0 = 𝑤, ‖𝐸0𝑤‖𝐻1(Ω) ≤ 𝐶‖𝑤‖𝐻1(Ω0) for ∀𝑤 ∈ H1(Ω0). Let 𝐼1
ℎ,0 be the Scott-Zhang interpolation

operator of the space V1
ℎ,0, which satisfies the approximation estimates⃦⃦

𝑤 − 𝐼1
ℎ,0𝑤

⃦⃦
𝐻𝑞(Ωℎ,0)

≤ 𝐶ℎ1−𝑞‖𝑤‖𝐻1(Ωℎ,0), 𝑞 = 0, 1, ∀𝑤 ∈ H1(Ωℎ,0).

From the trace estimate (13), it is quite standard to derive that ‖𝑤 − 𝐼1
ℎ,0𝑤‖𝐿2(Γ) ≤ 𝐶ℎ1/2‖𝑤‖𝐻1(Ωℎ,0) for

∀𝑤 ∈ 𝐻1(Ωℎ,0). Then, we deduce that

‖𝑣‖2−1/2,Γ = (𝑣, 𝑇𝑣)𝐿2(Γ) =
(︀
𝑣, 𝐸0(𝑇𝑣)

)︀
𝐿2(Γ)

=
(︀
𝑣, 𝐼1

ℎ,0𝐸
0(𝑇𝑣)

)︀
𝐿2(Γ)

+
(︀
𝑣, 𝐸0(𝑇𝑣)− 𝐼1

ℎ,0

(︀
𝐸0(𝑇𝑣)

)︀)︀
𝐿2(Γ)

.

The second term can be bounded by the approximation property, that is(︀
𝑣, 𝐸0(𝑇𝑣)− 𝐼ℎ,0

(︀
𝐸0(𝑇𝑣)

)︀)︀
𝐿2(Γ)

≤ 𝐶ℎ1/2‖𝑣‖𝐿2(Γ)

⃦⃦
𝐸0(𝑇𝑣)

⃦⃦
𝐻1(Ωℎ,0)

≤ 𝐶ℎ1/2‖𝑣‖𝐿2(Γ)‖𝑇𝑣‖𝐻1(Ω0)

≤ 𝐶ℎ1/2‖𝑣‖𝐿2(Γ)‖𝑣‖−1/2,Γ.
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We let 𝑡ℎ = 𝐼1
ℎ,0(𝐸0(𝑇𝑣)) in (45) and apply (48) to bound the first term,

(︀
𝑣, 𝐼1

ℎ,0

(︀
𝐸0(𝑇𝑣)

)︀)︀
𝐿2(Γ)

≤ 𝐶
(︁
‖𝑇ℎ𝑣‖𝐻1(Ω0)

+ |𝑇ℎ𝑣|𝑠1
ℎ,0

)︁(︁⃦⃦
𝐼1
ℎ,0

(︀
𝐸0(𝑇𝑣)

)︀⃦⃦
𝐻1(Ω0)

+ |𝐼1
ℎ,0

(︀
𝐸0(𝑇𝑣)

)︀
|𝑠1

ℎ,0

)︁
≤ 𝐶‖𝑣‖−1/2,ℎ

⃦⃦
𝐼1
ℎ,0

(︀
𝐸0(𝑇𝑣)

)︀⃦⃦
𝐻1(Ωℎ,0)

≤ 𝐶‖𝑣‖−1/2,ℎ

⃦⃦
𝐸0(𝑇𝑣)

⃦⃦
𝐻1(Ωℎ,0)

≤ 𝐶‖𝑣‖−1/2,ℎ

⃦⃦
𝐸0(𝑇𝑣)

⃦⃦
𝐻1(Ω)

≤ 𝐶‖𝑣‖−1/2,ℎ‖𝑇𝑣‖𝐻1(Ω0) ≤ 𝐶‖𝑣‖−1/2,ℎ‖𝑣‖−1/2,Γ.

Collecting all above estimates yields the second estimate (50), which completes the proof. �

Now, let us define the least squares functional ̃︀𝒥ℎ(·; ·) by

̃︀𝒥ℎ(𝜏ℎ, 𝑣ℎ; 𝑓 , 𝑎, 𝑏) := 𝐽(𝜏ℎ, 𝑣ℎ; 𝑓) + ̃︀𝐵𝜎
ℎ (𝜏ℎ; 𝑎) + 𝐵𝑢

ℎ (𝑣ℎ; 𝑏) + |𝜏ℎ|2𝒮𝑚
ℎ

+ |𝑣ℎ|2𝒢𝑚
ℎ

, ∀(𝜏ℎ, 𝑣ℎ) ∈ Σℎ ×Vℎ (51)

where 𝐵𝑢
ℎ (·; ·) is defined as in (25) and ̃︀𝐵𝜎

ℎ (·; ·) is defined as

̃︀𝐵𝜎
ℎ (𝜏ℎ; 𝑎) := ‖[[𝜏ℎ]]𝑁 − 𝑎‖2−1/2,ℎ + ℎ‖[[𝜏ℎ]]𝑁 − 𝑎‖2𝐿2(Γ), ∀𝜏ℎ ∈ Σℎ. (52)

The numerical solutions are sought by minimizing the functional ̃︀𝒥ℎ(·; ·) over the finite element spaces Σ𝑚
ℎ ×V𝑚

ℎ .
This minimization problem is equivalent to a variational problem by writing the Euler–Lagrange equation, which
reads: seek (𝜎ℎ, 𝑢ℎ) ∈ Σ𝑚

ℎ ×V𝑚
ℎ such that

𝑎 ̃︀𝒥ℎ
(𝜎ℎ, 𝑢ℎ; 𝜏ℎ, 𝑣ℎ) = 𝑙 ̃︀𝒥ℎ

(𝜏ℎ, 𝑣ℎ), ∀(𝜏ℎ, 𝑣ℎ) ∈ Σ𝑚
ℎ ×V𝑚

ℎ , (53)

where the forms 𝑎 ̃︀𝒥ℎ
(·; ·) and 𝑙 ̃︀𝒥ℎ

(·) are defined as

𝑎 ̃︀𝒥ℎ
(𝜏ℎ, 𝑣ℎ; 𝜌ℎ, 𝑤ℎ) := (𝒜𝜏ℎ − 𝜀(𝑣ℎ),𝒜𝜌ℎ − 𝜀(𝑤ℎ))𝐿2(Ω0∪Ω1)

+ (∇ · 𝜏ℎ,∇ · 𝜌ℎ)𝐿2(Ω0∪Ω1)

+ ([[𝜏ℎ]]𝑁 , [[𝜌ℎ]]𝑁 )−1/2,ℎ + ℎ([[𝜏ℎ]]𝑁 , [[𝜌ℎ]]𝑁 )𝐿2(Γ) + ℎ−1([[𝑣ℎ]], [[𝑤ℎ]])𝐿2(Γ)

+ ℎ([[∇Γ𝑣ℎ]], [[∇Γ𝑤ℎ]])𝐿2(Γ) + 𝒮𝑚
ℎ (𝜏ℎ, 𝜌ℎ) + 𝒢𝑚

ℎ (𝑣ℎ, 𝑤ℎ),

and
𝑙 ̃︀𝒥ℎ

(𝜏ℎ, 𝑣ℎ) := − (∇ · 𝜏ℎ, 𝑓)𝐿2(Ω0∪Ω1)
+ ([[𝜏ℎ]]𝑁 , 𝑎)−1/2,ℎ + ℎ([[𝜏ℎ]]𝑁 , 𝑎)𝐿2(Γ)

+ ℎ−1([[𝑣ℎ]], 𝑏)𝐿2(Γ) + ℎ([[∇Γ𝑣ℎ]],∇Γ𝑏)𝐿2(Γ).

The convergence analysis of the solution in (53) is analogous to the discrete variational form (27). We introduce
the energy norm ‖ · ‖̃︀eℎ

by

‖(𝜏ℎ, 𝑣ℎ)‖2̃︀eℎ
:= ‖𝜏ℎ‖2𝐻(div;Ω0∪Ω1)

+ ‖𝑣ℎ‖2𝐻1(Ω0∪Ω1)
+ ‖[[𝜏ℎ]]‖2−1/2,ℎ + ℎ‖[[𝜏ℎ]]‖2𝐿2(Γ)

+ ℎ−1‖[[𝑣ℎ]]‖2𝐿2(Γ) + ℎ‖[[∇Γ𝑣ℎ]]‖2𝐿2(Γ) + |𝜏ℎ|2𝒮𝑚
ℎ

+ |𝑣ℎ|2𝒢𝑚
ℎ

, ∀(𝜏ℎ, 𝑣ℎ) ∈ Σℎ ×Vℎ.

From Lemma 6, there holds

𝐵𝜎(𝜏ℎ; 0) = ‖[[𝜏ℎ]]‖2𝐻−1/2(Γ) ≤ 𝐶
(︁
‖[[𝜏ℎ]]‖2−1/2,ℎ + ℎ‖[[𝜏ℎ]]‖2𝐿2(Γ)

)︁
= ̃︀𝐵𝜎

ℎ (𝜏ℎ; 0), ∀𝜏ℎ ∈ Σℎ.

Together with the estimate (29), we can know that

𝒥 (𝜏ℎ, 𝑣ℎ; 0,0,0) ≤ 𝐶 ̃︀𝒥ℎ(𝜏ℎ, 𝑣ℎ; 0,0,0) = 𝐶𝑎 ̃︀𝒥ℎ
(𝜏ℎ, 𝑣ℎ; 𝜏ℎ, 𝑣ℎ), ∀(𝜏ℎ, 𝑣ℎ) ∈ Σℎ ×Vℎ.

As Lemma 3, it is similar to get that 𝑎 ̃︀𝒥ℎ
(·; ·) is bounded and coercive under the energy norm ‖·‖̃︀eℎ

, and satisfies
a weakened Galerkin orthogonality property.
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Lemma 7. There exist constants 𝐶 such that

𝑎 ̃︀𝒥ℎ
(𝜏ℎ, 𝑣ℎ; 𝜌ℎ, 𝑤ℎ) ≤ 𝐶‖(𝜏ℎ, 𝑣ℎ)‖̃︀eℎ

‖(𝜌ℎ, 𝑤ℎ)‖̃︀eℎ
, ∀(𝜏ℎ, 𝑣ℎ), (𝜌ℎ, 𝑤ℎ) ∈ Σℎ ×Vℎ, (54)

𝑎 ̃︀𝒥ℎ
(𝜏ℎ, 𝑣ℎ; 𝜏ℎ, 𝑣ℎ) ≥ 𝐶‖(𝜏ℎ, 𝑣ℎ)‖2̃︀eℎ

, ∀(𝜏ℎ, 𝑣ℎ) ∈ Σ𝑚
ℎ ×V𝑚

ℎ . (55)

Lemma 8. Let (𝜎, 𝑢) ∈ Σ𝑠 × V𝑠+1 be the exact solution to (1), let (𝜎ℎ, 𝑢ℎ) ∈ Σ𝑚
ℎ × V𝑚

ℎ be the numerical
solution to (27), there holds

𝑎 ̃︀𝒥ℎ
(𝜎 − 𝜎ℎ, 𝑢− 𝑢ℎ; 𝜏ℎ, 𝑣ℎ) = 𝒮𝑚

ℎ (𝜎, 𝜏ℎ) + 𝒢𝑚
ℎ (𝑢, 𝑣ℎ). (56)

Proof. The proofs are similar to Lemmas 3 and 4. �

Moreover, we give the approximation estimate under the norm ‖ · ‖̃︀eℎ
.

Lemma 9. Let (𝜎, 𝑢) ∈ Σ𝑠 ×V𝑠+1 be the exact solution to the interface problem (1), there exists (𝜎𝐼 , 𝑢𝐼) ∈
Σ𝑚

ℎ ×V𝑚
ℎ such that

‖(𝜎 − 𝜎𝐼 , 𝑢− 𝑢𝐼)‖̃︀eℎ
≤ 𝐶ℎ𝑡

(︁
‖𝜎‖𝐻𝑠(div;Ω0∪Ω1)

+ ‖𝑢‖𝐻𝑠+1(Ω0∪Ω1)

)︁
, (57)

where 𝑡 = min(𝑚, 𝑠) for 𝑠 ≥ 1, and 𝑡 = min(𝑚, 𝑠)− 𝜀 with any 𝜀 > 0 for 1/2 < 𝑠 < 1.

Proof. We let 𝜎𝐼 := 𝜎𝐼,0 · 𝜒0 + 𝜎𝐼,1 · 𝜒1, 𝑢𝐼 := 𝑢𝐼,0 · 𝜒0 + 𝑢𝐼,0 · 𝜒1 be the interpolants of 𝜎 and 𝑢, which are
defined in the proof in Lemma 5. The errors ‖𝜎−𝜎𝐼‖𝐻(div;Ω0∪Ω1), ‖𝑢−𝑢𝐼‖𝐻1(Ω0∪Ω1), |𝜎𝐼 |𝒮𝑚

ℎ
and |𝑢𝐼 |𝒢𝑚

ℎ
have

been estimated in Lemma 5. We only bound the trace terms in ‖ · ‖̃︀eℎ
. For the error ‖[[𝜎 − 𝜎𝐼 ]]𝑁‖−1/2,ℎ, we

apply the estimate (49), the approximation properties (36) and the trace theory of functions in H(div; Ω0 ∪Ω1)
to find that

‖[[𝜎 − 𝜎𝐼 ]]𝑁‖−1/2,ℎ ≤ 𝐶‖[[𝜎 − 𝜎𝐼 ]]𝑁‖−1/2,Γ ≤ 𝐶‖[[𝜎 − 𝜎𝐼 ]]𝑁‖𝐻−1/2(Γ) ≤ 𝐶
∑︁

𝑖=0,1

‖𝑛 · (𝜋𝑖𝜎 − 𝜋𝑖𝜎𝐼)‖𝐻−1/2(Γ)

≤ 𝐶
∑︁

𝑖=0,1

‖𝜋𝑖𝜎 − 𝜋𝑖𝜎𝐼‖𝐻(div;Ω𝑖)
≤ 𝐶ℎ𝑡0‖𝜎‖𝐻(div;Ω0∪Ω1),

where 𝑡0 := min(𝑚, 𝑠). Since 𝑢 ∈ H1+𝑠(Ω0 ∪Ω1), the error ℎ−1‖[[𝑢−𝑢𝐼 ]]‖2𝐿2(Γ) can be directly estimated by the
𝐻1 trace estimate (13), i.e.

ℎ−1‖[[𝑢− 𝑢𝐼 ]]‖2𝐿2(Γ) ≤ 𝐶ℎ2𝑡0‖𝑢‖2𝐻𝑠+1(Ω0∪Ω1)
,

which is the same as in the proof to Lemma 5.
The rest is to bound the terms ℎ‖[[𝜎−𝜎𝐼 ]]𝑁‖2𝐿2(Γ) and ℎ‖[[∇Γ(𝑢−𝑢𝐼)]]‖2𝐿2(Γ). For the case 𝑠 ≥ 1, both errors

can be bounded by the 𝐻1 trace estimate, and we derive that

ℎ‖[[𝜎 − 𝜎𝐼 ]]𝑁‖2𝐿2(Γ) ≤ 𝐶ℎ
∑︁

𝑖=0,1

‖𝜋𝑖𝜎 − 𝜋𝑖𝜎𝐼‖2𝐿2(Γ) ≤ 𝐶ℎ
∑︁

𝑖=0,1

∑︁
𝐾∈𝒯 Γ

ℎ

‖𝜋𝑖𝜎 − 𝜋𝑖𝜎𝐼‖2𝐿2(Γ𝐾)

≤ 𝐶
∑︁

𝑖=0,1

∑︁
𝐾∈𝒯 Γ

ℎ

(︁
‖𝜋𝑖𝜎 − 𝜋𝑖𝜎𝐼‖2𝐿2(𝐾) + ℎ2‖𝜋𝑖𝜎 − 𝜋𝑖𝜎𝐼‖2𝐻1(𝐾)

)︁
≤ 𝐶ℎ2𝑡0‖𝜎‖𝐻𝑠(Ω0∪Ω1), (58)

and similarly, there holds
ℎ‖[[∇Γ(𝑢− 𝑢𝐼)]]‖2𝐿2(Γ) ≤ 𝐶ℎ2𝑡0‖𝑢‖𝐻𝑠+1(Ω0∪Ω1).
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For the case 1/2 < 𝑠 < 1, the error ℎ‖[[𝜎 − 𝜎𝐼 ]]𝑁‖2𝐿2(Γ) cannot be bounded as (58) because the 𝐻1 trace
estimate is now unavailable. In this case, the embedding theory will be the main tool to estimate the errors. We
let V𝑚

ℎ ⊂ H1(Ω) be the tensor-valued 𝐶0 finite element space of degree 𝑚 on the mesh 𝒯ℎ. Since 𝜋𝑖𝜎 ∈ H𝑠(Ω),
we let 𝜋s

𝑖 𝜎 be its Scott-Zhang interpolant into the space V𝑚
ℎ [18], which satisfies that ‖𝜋s

𝑖 𝜎 − 𝜋𝑖𝜎‖𝐿2(Ω) ≤
𝐶ℎ𝑡0‖𝜋𝑖𝜎‖𝐻𝑠(Ω). For arbitrarily small 𝜀 > 0, the space H1/2+𝜀(Ω𝑖) continuously embeds into L2(Γ). Notice that
𝜋s

𝑖 𝜎, 𝜋𝑖𝜎 ∈ H1/2+𝜀(Ω𝑖) for small enough 𝜀, and we apply the inverse estimate and the triangle inequality to
derive that

ℎ‖[[𝜎 − 𝜎𝐼 ]]‖2𝐿2(Γ) ≤ 𝐶ℎ
∑︁

𝑖=0,1

‖𝜋𝑖𝜎 − 𝜋𝑖𝜎𝐼‖2𝐿2(Γ) ≤ 𝐶ℎ
∑︁

𝑖=0,1

‖𝜋𝑖𝜎 − 𝜋s
𝑖 𝜎‖

2
𝐿2(Γ) + 𝐶ℎ

∑︁
𝑖=0,1

‖𝜋s
𝑖 𝜎 − 𝜋𝑖𝜎𝐼‖2𝐿2(Γ)

≤ 𝐶ℎ
∑︁

𝑖=0,1

‖𝜋𝑖𝜎 − 𝜋s
𝑖 𝜎‖

2
𝐻1/2+𝜀(Ω) + 𝐶

∑︁
𝑖=0,1

∑︁
𝐾∈𝒯 Γ

ℎ

‖𝜋s
𝑖 𝜎 − 𝜋𝑖𝜎𝐼‖2𝐿2(𝐾)

≤ 𝐶ℎ
∑︁

𝑖=0,1

‖𝜋𝑖𝜎 − 𝜋s
𝑖 𝜎‖

2
𝐻1/2+𝜀(Ω) + 𝐶

∑︁
𝑖=0,1

‖𝜋s
𝑖 𝜎 − 𝜋𝑖𝜎𝐼‖2𝐿2(Ωℎ,𝑖)

≤ 𝐶ℎ2𝑡1‖𝜎‖2𝐻𝑠(Ω0∪Ω1)

+ 𝐶
∑︁

𝑖=0,1

(︁
‖𝜋𝑖𝜎 − 𝜋s

𝑖 𝜎‖
2
𝐿2(Ωℎ,𝑖)

+ ‖𝜋𝑖𝜎 − 𝜋𝑖𝜎𝐼‖2𝐿2(Ωℎ,𝑖)

)︁
≤ 𝐶ℎ2𝑡1‖𝜎‖2𝐻𝑠(Ω0∪Ω1)

,

where 𝑡1 = min(𝑚, 𝑠)− 𝜀. From the embedding H3/2+𝜀(Ω𝑖) →˓ H1(Γ) [21], it is similar to get that

ℎ‖[[∇Γ(𝑢− 𝑢𝐼)]]‖2𝐿2(Γ) ≤ 𝐶ℎ2𝑡1‖𝑢‖2𝐻𝑠+1(Ω0∪Ω1)
.

Collecting all above estimates leads to the approximation property (57), which completes the proof. �

The error estimation for the numerical solution of (53) can be reached. The proof is the same as Theorem 1.

Theorem 3. Let (𝜎, 𝑢) ∈ Σ𝑠 × V𝑠+1 be the exact solution to the interface problem (1), and let (𝜎ℎ, 𝑢ℎ) ∈
Σ𝑚

ℎ ×V𝑚
ℎ be the numermical solution to the problem (53), there holds

‖(𝜎 − 𝜎ℎ)‖̃︀eℎ
≤ 𝐶ℎ𝑡

(︀
‖𝜎‖𝐻𝑠(div;Ω0∪Ω1) + ‖𝑢‖𝐻𝑠+1(Ω0∪Ω1)

)︀
, (59)

where 𝑡 = min(𝑚, 𝑠) for 𝑠 ≥ 1, and 𝑡 = min(𝑚, 𝑠)− 𝜀 with any 𝜀 > 0 for 1/2 < 𝑠 < 1.

The condition number of the linear system of 𝑎 ̃︀𝒥ℎ
(·; ·) also has a uniform upper bound. The proof is the same

to Theorem 2.

Theorem 4. There exists 𝐶 such that
𝜅
(︁
𝐴 ̃︀𝒥ℎ

)︁
≤ 𝐶ℎ−2, (60)

where 𝐴 ̃︀𝒥ℎ
is the linear system with respect to 𝑎 ̃︀𝒥ℎ

(·; ·).

From Theorem 3, it can be seen that the scheme is also robust since the constants in the error bounds (59)
are independent of 𝜆 and the relative location between Γ and the mesh. Compared with the 𝐿2 norm least
squares finite element method, the convergence rate is nearly optimal without a higher regularity assumption,
but the linear system is more complicated.

Ultimately, let us give some details about solving the linear system 𝐴 ̃︀𝒥ℎ
. Since 𝑎 ̃︀𝒥ℎ

(·; ·) involves the discrete
minus inner product (·, ·)−1/2,ℎ, we are required to solve the elliptic system (45) in the assembling of 𝐴 ̃︀𝒥ℎ

. Let 𝐵

be the sparse matrix of the bilinear form (45), which is invertible and satisfies that 𝜅(𝐵) ≤ 𝐶ℎ−2, see Remark 2.
Let 𝐶 be the sparse matrix corresponding to the inner product ([[𝜏ℎ]], 𝑤ℎ)𝐿2(Γ) for ∀(𝜏ℎ, 𝑣ℎ) ∈ Σ𝑚

ℎ ×V𝑚
ℎ ,∀𝑤ℎ ∈

V1
ℎ,0. We note that this definition ensures the matrix 𝐶 has the same column size as the matrix 𝐴 ̃︀𝒥ℎ

. Then,
𝐴 ̃︀𝒥ℎ

has the form that
𝐴 ̃︀𝒥ℎ

= 𝐴𝐿2 + 𝐶𝑇 𝐵−1𝐶, (61)
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Figure 1. The unfitted mesh and the interfaces in two dimensions.

where 𝐴𝐿2 corresponds to all 𝐿2 inner products in 𝑎 ̃︀𝒥ℎ
(·, ·), i.e. 𝐴𝐿2 is the matrix of the bilinear form 𝑎𝐿2(·; ·)

that

𝑎𝐿2(𝜏ℎ, 𝑣ℎ; 𝜌ℎ, 𝑤ℎ) := (𝒜𝜏ℎ − 𝜀(𝑣ℎ),𝒜𝜌ℎ − 𝜀(𝑤ℎ))𝐿2(Ω0∪Ω1)
+ (∇ · 𝜏ℎ,∇ · 𝜌ℎ)𝐿2(Ω0∪Ω1)

+ ℎ([[𝜏ℎ]]𝑁 , [[𝜌ℎ]]𝑁 )𝐿2(Γ) + ℎ−1([[𝑣ℎ]], [[𝑤ℎ]])𝐿2(Γ) + ℎ([[∇Γ𝑣ℎ]], [[∇Γ𝑤ℎ]])𝐿2(Γ) (62)

+ 𝒮𝑚
ℎ (𝜏ℎ, 𝜌ℎ) + 𝒢𝑚

ℎ (𝑣ℎ, 𝑤ℎ).

Suppose that we have a fast algorithm to solve the linear system 𝐵y = z, then we can easily compute the
matrix-vector products for the matrix 𝐴 ̃︀𝒥ℎ

by (61). Consequently, the Krylov iterative method (e.g. GMRES)
can be used as the solver for the linear system. Although we have shown that the condition number of 𝐴 ̃︀𝒥ℎ

is
𝑂(ℎ−2), an effective preconditioner is still expected especially when ℎ tends to zero. But 𝐴 ̃︀𝒥ℎ

involves the inverse
matrix 𝐵−1, it is costly to form it and it is also not convenient to even extract its diagonal. Traditional diagonal
or block diagonal preconditioners are hard to use for 𝐴 ̃︀𝒥ℎ

. One method is to use the matrix-free preconditioning
technique to 𝐴 ̃︀𝒥ℎ

. For example, one can use the hierarchically semiseparable (HSS) approximation for the given
matrix to accelerate the convergence of iterative methods [15,54,55]. The construction of the HSS approximation
may potentially only use matrix-vector products instead of the original matrix itself, and we refer to [44, 54]
for fully matrix-free techniques to the construction of the HSS approximation. This idea has been used in the
immersed finite element method solving the elliptic interface problem [56] . Once the HSS approximation 𝐻 for
𝐴 ̃︀𝒥ℎ

is obtained in a structured form, it can be quickly factorized and the factors can be used as a preconditioner.
Alternatively, we present a matrix-explicit preconditioning method for 𝐴 ̃︀𝒥ℎ

. As (61), the matrix 𝐴 ̃︀𝒥ℎ
can be

split into two parts. From (62), it can be easily seen that 𝑎𝐿2(𝜏ℎ, 𝑣ℎ; 𝜏ℎ, 𝑣ℎ) = 0 implies 𝜏ℎ = 0, 𝑣ℎ = 0 for
(𝜏ℎ, 𝑣ℎ) ∈ Σ𝑚

ℎ ×V𝑚
ℎ . Hence, 𝐴𝐿2 is symmetric positive definite. Any preconditioning technique can be applied

to 𝐴𝐿2 because 𝐴𝐿2 is entirely explicit. As a numerical observation, the preconditioner from 𝐴𝐿2 can also
significantly accelerate the iterative methods. We show the results in Example 1 of Section 5 by constructing
the HSS approximation from 𝐴𝐿2 to obtain the preconditioner. For solving the linear system 𝐵y = z, we also
use the HSS approximation as the preconditioner. The codes of the construction and the factorization of the
HSS approximation are freely available in STRUMPACK [50]. A comprehensive analysis and a more appropriate
method to solve the linear system are now left in the future study.

5. Numerical results

In this section, a series of numerical tests are presented to show the numerical performance of the proposed
method. For all tests, the source function 𝑓 and the jump condition 𝑎, 𝑏 are taken from the exact solution
accordingly. In Examples 1–5, we consider the elasticity interface problems in two dimensions on the squared
domain Ω = (−1, 1)2. We adopt a family of triangular meshes with the mesh size ℎ = 1/5, 1/10, . . . , 1/40 to
solve all tests. In Examples 1–3, the interface Γ is of class 𝐶2 and is described by a level set function, see
Figure 1. In Examples 4 and 5, the interface is taken to be the boundary of the L-shaped domain. In Example 6,
we solve a three-dimensional interface problem to illustrate the numerical performance.
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Table 1. The numerical results for Example 1 by the 𝐿2 norm least squares finite element
method (left)/the least squares finite element method with the discrete minus norm (right).

𝑚 ℎ 1/5 1/10 1/20 1/40 order

1
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.86e−1 4.76e−2 1.19e−2 2.98e−3 2.00

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 3.49e−0 1.71e−0 8.58e−1 4.32e−1 0.99

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 2.22e1 1.12e1 5.66e−0 2.85e−0 0.99

2
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 4.01e−3 4.92e−4 6.15e−5 7.69e−6 2.99

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 2.99e−1 7.48e−2 1.89e−2 4.77e−3 1.99

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 2.03e−0 5.13e−1 1.28e−1 3.23e−2 1.99

3
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.65e−4 8.95e−6 5.42e−7 3.36e−8 4.01

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 1.93e−2 2.31e−3 2.88e−4 3.59e−5 3.00

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 1.26e−1 1.60e−2 2.02e−3 2.53e−3 2.99

𝑚 ℎ 1/5 1/10 1/20 1/40 order

1
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.88e−1 4.83e−2 1.21e−2 3.03e−3 2.00

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 3.50e−0 1.71e−0 8.58e−1 4.32e−1 0.99

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 2.22e1 1.12e1 5.66e−0 2.84e−0 1.00

2
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 4.02e−3 4.93e−4 6.13e−5 7.68e−6 3.00

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 3.00e−1 7.47e−2 1.90e−2 4.78e−3 2.00

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 2.03e−0 5.12e−1 1.29e−1 3.22e−2 2.00

3
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.64e−4 8.93e−6 5.41e−7 3.38e−8 4.00

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 1.92e−2 2.30e−3 2.87e−4 3.60e−5 3.01

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 1.26e−1 1.61e−2 2.01e−3 2.51e−3 3.00

Table 2. Convergence steps for the linear system of the 𝐿2 norm least squares finite element
method in Example 1.

𝑚 ℎ 1/5 1/10 1/20 1/40

1
Preconditioner from HSS approximation 8 12 19 36
Diagonal preconditioner 513 1003 2103 >3000

2
Preconditioner from HSS approximation 13 21 39 70
Diagonal preconditioner 2273 >3000 >3000 >3000

3
Preconditioner from HSS approximation 21 32 56 91
Diagonal preconditioner >3000 >3000 >3000 >3000

Example 1. We first consider a linear elasticity interface problem with a circular interface centered at the
origin with radius 𝑟 = 0.7, see Figure 1. We solve this problem to study the convergence rates. The exact
solution is taken as

𝑢(𝑥, 𝑦) =

[︃
sin(2𝜋𝑦)(−1 + cos(2𝜋𝑥)) + 1

1+𝜆 sin(𝜋𝑥) sin(𝜋𝑦)

sin(2𝜋𝑥)(1− cos(2𝜋𝑦)) + 1
1+𝜆 sin(𝜋𝑥) sin(𝜋𝑦)

]︃
in Ω0 ∪ Ω1,

with the discontinuous parameters 𝜆|Ω0 = 𝜆0 = 5, 𝜆|Ω1 = 𝜆1 = 1, 𝜇|Ω0 = 𝜇0 = 2, 𝜇|Ω1 = 𝜇1 = 1. The numerical
results are gathered in Table 1 by the 𝐿2 norm least squares finite element method and the least squares finite
element method with the discrete minus norm. For both methods, the energy norms ‖ · ‖eℎ

and ‖ · ‖̃︀eℎ
are

stronger than the norm ‖ · ‖e. We calculate ‖(𝜎−𝜎ℎ, 𝑢−𝑢ℎ)‖e to represent the errors under the energy norm.
From Table 1, it can be seen that the errors under the energy norm approach zero at the optimal rates. For
the 𝐿2 errors, ‖𝑢−𝑢ℎ‖𝐿2(Ω) and ‖𝜎 −𝜎ℎ‖𝐿2(Ω) have optimal/suboptimal convergence speeds. All numerically
observed convergence orders are in agreement with the theoretical analysis in Theorems 1 and 3.

In this example, we demonstrate the numerical performance of the iterative method for solving the resulting
linear system. For all tests, we use GMRES as the iterative solver and the iteration stops when the relative
error ‖𝐴x𝑘 − b‖𝑙2/‖b‖𝑙2 < 10−8 at the stage 𝑘 is smaller than the tolerance 10−8. For the 𝐿2 norm least
squares finite element method, the resulting matrix is entirely explicit and any preconditioning technique can
be used. Here, we try to use the HSS approximation and its diagonal to construct the preconditioners. The
convergence steps are collected in Table 2. It can be seen that the convergence is apparently accelerated by the
HSS preconditioning technique.

For the method with the discrete minus norm, we shall solve the linear system 𝐴 ̃︀𝒥ℎ
x = b. As stated in the

end of Section 4.2, we construct the HSS approximation 𝐻𝐿2 from 𝐴𝐿2 to obtain the preconditioner, and we
also directly construct the HSS approximation 𝐻 from 𝐴 to obtain the preconditioner as a comparison. The
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Table 3. Convergence steps for the linear system of the least squares finite element method
with the discrete minus norm in Example 1.

𝑚 ℎ 1/5 1/10 1/20 1/40

1

Preconditioner from HSS approximation 𝐻 9 13 21 38
Preconditioner from HSS approximation 𝐻𝐿2 10 16 23 42
Identical preconditioner 𝐼 1738 >3000 >3000 >3000

2

Preconditioner from HSS approximation 𝐻 15 22 38 70
Preconditioner from HSS approximation 𝐻𝐿2 16 23 41 78
Identical preconditioner 𝐼 >3000 >3000 >3000 >3000

3

Preconditioner from HSS approximation 𝐻 23 33 58 97
Preconditioner from HSS approximation 𝐻𝐿2 25 37 63 108
Identical preconditioner 𝐼 >3000 >3000 >3000 >3000

𝐵 Preconditioner from HSS approximation 4 7 13 21

Figure 2. The convergence histories for iterative methods with the accuracy 𝑚 = 1 (left)/𝑚 =
2 (mid)/𝑚 = 3 (right).

convergence steps are collected in Table 3. The convergence speeds of both preconditioned GMRES methods
are significantly faster than the standard GMRES method. The convergence histories for the iterative methods
on the mesh ℎ = 1/20 are depicted in Figure 2. The numerical performances of both preconditioned methods
are very close, and it is more convenient to construct the HSS approximation from 𝐴𝐿2 in a standard procedure.
In every step of Krylov iteration, we are required to solve the linear system 𝐵y = z. We still use GMRES
with the preconditioner from the HSS approximation as the solver for this system. The average iterative steps
for different meshes are collected in Table 3. The iterative method also has a fast convergence speed. In the
rest examples, we use the factors of 𝐻𝐿2 as the preconditioner to solve the linear system. Developing a more
appropriate method to solve the linear system is now left in the future study.

Example 2. In this example, we consider the same interface problem as Example 1 but the Lamé parameters
have a large jump across the interface. We solve this problem to demonstrate the robustness of the proposed
method when 𝜆 → ∞. The parameters are selected as 𝜆0 = 10000/100, 𝜆1 = 1, 𝜇0 = 𝜇1 = 1. The numerical
results for both methods are displayed in Tables 4 and 5, respectively. We observe that the discrete solutions
from both methods converge uniformly as 𝜆 → ∞. The results illustrates the robustness when the parameter
𝜆 →∞.
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Table 4. Numerical results for Example 2 by the 𝐿2 norm least squares finite element method
with 𝜆 = 100, 10000.

𝑚
ℎ 1/5 1/10 1/20 1/40

Order
𝜆 100 10000 100 10000 100 10000 100 10000

1
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.840e−1 1.842e−1 4.709e−2 4.713e−2 1.180e−2 1.181e−2 2.971e−3 2.972e−3 2.00

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 3.565e−0 3.569e−0 1.751e−0 1.753e−0 8.800e−1 8.814e−1 4.369e−1 4.399e−1 1.00

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 2.220e1 2.220e1 1.127e1 1.126e1 5.665e−0 5.665e−0 2.833e−0 2.835e−0 0.99

2
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 4.016e−3 4.016e−3 4.924e−4 4.925e−4 6.149e−5 6.150e−5 7.692e−7 7.693e−7 3.00

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 3.055e−1 3.058e−1 7.626e−2 7.636e−2 1.932e−2 1.933e−2 4.797e−3 4.799e−3 2.00

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 2.031e−0 2.030e−0 5.135e−1 5.135e−1 1.289e−1 1.289e−1 3.223e−2 3.222e−2 2.00

3
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.651e−4 1.651e−4 8.925e−6 8.924e−6 5.410e−7 5.411e−7 3.379e−7 3.381e−7 4.01

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 2.222e−2 2.223e−2 2.419e−3 2.422e−3 2.940e−4 2.943e−4 3.631e−5 3.653e−5 3.02

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 1.263e−1 1.263e−1 1.602e−2 1.603e−2 2.017e−3 2.017e−3 2.522e−4 2.523e−4 2.99

Table 5. Numerical results for Example 2 by the least squares finite element method of the
discrete minus norm with 𝜆 = 100, 10000.

𝑚
ℎ 1/5 1/10 1/20 1/40

Order
𝜆 100 10000 100 10000 100 10000 100 10000

1
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.859e−1 1.858e−1 4.773e−2 4.771e−2 1.199e−2 1.198e−2 3.018e−3 3.016e−3 1.99

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 3.572e−0 3.576e−0 1.753e−0 1.756e−0 8.806e−1 8.882e−1 4.447e−1 4.449e−1 0.99

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 2.220e1 2.220e1 1.127e1 1.127e1 5.666e−0 5.665e−0 2.847e−0 2.847e−0 0.99

2
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 4.017e−3 4.017e−3 4.925e−4 4.926e−4 6.150e−5 6.151e−5 7.693e−6 7.693e−6 3.00

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 3.053e−1 3.056e−1 7.627e−2 7.637e−2 1.932e−2 1.934e−2 4.893e−3 4.986e−3 1.98

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 2.031e−0 2.030e−0 5.133e−1 5.133e−1 1.289e−1 1.289e−1 3.231e−2 3.233e−2 1.99

3
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.649e−4 1.648e−4 8.920e−6 8.920e−6 5.409e−7 5.408e−7 3.325e−8 3.323e−8 4.03

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 2.217e−2 2.220e−2 2.418e−3 2.420e−3 2.939e−4 2.942e−4 3.633e−5 3.635e−5 3.02

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 1.263e−1 1.264e−1 1.602e−2 1.602e−2 2.017e−3 2.018e−3 2.535e−4 2.536e−4 2.99

Example 3. In this example, we consider an elasticity interface problem with a star-shaped interface consisting
of both concave and convex curve segments, see Figure 1. The interface Γ is governed by the polar angle 𝜃 that

𝑟 =
1
2

+
sin 5𝜃

7
·

The analytic solution 𝑢 is taken in a piecewise manner as

𝑢(𝑥, 𝑦) =

{︃
𝑢0(𝑥, 𝑦) in Ω0,

𝑢1(𝑥, 𝑦), in Ω1,

where
𝑢0(𝑥, 𝑦) = [cos(𝜋𝑥) cos(𝜋𝑦), cos(𝜋𝑦)]𝑇 , 𝑢1(𝑥, 𝑦) = [sin(𝜋𝑥) sin(𝜋𝑦), 𝑥(1− 𝑥) sin(𝜋𝑦)]𝑇 .

The parameters are chosen as 𝜆0 = 𝜆1 = 𝜇0 = 𝜇1 = 1. We present the numerical results in Table 6. The
predicted convergence rates under the energy norms and the 𝐿2 norms for both unknowns are verified from the
convergence histories.
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Table 6. Numerical results for Example 3 by the 𝐿2 norm least squares finite element method
(left)/the least squares finite element method with the discrete minus norm (right).

𝑚 ℎ 1/5 1/10 1/20 1/40 Order

1
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 9.131e−1 2.431e−2 6.244e−3 1.575e−3 1.98

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 1.127e−0 5.245e−1 2.621e−1 1.326e−1 0.98

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 9.270e−0 4.722e−0 2.377e−0 1.193e−0 1.00

2
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 3.047e−3 3.513e−4 4.412e−5 5.551e−6 2.99

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 1.193e−1 2.432e−2 5.946e−3 1.503e−6 1.98

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 8.171e−1 2.079e−1 5.239e−2 1.315e−2 2.00

3
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.595e−4 6.891e−6 3.799e−7 2.315e−8 4.03

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 8.609e−3 8.586e−4 9.233e−5 1.135e−5 3.02

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 5.527e−2 6.517e−3 8.173e−4 1.027e−4 2.99

𝑚 ℎ 1/5 1/10 1/20 1/40 Order

1
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 9.127e−2 2.430e−2 6.237e−3 1.573e−3 1.99

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 1.127e−0 5.267e−1 2.627e−1 1.327e−1 0.99

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 9.270e−0 4.722e−0 2.377e−0 1.193e−0 1.00

2
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 3.441e−3 3.513e−3 4.412e−5 5.551e−6 2.99

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 1.182e−1 2.430e−2 5.953e−3 1.503e−3 1.98

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 8.170e−1 2.079e−1 5.239e−2 1.315e−2 2.00

3
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.574e−4 6.863e−6 3.797e−7 2.315e−8 4.03

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 7.772e−3 8.269e−4 1.003e−4 1.250e−5 3.00

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 5.553e−2 6.517e−3 8.173e−4 1.026e−4 2.99

Table 7. Numerical results for Example 4 by the 𝐿2 norm least squares finite element method
(left)/the least squares finite element method with the discrete minus norm (right).

𝑚 ℎ 1/5 1/10 1/20 1/40 Order

1
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 8.082e−1 2.383e−1 6.356e−2 1.609e−2 1.98

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 8.601e−0 3.583e−0 1.686e−0 8.412e−1 1.00

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 3.222e1 2.065e1 1.125e1 5.810e−0 0.96

2
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 8.849e−2 1.015e−2 1.205e−3 1.476e−4 3.03

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 2.157e−0 4.519e−1 1.147e−1 2.914e−2 1.98

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 8.596e−0 2.652e−0 7.256e−1 1.875e−1 1.96

3
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.453e−2 5.489e−4 3.156e−5 1.907e−6 4.05

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 5.333e−1 4.399e−2 5.080e−3 6.361e−4 3.00

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 1.499e−0 2.609e−1 3.626e−2 4.699e−3 2.95

𝑚 ℎ 1/5 1/10 1/20 1/40 Order

1
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 8.093e−1 2.416e−1 6.583e−2 1.651e−2 1.99

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 8.471e−0 3.593e−0 1.699e−0 8.456e−1 1.00

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 3.221e1 2.065e1 1.125e1 5.811e−0 0.95

2
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 8.899e−2 1.013e−2 1.208e−3 1.477e−4 3.03

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 2.127e−0 4.525e−1 1.153e−1 2.922e−2 1.98

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 8.593e−0 2.658e−0 7.255e−1 1.875e−1 1.95

3
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.453e−2 5.486e−4 3.157e−5 1.908e−6 4.03

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 5.272e−1 4.375e−2 5.087e−3 6.416e−4 2.99

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 1.499e−0 2.609e−1 3.625e−2 4.699e−3 2.95

Example 4. In this test, we consider the interface problem with an L-shaped polygonal interface Γ, which is
described by the following vertices, see Figure 1,

(0, 0), (−0.35, 0.35), (0, 0.7), (0.7, 0), (0,−0.7), (−0.35, 0.35).

The exact solution and the parameters are taken the same as Example 1. The numerical errors are displayed
in Table 7. For the case of the polygonal interface, all numerically detected convergence speeds still agree with
the theoretical results.

Example 5. In this test, we still consider the L-shaped interface and we investigate the performance of the
method dealing with the problem of a singular solution. The exact solution is selected to be

𝑢(𝑥, 𝑦) =

{︃
𝑢0(𝑥, 𝑦), in Ω0,

[0, 0]𝑇 , in Ω1,

with the parameters 𝜆0 = 𝜆1 = 𝜇0 = 𝜇1 = 1, where 𝑢0 is given as

𝑢0
𝑟(𝑟, 𝜃) =

𝑟𝛼

2𝜇
(−(𝛼 + 1) cos((𝛼 + 1)𝜃) + (𝐶2 − (𝛼 + 1))𝐶1 cos((𝛼− 1)𝜃)),

𝑢0
𝜃(𝑟, 𝜃) =

𝑟𝛼

2𝜇
((𝛼 + 1) sin((𝛼 + 1)𝜃) + (𝐶2 + 𝛼− 1)𝐶1 sin((𝛼− 1)𝜃)),

in the polar coordinates (𝑟, 𝜃). We let 𝛼 ≈ 0.5444837 be the solution of the following function

𝛼 sin(2𝑤) + sin(2𝑤𝛼) = 0,
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Table 8. Numerical errors for Example 5 by the least squares finite element method with
discrete minus norm.

𝑚 ℎ 1/5 1/10 1/20 1/40 1/80 1/160 Order

1
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 4.712e−2 2.100e−2 9.502e−3 3.369e−3 1.308e−3 5.158e−3 1.33

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 7.779e−1 6.119e−1 4.950e−1 3.612e−1 2.506e−1 1.761e−1 0.50

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 1.089e−0 7.980e−1 6.278e−1 4.428e−1 3.133e−1 2.170e−1 0.52

Figure 3. The spherical domain and the tetrahedral mesh of Example 3.

with 𝑤 = 3𝜋/4, and the constants 𝐶1 and 𝐶2 are

𝐶1 = −cos((𝛼 + 1)𝑤)
cos((𝛼− 1)𝑤)

, 𝐶2 =
2(𝜆 + 2𝜇)

𝜆 + 𝜇
·

The source term 𝑓 = 0 on the domain Ω0∪Ω1. The exact solution has the regularity that (𝜎, 𝑢) ∈ H𝛼−𝜀(div; Ω0∪
Ω1) ×H1+𝛼−𝜀(Ω0 ∪ Ω1) for ∀𝜀 > 0. Hence, we solve this problem by the least squares finite element with the
discrete minus norm. We consider the linear accuracy 𝑚 = 1 for this test, and the results are shown in Table 8.
It can be observed that the convergence rate for the energy norm is 𝑂(ℎ0.52), which is consistent with the
regularity of the exact solution and the theoretical analysis. The 𝐿2 errors for both variables are less than the
optimal convergence rates, i.e. 𝑂(ℎ1.3) and 𝑂(ℎ0.51) for 𝑢 and 𝜎, respectively. The reason may be traced back
to the singularity of the exact solution.

Example 6. In this test, we consider the interface problem in the cubic domain Ω = (0, 1)3. We take Γ as a
spherical interface with the radius 𝑟 = 0.35 centered at the point (0.5, 0.5, 0.5). Let the exact displacement 𝑢 be

𝑢(𝑥, 𝑦, 𝑧) =

⎡⎣24

25

26

⎤⎦𝑥(1− 𝑥)𝑦(1− 𝑦)𝑧(1− 𝑧), in Ω0 ∪ Ω1.

The parameters 𝜆, 𝜇 are discontinuous across the interface with 𝜆0 = 10, 𝜆1 = 1, 𝜇0 = 10, 𝜇1 = 1. We adopt
a series of tetrahedral meshes with the mesh ℎ = 1/4, 1/8, 1/16, 1/32 to solve this problem, see Figure 3. The
numerical errors under all error measurements are reported in Table 9 for both methods. The numerical results
illustrate the accuracy of the methods in three dimensions.
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Table 9. Numerical results for Example 6 by the 𝐿2 norm least squares finite element method
(left)/the least squares finite element method with the discrete minus norm (right).

𝑚 ℎ 1/4 1/8 1/16 1/32 Order

1
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.483e−1 4.786e−3 1.307e−2 3.335e−4 1.98

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 1.556e−1 7.528e−1 3.921e−1 1.948e−1 1.01

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 5.089e−0 2.636e−0 1.353e−0 6.859e−1 0.98

2
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.147e−2 9.065e−4 1.023e−4 1.233e−5 3.03

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 2.199e−1 5.603e−2 1.443e−2 3.685e−3 1.97

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 7.433e−1 1.902e−1 4.888e−2 1.239e−2 1.98

𝑚 ℎ 1/4 1/8 1/16 1/32 Order

1
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.149e−1 4.639e−2 1.291e−2 3.334e−3 1.95

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 1.563e−0 7.551e−1 3.925e−1 1.960e−1 0.99

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 5.089e−0 2.637e−0 1.353e−0 6.857e−1 0.98

2
‖𝑢− 𝑢ℎ‖𝐿2(Ω0∪Ω1) 1.153e−2 9.058e−4 1.022e−4 1.239e−5 3.04

‖𝜎 − 𝜎ℎ‖𝐿2(Ω0∪Ω1) 2.197e−1 5.693e−2 1.449e−2 3.691e−3 1.98

‖(𝜎 − 𝜎ℎ,𝑢− 𝑢ℎ)‖e 7.433e−1 1.901e−1 4.887e−2 1.238e−2 1.98
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