SCIENTIA SINICA Mathematica

论文

各向异性变指标 Hardy-Lorentz 空间上的 Fourier 变换及其应用

刘军、张明东*

中国矿业大学数学学院, 徐州 221116

E-mail: junliu@cumt.edu.cn, mdzhang@cumt.edu.cn

收稿日期: 2022-01-11; 接受日期: 2022-08-01; 网络出版日期: 2022-09-14; *通信作者 国家自然科学基金 (批准号: 12001527)、江苏省自然科学基金 (批准号: 12001527)、江苏省自然科学基金 (批准号: 12001527)、江苏省自然科学基金 (批准号: 12001527)、 120015270 120015270 12

摘要 设 $p(\cdot)$ 是 \mathbb{R}^n 上的一个满足全局 log-Hölder 连续性条件的可测函数, 其本性上确界 p_+ 和下确界 p_- 满足 $0 < p_- \le p_+ \le 1$. 另设 $q \in (0,1]$, A 是一个伸缩矩阵, $H_A^{p(\cdot),q}(\mathbb{R}^n)$ 表示通过径向主极大函数定义的各向异性变指标 Hardy-Lorentz 空间. 本文利用 $H_A^{p(\cdot),q}(\mathbb{R}^n)$ 的原子分解, 证明了该空间中的元素 f 的 Fourier 变换 \hat{f} 在缓增分布意义下等于 \mathbb{R}^n 上的一个连续函数 F. 进一步地, 本文得到了上述函数 F 的一个点态控制, 即它被 f 的 $H_A^{p(\cdot),q}(\mathbb{R}^n)$ 范数和相关于 A 的转置矩阵的齐次拟模的乘积点态控制. 作为应用, 本文还获得了 F 在原点的高阶收敛性以及 $H_A^{p(\cdot),q}(\mathbb{R}^n)$ 上的 Hardy-Littlewood 不等式. 本文推广了 Taibleson 和 Weiss 关于经典 Euclid 空间上 Hardy 空间 $H^p(\mathbb{R}^n)$ 的相应结果, 即使对于各向同性的常指标 Hardy-Lorentz 空间 $H^{p,q}(\mathbb{R}^n)$, 上述结果也是新的.

关键词各向异性 Euclid 空间变指标 Hardy(-Lorentz)空间Fourier 变换Hardy-Littlewood不等式MSC (2020) 主题分类42B35, 42B30, 42B10, 46E30

1 引言

设 $p(\cdot)$ 是 \mathbb{R}^n 上的一个满足全局 log-Hölder 连续性条件的可测函数, 其本性上确界 p_+ 和下确界 p_- 满足 $0 < p_- \leqslant p_+ \leqslant 1$. 在 Euclid 空间上, Liu 等 [19] 和 Liu 等 [18] 引入并研究了变指标的各向异性 Hardy-Lorentz 空间 $H_A^{p(\cdot),q}(\mathbb{R}^n)$, 包括其各种极大函数特征、(有限) 原子特征和 Littlewood-Paley 函数 特征等实变刻画以及实插值空间等, 其中, $q \in (0,\infty]$, A 是一个伸缩矩阵 (参见定义 2.1). 本文主要讨论 $H_A^{p(\cdot),q}(\mathbb{R}^n)$ 上的 Fourier 变换及其应用.

具体地, 关于 Euclid 空间上经典 Hardy 空间 $H^p(\mathbb{R}^n)$ 中元素 Fourier 变换的问题由两位著名的调和分析大师 Fefferman 和 Stein [8] 在 20 世纪 70 年代初提出, 随之也成为 $H^p(\mathbb{R}^n)$ 实变理论中的重要问题之一. 之后, Coifman [6] 应用指数型整函数率先刻画了一维 Hardy 空间 $H^p(\mathbb{R})$ 中元素 f 的 Fourier

英文引用格式: Liu J, Zhang M D. Fourier transform of variable anisotropic Hardy-Lorentz spaces and its applications (in Chinese). Sci Sin Math, 2023, 53: 577-590, doi: 10.1360/SSM-2022-0007

变换 \hat{f} , 关于高维 Hardy 空间的相应结论可参见文献 [3,7,9,22]. 值得注意的是, Taibleson 和 Weiss [22] 给出了如下一个非常有意义的结果, 即对于给定的 $p\in(0,1]$, 任意元素 $f\in H^p(\mathbb{R}^n)$ 的 Fourier 变换 \hat{f} 在缓增分布意义下等于 \mathbb{R}^n 上的一个连续函数 F, 并且存在一个仅与维数 n 和可积指标 p 有关的正常数 $C_{(n,p)}$ 使得, 对于任意 $x\in\mathbb{R}^n$, 有

$$|F(x)| \le C_{(n,p)} ||f||_{H^p(\mathbb{R}^n)} |x|^{n(1/p-1)}.$$
 (1.1)

进一步地, 利用 (1.1), Taibleson 和 Weiss [22] 将 Hardy-Littlewood 不等式推广到了 Hardy 空间中, 即 在上述条件下, 存在一个与 f 无关的正常数 K 使得

$$\left[\int_{\mathbb{R}^n} |x|^{n(p-2)} |F(x)|^p dx \right]^{\frac{1}{p}} \leqslant K \|f\|_{H^p(\mathbb{R}^n)}, \tag{1.2}$$

这里的函数 F 如 (1.1) 所示 (也可参见文献 [21, 第 128 页]).

如今,经典 Hardy 空间 $H^p(\mathbb{R}^n)$ 实变理论已经广泛应用在多个数学领域,如调和分析与偏微分方程,具体可参见文献 [10,20,21]. 受 Calderón 和 Torchinsky ^[4] 所研究的抛物型 Hardy 空间实变理论的启发,很多学者对经典 Hardy 空间做了推广 (参见文献 [2,5,13,14,23–25]). 特别地,Bownik ^[2] 在 Euclid 空间上引入了各向异性的 Hardy 空间 $H^p_A(\mathbb{R}^n)$,这里 $p\in(0,\infty)$ 且 A 是一个伸缩矩阵,从而推广了 Fefferman 和 Stein ^[8] 的经典各向同性 Hardy 空间以及 Calderón 和 Torchinsky ^[4] 的抛物型 Hardy 空间. 在文献 [22] 关于经典 Hardy 空间 $H^p(\mathbb{R}^n)$ 所做工作的基础上,Bownik 和 Wang ^[3] 利用 $H^p_A(\mathbb{R}^n)$ 的原子刻画将(1.1)和(1.2)推广到了各向异性 Hardy 空间 $H^p_A(\mathbb{R}^n)$ 之中,最近,上述结论在关于球拟 Banach 函数空间的 Hardy 空间和各向异性混合范数 Hardy 空间 $H^{\bar{p}}_{\bar{a}}(\mathbb{R}^n)$ 中也得到了相应的推广 (参见文献 [11,12]).

Kempka 和 Vybíral ^[16] 引入并研究了变指标 Lorentz 空间 $L^{p(\cdot),q}(\mathbb{R}^n)$. 基于变指标 Lorentz 空间 $L^{p(\cdot),q}(\mathbb{R}^n)$, Liu 等 ^[19] 和 Liu 等 ^[18] 在 Euclid 空间上,通过径向主极大函数首次引入了各向异性变指标 Hardy-Lorentz 空间 $H_A^{p(\cdot),q}(\mathbb{R}^n)$,并且建立了该 Hardy- 型函数空间的一系列实变特征刻画,从而推广了经典 Hardy 空间 $H^p(\mathbb{R}^n)$ 、抛物型 Hardy 空间、各向异性 Hardy 空间 $H^p(\mathbb{R}^n)$ 和各向同性变指标 Hardy-Lorentz 空间 $H^{p(\cdot),q}(\mathbb{R}^n)$ (参见文献 [15]). 受到上述 Hardy- 型函数空间(即 $H^p(\mathbb{R}^n)$ 、 $H^p_A(\mathbb{R}^n)$ 和 $H^{\vec{p}}_{\vec{a}}(\mathbb{R}^n)$)上 Fourier 变换研究的启发,本文将不等式(1.1)推广到各向异性变指标 Hardy-Lorentz 空间 $H^{p(\cdot),q}(\mathbb{R}^n)$,并给出一些应用.

本文余下內容结构如下. 第 2 节是预备知识, 首先介绍伸缩矩阵、变指标 Lorentz 空间和径向主极大函数的定义 (参见定义 2.1、2.3 和 2.4), 然后回顾各向异性变指标 Hardy-Lorentz 空间 $H_A^{p(\cdot),q}(\mathbb{R}^n)$ 的定义 (参见定义 2.5).

第 3 节旨在证明本文的主要结论 (即定理 3.1), 即任意元素 $f \in H_A^{p(\cdot),q}(\mathbb{R}^n)$ 的 Fourier 变换 \widehat{f} 在 缓增分布意义下等于 \mathbb{R}^n 上的一个连续函数 F 且

$$|F(x)| \lesssim ||f||_{H_A^{p(\cdot),q}(\mathbb{R}^n)} \max\{[\rho_*(x)]^{\frac{1}{p_-}-1}, [\rho_*(x)]^{\frac{1}{p_+}-1}\}, \quad \forall x \in \mathbb{R}^n,$$
(1.3)

其中, ρ_* 表示相关于 A 的转置矩阵 A^* 的齐次拟模, p_+ 和 p_- 分别是变指标 $p(\cdot)$ 的本性上确界和下确界. 本文证明定理 3.1 的主要思路是先对 f 做原子分解, 然后结合 Fourier 变换的特殊性质, 再利用关于原子 Fourier 变换的一致估计 (参见引理 3.1) 以及原子分解系数和的有界性估计 (参见引理 3.3), 证明连续函数 F 的存在性, 同时得到 (1.3) 的点态估计; 最后, 从依分布收敛的定义出发, 证明 $\hat{f} = F$ 在缓增分布意义下成立, 从而完成了定理 3.1 的证明.

作为定理 3.1 的应用, 第 4 节给出上述函数 F 在原点的高阶收敛性 (参见 (4.1)); 当 $q \in (0, p_+]$ 时, 证明

$$|F(\cdot)|\min\{[\rho_*(\cdot)]^{1-\frac{1}{p_-}-\frac{1}{p_+}}, [\rho_*(\cdot)]^{1-\frac{2}{p_+}}\}$$

在 \mathbb{R}^n 上是 L^{p_+} 可积的, 并且其 L^{p_+} 范数可以被 f 的 $H^{p(\cdot),q}_A(\mathbb{R}^n)$ 范数所控制 (参见 (4.5)). 这个结果正是 (1.2) 的推广, 从而可以看作是各向异性变指标 Hardy-Lorentz 空间 $H^{p(\cdot),q}_A(\mathbb{R}^n)$ 上的 Hardy-Littlewood 不等式.

最后,为了方便起见,对本文中用到的符号做一些约定.令 $\mathbb{N} := \{1,2,\ldots\}, \mathbb{Z}_+ := \{0\} \cup \mathbb{N}, \mathbf{0}$ 表示 \mathbb{R}^n 的原点.对于一个给定的多重指标 $\alpha := (\alpha_1,\ldots,\alpha_n) \in (\mathbb{Z}_+)^n =: \mathbb{Z}_+^n$,令 $|\alpha| := \alpha_1 + \cdots + \alpha_n$ 和 $\partial^\alpha := (\frac{\partial}{\partial x_1})^{\alpha_1} \cdots (\frac{\partial}{\partial x_n})^{\alpha_n}$. 始终用 C 表示一个与主要参数无关的正常数.式子 $g \lesssim h$ 表示 $g \leqslant Ch$. 如 果 $g \lesssim h \lesssim g$,则记 $g \sim h$.若 $f \leqslant Ch$,h = g 或者 $h \leqslant g$,则记 $f \lesssim h \sim g$ 或 $f \lesssim h \lesssim g$,而不是 $f \lesssim h = g$ 或 $f \lesssim h \leqslant g$.另外,对于任意一个集合 $E \subset \mathbb{R}^n$,将其特征函数记作 $\mathbf{1}_E$,其补集记作 $E^{\mathbf{C}}$ 并且其 n 维 Lebesgue 测度记作 |E|.对于给定的 $s \in \mathbb{R}$,用 |s| 表示不超过 s 的最大整数.

2 预备知识

本节首先回顾伸缩矩阵、变指标 Lorentz 空间和径向主极大函数的具体定义, 然后再介绍各向异性变指标 Hardy-Lorentz 空间 $H^{p(\cdot),q}_{\Delta}(\mathbb{R}^n)$ 的概念.

首先, 伸缩矩阵的定义来自文献 [2].

定义 2.1 一个 n 阶实方阵 A 如果满足 $\min_{\lambda \in \sigma(A)} |\lambda| > 1$, 其中 $\sigma(A)$ 表示由 A 的所有特征值组成的集合, 则称 A 为伸缩矩阵 (expansive matrix).

设 A 的特征值 $\lambda_1, \ldots, \lambda_n$ 满足 $1 < |\lambda_1| \le \cdots \le |\lambda_n|$. 从这里开始, 记 λ_- 和 λ_+ 是满足

$$1 < \lambda_{-} \leq \min\{|\lambda| : \lambda \in \sigma(A)\} \leq \max\{|\lambda| : \lambda \in \sigma(A)\} \leq \lambda_{+}$$

的两个实常数, 并记 $b:=|\det A|$, 则 $b\in(1,\infty)$. 另外, 对于任意给定的伸缩矩阵 A, 由文献 [2, 第 5 页, 引理 2.2] 知, 总存在一个开椭球 Δ 和 $r\in(1,\infty)$ 满足 $|\Delta|=1$ 且 $\Delta\subset r\Delta\subset A\Delta$. 因此, 对于任意 $k\in\mathbb{Z}$, $B_k:=A^k\Delta$ 是开集, $|B_k|=b^k$ 且 $B_k\subset rB_k\subset B_{k+1}$. 对于任意 $x\in\mathbb{R}^n$ 和 $k\in\mathbb{Z}$, 称椭球 $x+B_k$ 是一个伸缩球 (dilated ball), 并用符号 $\mathfrak B$ 表示由所有这样的伸缩球组成的集合, 即

$$\mathfrak{B} := \{ x + B_k : x \in \mathbb{R}^n, \ k \in \mathbb{Z} \}. \tag{2.1}$$

下面齐次拟模的概念来自文献 [2, 第6页, 定义 2.3].

定义 2.2 对于给定的伸缩矩阵 A, 如果其满足

- (i) ρ 非负, $\rho(x) = 0$ 当且仅当 x = 0;
- (ii) 对于任意 $x \in \mathbb{R}^n$, 有 $\rho(Ax) = b\rho(x)$;
- (iii) 存在常数 $R \in [1, \infty)$ 使得, 对于任意 $x, y \in \mathbb{R}^n$, 有 $\rho(x+y) \leq R[\rho(x) + \rho(y)]$, 则称可测映射 $\rho : \mathbb{R}^n \to [0, \infty)$ 是关于 A 的齐次拟模 (homogeneous quasi-norm).

由文献 [2, 第 6 页, 引理 2.4] 知, 对于给定的伸缩矩阵 A, 任意两个关于 A 的齐次拟模都是等价的. 因此, 为了方便起见, 通常使用如下的齐次拟模 ρ , 即对于任意 $x \in \mathbb{R}^n$ 和 $i \in \mathbb{Z}$,

$$\rho(x) := \begin{cases} b^i, & x \in B_{i+1} \backslash B_i, \\ 0, & x = \mathbf{0}. \end{cases}$$

此外, 将可测函数 $p(\cdot): \mathbb{R}^n \to (0,\infty]$ 称为一个变指标. 对于任意变指标 $p(\cdot)$, 令

$$p_{-} := \underset{x \in \mathbb{R}^{n}}{\operatorname{ess inf}} \, p(x), \quad p_{+} := \underset{x \in \mathbb{R}^{n}}{\operatorname{ess sup}} \, p(x) \quad \not \exists \mathbb{I} \quad \underline{p} := \min\{p_{-}, 1\}, \tag{2.2}$$

并用符号 $\mathcal{P}(\mathbb{R}^n)$ 表示由所有满足 $0 < p_- \le p_+ < \infty$ 的变指标 $p(\cdot)$ 组成的集合.

在介绍变指标的 Lorentz 空间之前, 需要先回顾变指标 Lebesgue 空间 $L^{p(\cdot)}(\mathbb{R}^n)$ 的定义. 具体地, 设 f 是 \mathbb{R}^n 上的一个可测函数且 $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$. 定义关于 $p(\cdot)$ 的模泛函 $\varrho_{p(\cdot)}$ (简称关于 $p(\cdot)$ 的模) 为 $\varrho_{p(\cdot)}(f) := \int_{\mathbb{R}^n} |f(x)|^{p(x)} dx$, 且定义 Luxemburg (也称为 Luxemburg-Nakano) 拟模 $||f||_{L^{p(\cdot)}(\mathbb{R}^n)}$ 为

$$||f||_{L^{p(\cdot)}(\mathbb{R}^n)} := \inf \left\{ \lambda \in (0, \infty) : \varrho_{p(\cdot)} \left(\frac{f}{\lambda} \right) \leqslant 1 \right\}.$$

进一步地, 变指标 Lebesgue 空间 $L^{p(\cdot)}(\mathbb{R}^n)$ 定义为所有满足 $\varrho_{p(\cdot)}(f)<\infty$ 的可测函数 f 组成的集合, 并赋予其拟模 $\|\cdot\|_{L^{p(\cdot)}(\mathbb{R}^n)}$.

本文提到的变指标 Lorentz 空间 $L^{p(\cdot),q}(\mathbb{R}^n)$ 是 Kempka 和 Vybíral [16] 所研究的 $L^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ 空间的一种特殊情形, 即 $q(\cdot) \equiv q$ (常数).

定义 2.3 设 $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$, $q \in (0, \infty]$, 变指标 Lorentz 空间 $L^{p(\cdot),q}(\mathbb{R}^n)$ 是使得 $\|f\|_{L^{p(\cdot),q}(\mathbb{R}^n)} < \infty$ 的 \mathbb{R}^n 上的可测函数 f 组成的集合, 其中

$$||f||_{L^{p(\cdot),q}(\mathbb{R}^n)} := \begin{cases} \left[\int_0^\infty \lambda^q ||\mathbf{1}_{\{x \in \mathbb{R}^n : |f(x)| > \lambda\}}||_{L^{p(\cdot)}(\mathbb{R}^n)}^q \frac{d\lambda}{\lambda} \right]^{\frac{1}{q}}, & q \in (0,\infty), \\ \sup_{\lambda \in (0,\infty)} [\lambda ||\mathbf{1}_{\{x \in \mathbb{R}^n : |f(x)| > \lambda\}}||_{L^{p(\cdot)}(\mathbb{R}^n)}], & q = \infty. \end{cases}$$

注 2.1 对于变指标 Lebesgue 空间 $L^{p(\cdot)}(\mathbb{R}^n)$, 当变指标 $p(\cdot)$ 满足 $p_+ \in (0,1]$ 时, 对于任意非负函数 $f,g \in L^{p(\cdot)}(\mathbb{R}^n)$, 有

$$||f||_{L^{p(\cdot)}(\mathbb{R}^n)} + ||g||_{L^{p(\cdot)}(\mathbb{R}^n)} \le ||f + g||_{L^{p(\cdot)}(\mathbb{R}^n)}. \tag{2.3}$$

这可以看作是变指标 Lebesgue 空间 $L^{p(\cdot)}(\mathbb{R}^n)$ 中的反向 Minkowski 不等式,下文将多次用到. 下面给出 (2.3) 的证明. 为此,不妨假设 $\|f\|_{L^{p(\cdot)}(\mathbb{R}^n)}$ 和 $\|g\|_{L^{p(\cdot)}(\mathbb{R}^n)}$ 均不为 0,否则结论显然成立. 注意到,当变指标 $p(\cdot)$ 满足 $p_+ \in (0,1]$ 时,对于任意 $x \in \mathbb{R}^n$,函数 $t \to t^{p(x)}$ 关于 $t \in [0,\infty)$ 是凹的. 设 $\alpha, \beta \in [0,\infty)$ 且 $\alpha+\beta=1$,由 $\varrho_{p(\cdot)}(\cdot)$ 的定义知 $\alpha\varrho_{p(\cdot)}(f)+\beta\varrho_{p(\cdot)}(g) \leqslant \varrho_{p(\cdot)}(\alpha f+\beta g)$. 记 $\|f\|_{L^{p(\cdot)}(\mathbb{R}^n)}:=\theta_f$, $\|g\|_{L^{p(\cdot)}(\mathbb{R}^n)}:=\theta_g$,则 $\varrho_{p(\cdot)}(\frac{f}{\theta_f})=1$. 事实上,根据 $\|f\|_{L^{p(\cdot)}(\mathbb{R}^n)}$ 的定义,当 $\theta \in (\theta_f,\infty)$ 时,有 $\varrho_{p(\cdot)}(\frac{f}{\theta}) \leqslant 1$,并且

$$\varrho_{p(\cdot)}\left(\frac{f}{\frac{2\theta_f}{3}}\right) = \int_{\mathbb{R}^n} \left|\frac{f(x)}{\frac{2\theta_f}{3}}\right|^{p(x)} dx = \int_{\mathbb{R}^n} \left|\frac{3f(x)}{2\theta_f}\right|^{p(x)} dx \leqslant 3^{p_+} \varrho_{p(\cdot)}\left(\frac{f}{2\theta_f}\right) < \infty.$$

于是, 根据 Lebesgue 控制收敛定理, 可知函数 $\varrho_{p(\cdot)}(rac{f}{ heta})|_{ heta}$ 在 $[rac{2 heta_f}{3},\infty)$ 上连续, 故

$$\varrho_{p(\cdot)}\left(\frac{f}{\theta_f}\right) = \lim_{\theta \to \theta_f} \varrho_{p(\cdot)}\left(\frac{f}{\theta}\right) \leqslant 1.$$

若 $\varrho_{p(\cdot)}(\frac{f}{\theta_f}) < 1$, 则取

$$\kappa := \theta_f \left(\frac{1}{\varrho_{p(\cdot)}(\frac{f}{\theta_f})} \right)^{-\frac{1}{p_+}} < \theta_f$$

满足 $\varrho_{p(\cdot)}(\frac{f}{\kappa}) \leq 1$. 这与 θ_f 的定义矛盾, 故 $\varrho_{p(\cdot)}(\frac{f}{\theta_s}) = 1$. 同理可证 $\varrho_{p(\cdot)}(\frac{g}{\theta_s}) = 1$. 因此,

$$\varrho_{p(\cdot)}\left(\frac{f+g}{\theta_f+\theta_g}\right) = \varrho_{p(\cdot)}\left(\frac{f\theta_f}{\theta_f(\theta_f+\theta_g)} + \frac{g\theta_g}{\theta_g(\theta_f+\theta_g)}\right)$$

$$\geqslant \frac{\theta_f}{\theta_f+\theta_g}\varrho_{p(\cdot)}\left(\frac{f}{\theta_f}\right) + \frac{\theta_g}{\theta_f+\theta_g}\varrho_{p(\cdot)}\left(\frac{g}{\theta_g}\right)$$

$$= 1.$$

再结合 $\|f+g\|_{L^{p(\cdot)}(\mathbb{R}^n)}$ 的定义,有 $\|f\|_{L^{p(\cdot)}(\mathbb{R}^n)} + \|g\|_{L^{p(\cdot)}(\mathbb{R}^n)} = \theta_f + \theta_g \leq \|f+g\|_{L^{p(\cdot)}(\mathbb{R}^n)}$. 至此完成了 (2.3) 的证明.

此外, 对于一个变指标 $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$, 若存在两个正常数 $C_{\log}(p)$ 、 C_{∞} 和实数 p_{∞} 使得, 对于任意 $x,y \in \mathbb{R}^n$, 有

$$|p(x) - p(y)| \leqslant \frac{C_{\log}(p)}{\log(e + 1/\rho(x - y))} \quad \text{fl} \quad |p(x) - p_{\infty}| \leqslant \frac{C_{\infty}}{\log(e + \rho(x))}$$

成立, 则称该变指标 $p(\cdot)$ 满足全局 log-Hölder 连续性条件 (globally log-Hölder continuous condition), 并用符号 $C^{\log}(\mathbb{R}^n)$ 表示由 $\mathcal{P}(\mathbb{R}^n)$ 中所有满足全局 log-Hölder 连续性条件的变指标组成的集合.

在给出各向异性变指标 Hardy-Lorentz 空间之前, 先回顾 Schwartz 函数类的概念. 一个 $C^{\infty}(\mathbb{R}^n)$ 中的复值函数 φ 被称为 Schwartz 函数, 若对于任意非负整数 $k \in \mathbb{Z}_+$ 和多重指标 $\gamma \in \mathbb{Z}_+^n$,

$$\|\varphi\|_{\gamma,k} := \sup_{x \in \mathbb{R}^n} [\rho(x)]^k |\partial^{\gamma} \varphi(x)| < \infty$$
 (2.4)

成立. 称由所有 Schwartz 函数组成的集合为 Schwartz 函数类, 记作 $\mathcal{S}(\mathbb{R}^n)$, 其上的拓扑由半范族 $\{\|\cdot\|_{\gamma,k}\}_{\gamma\in\mathbb{Z}^n_+,\,k\in\mathbb{Z}_+}$ 所诱导. 另外, 用 $\mathcal{S}'(\mathbb{R}^n)$ 表示 $\mathcal{S}(\mathbb{R}^n)$ 的对偶空间, 即缓增函数分布空间, 并且赋予 其弱 -* 拓扑.

对于任意 $N \in \mathbb{Z}_+$, 定义 $S_N(\mathbb{R}^n) := \{ \varphi \in S(\mathbb{R}^n) : ||\varphi||_{\alpha,\ell} \leq 1, |\alpha| \leq N, \ell \leq N \}$. 显然,

$$\varphi \in \mathcal{S}_N(\mathbb{R}^n) \quad \Leftrightarrow \quad \|\varphi\|_{\mathcal{S}_N(\mathbb{R}^n)} := \sup_{|\alpha| \le N} \sup_{x \in \mathbb{R}^n} [|\partial^{\alpha} \varphi(x)| \max\{1, [\rho(x)]^N\}] \leqslant 1.$$

本文对于任意 $\varphi \in \mathcal{S}(\mathbb{R}^n)$ 和 $k \in \mathbb{Z}$, 定义 $\varphi_k(\cdot) := b^{-k} \varphi(A^{-k} \cdot)$.

定义 2.4 设 $\varphi \in \mathcal{S}(\mathbb{R}^n)$ 和 $f \in \mathcal{S}'(\mathbb{R}^n)$. f 的相关于 φ 的径向极大函数 $M_{\varphi}^0(f)$ 定义为, 对于任意 $x \in \mathbb{R}^n$, 有

$$M_{\varphi}^{0}(f)(x) := \sup_{k \in \mathbb{Z}} |f * \varphi_{k}(x)|.$$

进一步地, 对于任意给定的 $N\in\mathbb{N},$ $f\in\mathcal{S}'(\mathbb{R}^n)$ 的径向主极大函数 $M_N^0(f)$ 定义为, 对于任意 $x\in\mathbb{R}^n,$ 有

$$M_N^0(f)(x) := \sup_{\varphi \in \mathcal{S}_N(\mathbb{R}^n)} M_\varphi^0(f)(x).$$

现在介绍各向异性变指标 Hardy-Lorentz 空间的概念 (参见文献 [19]).

定义 2.5 设 $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, $q \in (0,\infty]$, $N \in \mathbb{N} \cap [\lfloor (\frac{1}{\underline{p}} - 1) \frac{\ln b}{\ln \lambda_-} \rfloor + 2, \infty)$, 此处的 \underline{p} 如 (2.2) 所示. 各向异性变指标 Hardy-Lorentz 空间, 记作 $H_A^{p(\cdot),q}(\mathbb{R}^n)$, 定义为

$$H_A^{p(\cdot),q}(\mathbb{R}^n):=\{f\in\mathcal{S}'(\mathbb{R}^n):M_N^0(f)\in L^{p(\cdot),q}(\mathbb{R}^n)\}.$$

对于任意 $f \in H_A^{p(\cdot),q}(\mathbb{R}^n)$, 定义其拟模为 $||f||_{H_A^{p(\cdot),q}(\mathbb{R}^n)} := ||M_N^0(f)||_{L^{p(\cdot),q}(\mathbb{R}^n)}$.

注 2.2 虽然定义 2.5 中空间 $H_A^{p(\cdot),q}(\mathbb{R}^n)$ 的拟范数依赖于 N, 但是由文献 [19, 定理 4.8] 知, 当 N 满足定义 2.5 中的条件时, $H_A^{p(\cdot),q}(\mathbb{R}^n)$ 空间本身并不依赖于 N 的选取.

3 主要结果及证明

本节研究 $f \in H_A^{p(\cdot),q}(\mathbb{R}^n)$ 的 Fourier 变换 \widehat{f} . 为此, 先介绍 Schwartz 函数 Fourier 变换的概念. 对于任意 $\varphi \in \mathcal{S}(\mathbb{R}^n)$, 其 Fourier 变换定义为

$$\mathscr{F}\varphi(\xi) = \widehat{\varphi}(\xi) := \int_{\mathbb{R}^n} \varphi(x) e^{-2\pi i x \cdot \xi} dx, \quad \forall \, \xi \in \mathbb{R}^n,$$

其中, $\mathbf{i} := \sqrt{-1}$, 对于任意 $x := (x_1, \dots, x_n)$ 和 $\xi := (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, 有 $x \cdot \xi := \sum_{k=1}^n x_k \xi_k$. 进一步地, 可以定义 $f \in \mathcal{S}'(\mathbb{R}^n)$ 的 Fourier 变换, 同样记作 $\mathscr{F}f$ 或者 \hat{f} , 即对于任意 $\varphi \in \mathcal{S}(\mathbb{R}^n)$, 有

$$\langle \mathscr{F}f, \varphi \rangle = \langle \widehat{f}, \varphi \rangle := \langle f, \widehat{\varphi} \rangle.$$

下面的定理 3.1 是本文的主要结果.

定理 3.1 设 $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, $0 < p_- \leq p_+ \leq 1$, $q \in (0,1]$. 则对于任意 $f \in H_A^{p(\cdot),q}(\mathbb{R}^n)$, 存在 \mathbb{R}^n 上的一个连续函数 F 使得 $\hat{f} = F$ 在 $\mathcal{S}'(\mathbb{R}^n)$ 中成立,且存在一个仅与 $A \setminus p_- \setminus p_+$ 和 q 有关的正常数 $C_{(A,p_-,p_+,q)}$ 使得,对于任意 $x \in \mathbb{R}^n$,有

$$|F(x)| \leq C_{(A,p_-,p_+,q)} ||f||_{H_A^{p(\cdot),q}(\mathbb{R}^n)} \max\{ [\rho_*(x)]^{\frac{1}{p_-}-1}, [\rho_*(x)]^{\frac{1}{p_+}-1} \}, \tag{3.1}$$

这里及下文中, ρ_* 表示相关于 A 的转置矩阵 A^* 的齐次拟模.

为证明定理 3.1, 先来回顾各向异性 $(p(\cdot),r,s)$ - 原子和各向异性变指标原子 Hardy-Lorentz 空间 $H_A^{p(\cdot),r,s,q}(\mathbb{R}^n)$ 的概念 (参见文献 [19]).

$$s \in \left[\left| \left(\frac{1}{p_{-}} - 1 \right) \frac{\ln b}{\ln \lambda_{-}} \right|, \infty \right) \cap \mathbb{Z}_{+}, \tag{3.2}$$

其中 p- 如 (2.2) 所示.

- (I) 如果 a 满足如下条件:
- (i) supp $a \subset B$, 其中 $B \in \mathfrak{B}$ 且 \mathfrak{B} 如 (2.1) 所示;
- (ii) $||a||_{L^r(\mathbb{R}^n)} \leqslant \frac{|B|^{1/r}}{||\mathbf{1}_B||_{L^p(\cdot)(\mathbb{R}^n)}};$
- (iii) 对于任意满足 $|\gamma| \leq s$ 的 $\gamma \in \mathbb{Z}_+^n$, 均有 $\int_{\mathbb{R}^n} a(x) x^{\gamma} dx = 0$ 成立,

则称 \mathbb{R}^n 上的可测函数 a 为各向异性 $(p(\cdot), r, s)$ - 原子 (简称为 $(p(\cdot), r, s)$ - 原子).

(II) 各向异性变指标原子 Hardy-Lorentz 空间 $H_A^{p(\cdot),r,s,q}(\mathbb{R}^n)$ 定义为所有满足如下分解的 $f \in \mathcal{S}'(\mathbb{R}^n)$ 的全体: 存在数列 $\{\lambda_i^k\}_{i\in\mathbb{N},k\in\mathbb{Z}}\subset\mathbb{C}$ 和支撑集在 $\{B_i^k\}_{i\in\mathbb{N},k\in\mathbb{Z}}\subset\mathfrak{B}$ 上的一列 $(p(\cdot),r,s)$ - 原子 $\{a_i^k\}_{i\in\mathbb{N},k\in\mathbb{Z}}$, 使得

$$f = \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_i^k a_i^k \tag{3.3}$$

在 $\mathcal{S}'(\mathbb{R}^n)$ 中成立, 其中, 对于任意 $k \in \mathbb{Z}$ 和 $i \in \mathbb{N}$, 系数 λ_i^k 满足 $\lambda_i^k \sim 2^k \|\mathbf{1}_{B_i^k}\|_{L^{p(\cdot)}(\mathbb{R}^n)}$, 这里的等价常数与 k 和 i 均无关, 且存在一个正常数 \widetilde{C} 和 $j_0 \in \mathbb{Z} \setminus \mathbb{N}$ 使得, 对于任意 $k \in \mathbb{Z}$ 和 $x \in \mathbb{R}^n$, 有 $\sum_{i \in \mathbb{N}} \mathbf{1}_{A^{j_0} B_i^k}(x) \leqslant \widetilde{C}$. 进一步地, 对于任意 $f \in H_A^{p(\cdot),r,s,q}(\mathbb{R}^n)$, 定义

$$\|f\|_{H^{p(\cdot),r,s,q}_A(\mathbb{R}^n)} := \inf \bigg[\sum_{k \in \mathbb{Z}} \bigg\| \bigg\{ \sum_{i \in \mathbb{N}} \bigg[\frac{\lambda_i^k \mathbf{1}_{B_i^k}}{\|\mathbf{1}_{B_i^k}\|_{L^{p(\cdot)}(\mathbb{R}^n)}} \bigg]^{\underline{p}} \bigg\}^{1/\underline{p}} \bigg\|_{L^{p(\cdot)}(\mathbb{R}^n)}^q \bigg]^{\frac{1}{q}},$$

这里的下确界是取遍 f 所有如上述分解得到的, 且当 $q = \infty$ 时, 我们对上式做通常意义下的改变.

接下来的引理 3.1 (即文献 [17, 第 7 页, 引理 3.4]) 是关于 $(p(\cdot), r, s)$ - 原子 Fourier 变换一致性估计的一个结论, 且在主要定理 (定理 3.1) 的证明中发挥了重要作用.

引理 3.1 设 $p(\cdot) \in C^{\log}(\mathbb{R}^n)$ 满足 $0 < p_- \le p_+ \le 1$, r 和 s 如定义 3.1 所示. 则存在一个正常数 C 使得, 对于任意 $(p(\cdot), r, s)$ - 原子 a 和 $x \in \mathbb{R}^n$, 有

$$|\widehat{a}(x)| \le C \max\{|\rho_*(x)|^{\frac{1}{p_-}-1}, |\rho_*(x)|^{\frac{1}{p_+}-1}\},$$
 (3.4)

其中 ρ_* 表示相关于 A 的转置矩阵 A^* 的齐次拟模.

注 3.1 值得注意的是, 在文献 [17, 第 7 页, 引理 3.4] 的证明过程中, 可以得到一个有用的估计. 因为在后文中会用到, 所以将它单独叙述如下: 设 a 是支撑集在 $x_0 + B_{i_0}$ 上的一个 $(p(\cdot), r, s)$ - 原子, 其中, $x_0 \in \mathbb{R}^n$ 且 $i_0 \in \mathbb{Z}$, 当 $\rho_*(x) \leq b^{-i_0}$ 时,

$$|\widehat{a}(x)| \leqslant C \max\{b^{i_0[1-\frac{1}{p_-}+(s+1)\frac{\ln\lambda_-}{\ln b}]}, b^{i_0[1-\frac{1}{p_+}+(s+1)\frac{\ln\lambda_-}{\ln b}]}\}[\rho_*(x)]^{(s+1)\frac{\ln\lambda_-}{\ln b}}, \tag{3.5}$$

这里的正常数 C 与 (3.4) 中的 C 相同.

下面 $H_A^{p(\cdot),q}(\mathbb{R}^n)$ 的原子刻画来自文献 [19, 定理 4.8].

引理 3.2 设 $p(\cdot) \in C^{\log}(\mathbb{R}^n), r \in (\max\{p_+, 1\}, \infty], s$ 满足 (3.2) 和

$$N \in \mathbb{N} \cap \bigg[\left| \left(\frac{1}{\min\{p_-,1\}} - 1 \right) \frac{\ln b}{\ln \lambda_-} \right| + 2, \infty \bigg),$$

则在等价拟范数意义下, $H_A^{p(\cdot),q}(\mathbb{R}^n)=H_A^{p(\cdot),r,s,q}(\mathbb{R}^n)$.

此外, 为证明定理 3.1, 还需要关于原子系数和的如下估计.

引理 3.3 设 $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, $r \in (\max\{p_+, 1\}, \infty]$, $q \in (0, 1]$, s 满足 (3.2). 对于 $f \in H_A^{p(\cdot), q}(\mathbb{R}^n)$ 的原子分解 (3.3), 有如下估计:

$$\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} |\lambda_i^k| \leqslant C \|f\|_{H_A^{p(\cdot),q}(\mathbb{R}^n)}, \tag{3.6}$$

其中 C 是一个与 f 无关的正常数.

证明 设所有符号如定义 3.1 所示. 首先, 对于原子分解系数 $\{\lambda_i^k\}_{i\in\mathbb{N},k\in\mathbb{Z}}\subset\mathbb{C}$ 和任意 $\gamma\in(0,1]$, 有

$$\left(\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} |\lambda_i^k|\right)^{\gamma} \leqslant \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} |\lambda_i^k|^{\gamma}. \tag{3.7}$$

再结合定义 3.1(II) 中的等价关系、(2.3)、引理 3.2 和文献 [19, 注 4.4(ii)], 可得

$$\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} |\lambda_i^k| \sim \left(\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} 2^k \|\mathbf{1}_{B_i^k}\|_{L^{p(\cdot)}(\mathbb{R}^n)} \right) \lesssim \left(\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} 2^{kq} \|\mathbf{1}_{B_i^k}\|_{L^{p(\cdot)}(\mathbb{R}^n)}^q \right)^{\frac{1}{q}}$$

$$\lesssim \left(\sum_{k\in\mathbb{Z}} 2^{kq} \| \sum_{i\in\mathbb{N}} \mathbf{1}_{B_{i}^{k}} \|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q}\right)^{\frac{1}{q}} \sim \left(\sum_{k\in\mathbb{Z}} 2^{kq} \| \sum_{i\in\mathbb{N}} \mathbf{1}_{A^{j_{0}}B_{i}^{k}} \|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q}\right)^{\frac{1}{q}} \\
\sim \left[\sum_{k\in\mathbb{Z}} 2^{kq} \| \left(\sum_{i\in\mathbb{N}} \mathbf{1}_{A^{j_{0}}B_{i}^{k}}\right)^{1/\underline{p}} \|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q}\right]^{\frac{1}{q}} \\
\sim \left[\sum_{k\in\mathbb{Z}} 2^{kq} \| \left(\sum_{i\in\mathbb{N}} \mathbf{1}_{B_{i}^{k}}\right)^{1/\underline{p}} \|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q}\right]^{\frac{1}{q}} \\
\sim \left[\sum_{k\in\mathbb{Z}} \| \left\{\sum_{i\in\mathbb{N}} \left[\frac{\lambda_{i}^{k} \mathbf{1}_{B_{i}^{k}}}{\| \mathbf{1}_{B_{i}^{k}} \|_{L^{p(\cdot)}(\mathbb{R}^{n})}}\right]^{\underline{p}}\right\}^{1/\underline{p}} \|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q}\right]^{\frac{1}{q}} \\
\lesssim \| f \|_{H_{A}^{p(\cdot),r,s,q}(\mathbb{R}^{n})} \sim \| f \|_{H_{A}^{p(\cdot),q}(\mathbb{R}^{n})}, \tag{3.8}$$

其中 j_0 如定义 3.1(II) 所示, 至此完成了引理 3.3 的证明.

定理 3.1 的证明 设 $f \in H_A^{p(\cdot),q}(\mathbb{R}^n)$, 其中, $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, $0 < p_- \leqslant p_+ \leqslant 1$, $q \in (0,1]$, $r \in (\max\{p_+,1\},\infty]$, s 如 (3.2) 所示. 不失一般性, 设 $\|f\|_{H_A^{p(\cdot),q}(\mathbb{R}^n)} > 0$. 由定义 $3.1(\mathrm{II})$ 和引理 3.2 知, 存在数列 $\{\lambda_i^k\}_{i\in\mathbb{N},k\in\mathbb{Z}}\subset\mathbb{C}$ 和支撑集在 $\{B_i^k\}_{i\in\mathbb{N},k\in\mathbb{Z}}\subset\mathfrak{B}$ 上的一列 $(p(\cdot),r,s)$ - 原子 $\{a_i^k\}_{i\in\mathbb{N},k\in\mathbb{Z}}$, 使得

$$f = \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_i^k a_i^k \tag{3.9}$$

在 $\mathcal{S}'(\mathbb{R}^n)$ 中成立,其中,对于任意 $k \in \mathbb{Z}$ 和 $i \in \mathbb{N}$,系数 λ_i^k 满足 $\lambda_i^k \sim 2^k \|\mathbf{1}_{B_i^k}\|_{L^{p(\cdot)}(\mathbb{R}^n)}$,这里的等价常数与 k 和 i 均无关,且存在一个正常数 \widetilde{C} 和 $j_0 \in \mathbb{Z} \setminus \mathbb{N}$ 使得,对于任意 $k \in \mathbb{Z}$ 和 $x \in \mathbb{R}^n$,有 $\sum_{i \in \mathbb{N}} \mathbf{1}_{A^{j_0}B_i^k}(x) \leqslant \widetilde{C}$. 对 (3.9) 两端同时取 Fourier 变换,根据 Fourier 变换的连续性知 $\widehat{f} = \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_i^k \widehat{a_i^k}$ 在 $\mathcal{S}'(\mathbb{R}^n)$ 中成立.

因为对于任意函数 $g\in L^1(\mathbb{R}^n)$, \widehat{g} 在 \mathbb{R}^n 上处处有定义, 所以对于任意 $k\in\mathbb{Z}$ 和 $i\in\mathbb{N}$, $\widehat{a_i^k}$ 在 \mathbb{R}^n 上有定义. 从而, 由引理 3.1 和 3.3 知, 对于任意 $x\in\mathbb{R}^n$, 有

$$\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} |\lambda_{i}^{k}| |\widehat{a_{i}^{k}}(x)| \lesssim \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} |\lambda_{i}^{k}| \max\{ [\rho_{*}(x)]^{\frac{1}{p_{-}} - 1}, [\rho_{*}(x)]^{\frac{1}{p_{+}} - 1} \}
\lesssim ||f||_{H_{A}^{p(\cdot),q}(\mathbb{R}^{n})} \max\{ [\rho_{*}(x)]^{\frac{1}{p_{-}} - 1}, [\rho_{*}(x)]^{\frac{1}{p_{+}} - 1} \}
< \infty.$$
(3.10)

故对于任意 $x \in \mathbb{R}^n$,

$$F(x) := \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_i^k \widehat{a_i^k}(x)$$
(3.11)

是有意义的, 且满足

$$|F(x)| \lesssim ||f||_{H^{p(\cdot),q}(\mathbb{R}^n)} \max\{[\rho_*(x)]^{\frac{1}{p_-}-1}, [\rho_*(x)]^{\frac{1}{p_+}-1}\}.$$

接下来证明上述函数 F 在 \mathbb{R}^n 上的连续性. 为此, 只需证函数 F 在 \mathbb{R}^n 的任意紧集上都连续即可. 事实上, 对于任意紧集 $E \subset \mathbb{R}^n$, 都可以找到一个仅与伸缩矩阵 A 和集合 E 有关的正常数 $D_{(A,E)}$, 使得 $\rho_*(\cdot) \leq D_{(A,E)}$ 在紧集 E 上一致成立. 由此及 (3.10) 可以得到, 对于任意 $x \in E$, 有

$$\left| \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_i^k \widehat{a_i^k}(x) \right| \lesssim \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} |\lambda_i^k| \max\{ [D_{(A,E)}]^{\frac{1}{p_-} - 1}, [D_{(A,E)}]^{\frac{1}{p_+} - 1} \} < \infty.$$

因此, $\sum_{k\in\mathbb{Z}}\sum_{i\in\mathbb{N}}\lambda_i^k\widehat{a_i^k}(\cdot)$ 在紧集 E 上一致收敛. 又注意到任意的 $\widehat{a_i^k}$ 均是连续的, 故函数 F 在任意紧集 $E\subset\mathbb{R}^n$ 上连续, 从而也在 \mathbb{R}^n 上连续.

为完成定理 3.1 的证明, 还需验证 (3.11) 在 $S'(\mathbb{R}^n)$ 中也成立. 为此, 根据 Schwartz 函数的定义 知, 对于任意 $\varphi \in S(\mathbb{R}^n)$, $k \in \mathbb{Z}$ 和 $i \in \mathbb{N}$, 有

$$\begin{split} \left| \int_{\mathbb{R}^n} \widehat{a_i^k}(x) \varphi(x) \, dx \right| \lesssim & \sum_{j=1}^{\infty} \int_{(A^*)^{j+1} B_0^* \backslash (A^*)^j B_0^*} \max \{ [\rho_*(x)]^{\frac{1}{p_-} - 1}, \, [\rho_*(x)]^{\frac{1}{p_+} - 1} \} |\varphi(x)| \, dx + \|\varphi\|_{L^1(\mathbb{R}^n)} \\ \lesssim & \sum_{j=1}^{\infty} b^j b^{j(\frac{1}{p_-} - 1)} b^{-j(\lfloor \frac{1}{p_-} - 1 \rfloor + 3)} + \|\varphi\|_{L^1(\mathbb{R}^n)} \\ \sim & \sum_{j=1}^{\infty} b^{-j} + \int_{B_0^*} |\varphi(x)| \, dx + \sum_{j=1}^{\infty} \int_{A^j B_0^* \backslash A^{j-1} B_0^*} |\varphi(x)| \, dx. \\ \lesssim & \sum_{j=1}^{\infty} b^{-j} + \|\varphi\|_{\mathbf{0},0} + \|\varphi\|_{\mathbf{0},2} \sum_{j=1}^{\infty} b^{-2(j-1)} (b^j - b^{j-1}) \\ \lesssim & \sum_{j=1}^{\infty} b^{-j} + \|\varphi\|_{\mathbf{0},0} + b(b-1) \|\varphi\|_{\mathbf{0},2} \sum_{j=1}^{\infty} b^{-j} \\ \sim & \frac{1}{b-1} + \|\varphi\|_{\mathbf{0},0} + b\|\varphi\|_{\mathbf{0},2}, \end{split}$$

其中 B_0^* 表示相关于 A 的转置矩阵 A^* 的单位伸缩球且 $\|\varphi\|_{\mathbf{0},0}$ 和 $\|\varphi\|_{\mathbf{0},2}$ 如 (2.4) 所示. 因此, 存在一个与 k 和 i 均无关的正常数 L 使得 $|\int_{\mathbb{R}^n} \widehat{a_k^k}(x)\varphi(x)\,dx| \leq L$. 由此及 (3.6) 进一步知,

$$\lim_{l\to\infty} \sum_{k\in\mathbb{Z}, l\leqslant |k|\leqslant m} \sum_{i\in\mathbb{N},\, l\leqslant i\leqslant m} |\lambda_i^k| \left| \int_{\mathbb{R}^n} \widehat{a_i^k}(x) \varphi(x)\, dx \right| \lesssim \lim_{l\to\infty} \sum_{k\in\mathbb{Z}, l\leqslant |k|\leqslant m} \sum_{i\in\mathbb{N}, l\leqslant i\leqslant m} |\lambda_i^k| = 0.$$

从而, 对于任意 $\varphi \in \mathcal{S}(\mathbb{R}^n)$, 有

$$\langle F, \varphi \rangle = \lim_{l \to \infty} \left\langle \sum_{k \in \mathbb{Z}, |k| \leqslant l} \sum_{i \in \mathbb{N}, i \leqslant l} \lambda_i^k \widehat{a_i^k}, \varphi \right\rangle.$$

这证明了 (3.11) 在 $S'(\mathbb{R}^n)$ 中成立. 因此, 定理 3.1 得证.

- 注 3.2 (i) 若 $A := dI_{n \times n}$, 其中, $d \in \mathbb{R}$ 满足 $|d| \in (1,\infty)$, 这里及下文中, $I_{n \times n}$ 表示 $n \times n$ 单位矩阵, 则定理 3.1 中的空间 $H_A^{p(\cdot),q}(\mathbb{R}^n)$ 变成了 Jiao 等 [15] 研究的各向同性变指标 Hardy-Lorentz 空间 $H^{p(\cdot),q}(\mathbb{R}^n)$. 进一步地, 当 $p(\cdot) \equiv p$ (常数) $\in (0,1]$ 时, 空间 $H^{p(\cdot),q}(\mathbb{R}^n)$ 又退化为 Abu-Shammala 和 Torchinsky [1] 的常指标 Hardy-Lorentz 空间 $H^{p,q}(\mathbb{R}^n)$. 即使在这种情形下, 定理 3.1 的结果也是新的.
- (ii) 当 $p(\cdot) \equiv p$ (常数) = $q \in (0,1]$ 时, 定理 3.1 中的空间 $H_A^{p(\cdot),q}(\mathbb{R}^n)$ 变为 Bownik [2] 所引入的各向异性 Hardy 空间 $H_A^p(\mathbb{R}^n)$. 此时, $p_- = p_+ = p$ 且 (3.1) 简化为

$$|F(x)| \lesssim ||f||_{H_A^p(\mathbb{R}^n)} [\rho_*(x)]^{\frac{1}{p}-1}.$$
 (3.12)

在这种特殊情形下, 定理 3.1 就是文献 [3, 定理 1]. 进一步地, 若 $A = dI_{n \times n}$, 其中 $d \in \mathbb{R}$ 满足 $|d| \in (1, \infty)$, 则 $H_A^p(\mathbb{R}^n)$ 退化为经典的 Hardy 空间 $H^p(\mathbb{R}^n)$ 且 $\rho_*(\cdot) = |\cdot|^n$. 此时, (3.12) 自然变为 (1.1).

(iii) 注意到在定理 3.1 中, 要求 $q \in (0,1]$. 这是因为在定理 3.1 的证明中用到了引理 3.3, 而引理 3.3 的证明方法对于 $q \in (1,\infty]$ 并不适用. 因此, 定理 3.1 的结论对于 $q \in (1,\infty]$ 是否成立仍是未知的. 在此, 作为一个问题留给读者.

4 应用

作为定理 3.1 的应用, 首先得到了定理 3.1 中的函数 F 在原点 $\mathbf{0}$ 处的高阶收敛性, 即当 $x \to \mathbf{0}$ 时, F(x) 是 $[\rho_*(x)]^{\frac{1}{p_+}-1}$ 的高阶无穷小. 然后将 Hardy-Littlewood 不等式推广到了各向异性变指标 Hardy-Lorentz 空间之中.

下面的定理 4.1 是定理 3.1 的第一个应用.

定理 4.1 设 $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, $0 < p_- \leq p_+ \leq 1$ 且 $q \in (0,1]$. 则对于任意 $f \in H_A^{p(\cdot),q}(\mathbb{R}^n)$, 存在 \mathbb{R}^n 上的一个连续函数 F, 使得 $\hat{f} = F$ 在 $\mathcal{S}'(\mathbb{R}^n)$ 中成立, 且满足

$$\lim_{x \to \mathbf{0}} \frac{F(x)}{\left[\rho_*(x)\right]^{\frac{1}{p_+} - 1}} = 0,\tag{4.1}$$

其中 ρ_* 表示相关于 A 的转置矩阵 A^* 的齐次拟模.

证明 设 $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, $0 < p_- \leqslant p_+ \leqslant 1$, $q \in (0,1]$, $r \in (\max\{p_+,1\},\infty]$, s 如 (3.2) 所示. 由定义 3.1(II) 和引理 3.2 知, 存在数列 $\{\lambda_i^k\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathbb{C}$ 和支撑集在 $\{B_i^k\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathfrak{B}$ 上的一列 $(p(\cdot), r, s)$ -原子 $\{a_i^k\}_{i \in \mathbb{N}, k \in \mathbb{Z}}$, 使得 $f = \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_i^k a_i^k$ 在 $S'(\mathbb{R}^n)$ 中成立, 其中, 对于任意 $k \in \mathbb{Z}$ 和 $i \in \mathbb{N}$, 系数 λ_i^k 满足 $\lambda_i^k \sim 2^k \|\mathbf{1}_{B_i^k}\|_{L^{p(\cdot)}(\mathbb{R}^n)}$, 这里的等价常数与 k 和 i 均无关, 且存在一个正常数 \widetilde{C} 和 $j_0 \in \mathbb{Z} \setminus \mathbb{N}$ 使得, 对于任意 $k \in \mathbb{Z}$ 和 $k \in$

$$F(x) = \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_i^k \widehat{a_i^k}(x), \quad \forall x \in \mathbb{R}^n,$$

$$(4.2)$$

使得 $\hat{f} = F$ 在 $\mathcal{S}'(\mathbb{R}^n)$ 中成立.

因此, 为了完成定理 4.1 的证明, 只需验证上述函数 F 满足 (4.1) 即可. 事实上, 对于任意支撑集在 $x_0+B_{i_0}$ 上的一个 $(p(\cdot),r,s)$ - 原子 a, 其中, $x_0\in\mathbb{R}^n$, $i_0\in\mathbb{Z}$, 由 (3.5) 以及

$$1 - \frac{1}{p_{+}} + (s+1)\frac{\ln \lambda_{-}}{\ln b} \geqslant 1 - \frac{1}{p_{-}} + (s+1)\frac{\ln \lambda_{-}}{\ln b} > 0$$

知, 当 $\rho_*(x) \leq b^{-i_0}$ 时,

$$\frac{|\widehat{a}(x)|}{[\rho_*(x)]^{\frac{1}{p_+}-1}} \lesssim \max\{b^{i_0[1-\frac{1}{p_-}+(s+1)\frac{\ln\lambda_-}{\ln b}]}, b^{i_0[1-\frac{1}{p_+}+(s+1)\frac{\ln\lambda_-}{\ln b}]}\}[\rho_*(x)]^{1-\frac{1}{p_+}+(s+1)\frac{\ln\lambda_-}{\ln b}},$$

进一步可以得到

$$\lim_{x \to \mathbf{0}} \frac{|\widehat{a}(x)|}{[\rho_*(x)]^{\frac{1}{p_+} - 1}} = 0. \tag{4.3}$$

注意到, 由 (4.2) 知, 对于任意 $x \in \mathbb{R}^n$, 有

$$\frac{|F(x)|}{[\rho_*(x)]^{\frac{1}{p_+}-1}} \leqslant \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} |\lambda_i^k| \frac{|\widehat{a_i^k}(x)|}{[\rho_*(x)]^{\frac{1}{p_+}-1}}.$$
(4.4)

此外, 由 (4.3)、(3.6)、引理 3.1 和 $p_+ \geqslant p_-$ 知 (4.4) 右端满足 Lebesgue 控制收敛定理的条件, 故可以逐项求极限. 因此,

$$\lim_{x \to 0} \frac{F(x)}{\left[\rho_*(x)\right]^{\frac{1}{p_+} - 1}} = 0,$$

至此完成了定理 4.1 的证明.

对 q 做一些限制, 作为定理 3.1 的另一个应用, 我们得到了 Hardy-Littlewood 不等式在各向异性 变指标 Hardy-Lorentz 空间的推广.

定理 4.2 设 $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, $0 < p_- \leqslant p_+ \leqslant 1$ 且 $q \in (0, p_+]$. 则对于任意 $f \in H_A^{p(\cdot), q}(\mathbb{R}^n)$, 都存在 \mathbb{R}^n 上的一个连续函数 F,使得 $\widehat{f} = F$ 在 $\mathcal{S}'(\mathbb{R}^n)$ 中成立, 且函数 F 满足积分不等式

$$\left(\int_{\mathbb{R}^n} |F(x)|^{p_+} \min\{[\rho_*(x)]^{p_+ - \frac{p_+}{p_-} - 1}, [\rho_*(x)]^{p_+ - 2}\} dx\right)^{\frac{1}{p_+}} \leqslant C\|f\|_{H_A^{p(\cdot), q}(\mathbb{R}^n)},\tag{4.5}$$

其中, ρ_* 表示相关于 A 的转置矩阵 A^* 的齐次拟模, C 是一个仅与 A、 p_- 、 p_+ 和 q 有关的正常数.

证明 设 $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, $0 < p_- \leqslant p_+ < 1$, $q \in (0, p_+]$. 由定义 $3.1(\mathrm{II})$ 和引理 3.2 知, 对于任意 $f \in H_A^{p(\cdot),q}(\mathbb{R}^n)$, 存在如定义 $3.1(\mathrm{II})$ 中的数列 $\{\lambda_i^k\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathbb{C}$ 以及支撑集在 $\{B_i^k\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathfrak{B}$ 上的一列 $(p(\cdot), 2, s)$ - 原子 $\{a_i^k\}_{i \in \mathbb{N}, k \in \mathbb{Z}}$, 使得 $f = \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_i^k a_i^k$ 在 $\mathcal{S}'(\mathbb{R}^n)$ 中成立,且

$$\bigg[\sum_{k\in\mathbb{Z}}\bigg\|\bigg\{\sum_{i\in\mathbb{N}}\bigg[\frac{\lambda_i^k\mathbf{1}_{B_i^k}}{\|\mathbf{1}_{B_i^k}\|_{L^{p(\cdot)}(\mathbb{R}^n)}}\bigg]^{\underline{p}}\bigg\}^{1/\underline{p}}\bigg\|_{L^{p(\cdot)}(\mathbb{R}^n)}^q\bigg]^{\frac{1}{q}}\leqslant 2\|f\|_{H_A^{p(\cdot),q}(\mathbb{R}^n)}<\infty.$$

由定理 3.1 的证明知, 存在 \mathbb{R}^n 上的连续函数

$$F(x) = \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_i^k \widehat{a_i^k}(x)$$
(4.6)

使得 $\hat{f} = F$ 在 $\mathcal{S}'(\mathbb{R}^n)$ 中成立.

因此, 为证明定理 4.2, 只需验证 (4.6) 中的函数 F 满足积分不等式 (4.5) 即可. 为此, 注意到 $q \in (0, p_+]$, 类似于 (3.8) 的证明, 有

$$\left(\sum_{k\in\mathbb{Z}}\sum_{i\in\mathbb{N}}|\lambda_{i}^{k}|^{p_{+}}\right)^{\frac{1}{p_{+}}}\lesssim\left(\sum_{k\in\mathbb{Z}}\sum_{i\in\mathbb{N}}2^{kp_{+}}\|\mathbf{1}_{B_{i}^{k}}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{p_{+}}\right)^{\frac{1}{q}\frac{q}{p_{+}}}\lesssim\left(\sum_{k\in\mathbb{Z}}2^{kq}\sum_{i\in\mathbb{N}}\|\mathbf{1}_{B_{i}^{k}}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q}\right)^{\frac{1}{q}}$$

$$\lesssim\left[\sum_{k\in\mathbb{Z}}\left\|\left\{\sum_{i\in\mathbb{N}}\left[\frac{\lambda_{i}^{k}\mathbf{1}_{B_{i}^{k}}}{\|\mathbf{1}_{B_{i}^{k}}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}}\right]^{\frac{p}{2}}\right\}^{1/\underline{p}}\right\|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q}\right]^{\frac{1}{q}}$$

$$\lesssim\|f\|_{H_{A}^{p(\cdot),q}(\mathbb{R}^{n})}.$$
(4.7)

另一方面, 由 (4.6)、条件 $p_+ \in (0,1]$ 、(3.7) 和 Fatou 引理知,

$$\int_{\mathbb{R}^{n}} |F(x)|^{p_{+}} \min\{ [\rho_{*}(x)]^{p_{+} - \frac{p_{+}}{p_{-}} - 1}, [\rho_{*}(x)]^{p_{+} - 2} \} dx$$

$$\leq \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} |\lambda_{i}^{k}|^{p_{+}} \int_{\mathbb{R}^{n}} [|\widehat{a_{i}^{k}}(x)| \min\{ [\rho_{*}(x)]^{1 - \frac{1}{p_{-}} - \frac{1}{p_{+}}}, [\rho_{*}(x)]^{1 - \frac{2}{p_{+}}} \}]^{p_{+}} dx.$$
(4.8)

先假设如下结论成立: 存在一个正常数 M 使得, 对于任意 $(p(\cdot),2,s)$ - 原子 a_i^k , 一致地有

$$\left(\int_{\mathbb{R}^n} [|\widehat{a_i^k}(x)| \min\{[\rho_*(x)]^{1-\frac{1}{p_-}-\frac{1}{p_+}}, [\rho_*(x)]^{1-\frac{2}{p_+}}\}]^{p_+} dx\right)^{\frac{1}{p_+}} \leq M. \tag{4.9}$$

则由此以及 (4.8) 和 (4.7) 进一步知,

$$\left(\int_{\mathbb{R}^n} |F(x)|^{p_+} \min\{[\rho_*(x)]^{p_+ - \frac{p_+}{p_-} - 1}, [\rho_*(x)]^{p_+ - 2}\} dx\right)^{\frac{1}{p_+}} \leq M\left(\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} |\lambda_i^k|^{p_+}\right)^{\frac{1}{p_+}} \lesssim \|f\|_{H_A^{p(\cdot), q}(\mathbb{R}^n)},$$

这正是我们想要的结论。

综上可知, 为了完成定理 4.2 的证明, 只需证明 (4.9) 成立. 事实上, 对于任意支撑集在 $x_i^k+B_{j_i^k}$ 上的一个 $(p(\cdot),2,s)$ - 原子 a_i^k , 其中 $x_i^k\in\mathbb{R}^n$ 且 $j_i^k\in\mathbb{Z}$, 有

$$\begin{split} &\left(\int_{\mathbb{R}^n}[|\widehat{a_i^k}(x)|\min\{[\rho_*(x)]^{1-\frac{1}{p_-}-\frac{1}{p_+}},[\rho_*(x)]^{1-\frac{2}{p_+}}\}]^{p_+}dx\right)^{\frac{1}{p_+}}\\ &\lesssim \left(\int_{(A^*)^{-j_i^k+1}B_0^*}[|\widehat{a_i^k}(x)|\min\{[\rho_*(x)]^{1-\frac{1}{p_-}-\frac{1}{p_+}},[\rho_*(x)]^{1-\frac{2}{p_+}}\}]^{p_+}dx\right)^{\frac{1}{p_+}}\\ &+\left(\int_{((A^*)^{-j_i^k+1}B_0^*)^{\mathfrak{Q}}}[|\widehat{a_i^k}(x)|\min\{[\rho_*(x)]^{1-\frac{1}{p_-}-\frac{1}{p_+}},[\rho_*(x)]^{1-\frac{2}{p_+}}\}]^{p_+}dx\right)^{\frac{1}{p_+}}\\ &=:I_1+I_2, \end{split}$$

其中 B_0^* 表示相关于 A 的转置矩阵 A^* 的单位伸缩球.

设 δ 是某个固定的正常数且满足下述条件:

$$1 - \frac{1}{p_{+}} + (s+1)\frac{\ln \lambda_{-}}{\ln b} - \delta \geqslant 1 - \frac{1}{p_{-}} + (s+1)\frac{\ln \lambda_{-}}{\ln b} - \delta > 0.$$

对于 I1, 由 (3.5) 知,

$$\begin{split} I_{1} &\lesssim b^{j_{i}^{k}[1+(s+1)\frac{\ln\lambda_{-}}{\ln b}]} \max\{b^{-\frac{j_{i}^{k}}{p_{-}}}, b^{-\frac{j_{i}^{k}}{p_{+}}}\} \\ &\times \left(\int_{(A^{*})^{-j_{i}^{k}+1}B_{0}^{*}} \left[\min\{\left[\rho_{*}(x)\right]^{1-\frac{1}{p_{-}}-\frac{1}{p_{+}}+(s+1)\frac{\ln\lambda_{-}}{\ln b}}, \left[\rho_{*}(x)\right]^{1-\frac{2}{p_{+}}+(s+1)\frac{\ln\lambda_{-}}{\ln b}}\}\right]^{p_{+}} dx\right)^{\frac{1}{p_{+}}} \\ &\lesssim b^{j_{i}^{k}[1+(s+1)\frac{\ln\lambda_{-}}{\ln b}]} \max\{b^{-\frac{j_{i}^{k}}{p_{-}}}, b^{-\frac{j_{i}^{k}}{p_{+}}}\}\left(\int_{(A^{*})^{-j_{i}^{k}+1}B_{0}^{*}} \left[\rho_{*}(x)\right]^{\delta p_{+}-1} dx\right)^{\frac{1}{p_{+}}} \\ &\times \min\{b^{-j_{i}^{k}[1-\frac{1}{p_{-}}+(s+1)\frac{\ln\lambda_{-}}{\ln b}-\delta]}, b^{-j_{i}^{k}[1-\frac{1}{p_{+}}+(s+1)\frac{\ln\lambda_{-}}{\ln b}-\delta]}\} \\ &\sim b^{j_{i}^{k}\delta}\left[\sum_{l\in\mathbb{Z}\backslash\mathbb{N}} b^{-j_{i}^{k}+l}(b-1)b^{(-j_{i}^{k}+l)(\delta p_{+}-1)}\right]^{\frac{1}{p_{+}}} \sim \left(\frac{b-1}{1-b^{-\delta p_{+}}}\right)^{\frac{1}{p_{+}}} \\ &\sim 1. \end{split}$$

最后估计 I_2 . 为此, 应用 Hölder 不等式、Plancherel 定理和条件 $0 < p_- \le p_+ \le 1$ 以及原子的尺寸条件, 可得

$$\begin{split} I_2 &\lesssim \left\{ \int_{((A^*)^{-j_i^k+1} B_0^*)^{\mathbb{Q}}} |\widehat{a_i^k}(x)|^2 \, dx \right\}^{\frac{1}{2}} \left\{ \int_{((A^*)^{-j_i^k+1} B_0^*)^{\mathbb{Q}}} \left[\min\{ [\rho_*(x)]^{1-\frac{1}{p_-}-\frac{1}{p_+}}, \, [\rho_*(x)]^{1-\frac{2}{p_+}} \} \right]^{\frac{2p_+}{2-p_+}} \, dx \right\}^{\frac{2-p_+}{2p_+}} \\ &\lesssim \|a\|_{L^2(\mathbb{R}^n)} \left\{ \sum_{l \in \mathbb{N}} b^{-j_i^k+l} (b-1) \left[\min\{ b^{(-j_i^k+l)(1-\frac{1}{p_-}-\frac{1}{p_+})}, \, b^{(-j_i^k+l)(1-\frac{2}{p_+})} \} \right]^{\frac{2p_+}{2-p_+}} \right\}^{\frac{2-p_+}{2-p_+}} \\ &\lesssim \|a\|_{L^2(\mathbb{R}^n)} \{ b^{-j_i^k} \left[\min\{ b^{-j_i^k(1-\frac{1}{p_-}-\frac{1}{p_+})}, \, b^{-j_i^k(1-\frac{2}{p_+})} \} \right]^{\frac{2p_+}{2-p_+}} \right\}^{\frac{2-p_+}{2-p_+}} \\ &\lesssim \max\{ b^{j_i^k(\frac{1}{2}-\frac{1}{p_-})}, \, b^{j_i^k(\frac{1}{2}-\frac{1}{p_+})} \} \min\{ b^{-j_i^k(\frac{1}{2}-\frac{1}{p_-})}, \, b^{-j_i^k(\frac{1}{2}-\frac{1}{p_+})} \} \\ &\sim 1. \end{split}$$

至此证明了 (4.9), 从而完成了定理 4.2 的证明.

- 注 **4.1** (i) 类似于注 3.2(i), 对于 Abu-Shammala 和 Torchinsky ^[1] 所研究的各向同性常指标 Hardy-Lorentz 空间 $H^{p,q}(\mathbb{R}^n)$, 定理 4.1 和 4.2 的结果均是新的.
- (ii) 当 $p(\cdot) \equiv p$ (常数) = $q \in (0,1]$ 时, 空间 $H_A^{p(\cdot),q}(\mathbb{R}^n)$ 变为 Bownik [2] 所引入的各向异性 Hardy 空间 $H_A^p(\mathbb{R}^n)$. 此时, $p_- = p_+ = p$, 且 (4.1) 和 (4.5) 分别简化为

$$\lim_{x \to 0} \frac{F(x)}{\left[\rho_*(x)\right]^{\frac{1}{p}-1}} = 0 \tag{4.10}$$

和

$$\left(\int_{\mathbb{R}^n} |F(x)|^p [\rho_*(x)]^{p-2} \, dx\right)^{\frac{1}{p}} \lesssim \|f\|_{H_A^p(\mathbb{R}^n)}. \tag{4.11}$$

在这种特殊情形下, 定理 4.1 和 4.2 分别是文献 [3, 推论 6 和推论 8]. 进一步地, 若 $A := d I_{n \times n}$, 其中 $d \in \mathbb{R}$ 满足 $|d| \in (1, \infty)$, 则 $H^p_A(\mathbb{R}^n)$ 退化为经典的 Hardy 空间 $H^p(\mathbb{R}^n)$ 且 $\rho_*(\cdot) = |\cdot|^n$. 此时, (4.10) 即 为经典 $H^p(\mathbb{R}^n)$ 上的著名结果 (参见文献 [21, 第 128 页]), 且 (4.11) 自然变为 (1.2), 而这正是 $H^p(\mathbb{R}^n)$ 空间上的 Hardy-Littlewood 不等式.

(iii) 注意到在定理 4.2 中, 我们要求 $q \in (0, p_+]$. 这主要用于定理 4.2 证明中的 (4.7), 其过程对于 $q \in (p_+, \infty]$ 并不适用. 因此, 定理 4.2 的结论对于 $q \in (p_+, \infty]$ 是否成立仍是未知的. 在此, 作为一个问题留给读者.

致谢 作者衷心感谢审稿专家提出的宝贵建议.

参考文献 -

- 1 Abu-Shammala W, Torchinsky A. The Hardy-Lorentz spaces $H^{p,q}(\mathbb{R}^n)$. Studia Math, 2007, 182: 283–294
- 2 Bownik M. Anisotropic Hardy Spaces and Wavelets. Memoirs of the American Mathematical Society, vol. 164. Providence: Amer Math Soc, 2003
- 3 Bownik M, Wang L-A D. Fourier transform of anisotropic Hardy spaces. Proc Amer Math Soc, 2013, 141: 2299–2308
- 4 Calderón A P, Torchinsky A. Parabolic maximal functions associated with a distribution. Adv Math, 1975, 16: 1-64
- 5 Cleanthous G, Georgiadis A G, Nielsen M. Anisotropic mixed-norm Hardy spaces. J Geom Anal, 2017, 27: 2758–2787
- 6 Coifman R R. Characterization of Fourier transforms of Hardy spaces. Proc Natl Acad Sci USA, 1974, 71: 4133-4134
- 7 Colzani L. Fourier transform of distributions in Hardy spaces. Boll Un Mat Ital A (6), 1982, 1: 403-410
- 8 Fefferman C, Stein E M. H^p spaces of several variables. Acta Math, 1972, 129: 137–193
- 9 García-Cuerva J, Kolyada V I. Rearrangement estimates for Fourier transforms in L^p and H^p in terms of moduli of continuity. Math Nachr, 2001, 228: 123–144
- 10 Grafakos L. Modern Fourier Analysis. New York: Springer, 2014
- Huang L, Chang D C, Yang D C. Fourier transform of anisotropic mixed-norm Hardy spaces. Front Math China, 2021,
 119–139
- 12 Huang L, Chang D C, Yang D C. Fourier transform of Hardy spaces associated with ball quasi-Banach function spaces. Appl Anal, 2022, 101: 3825–3840
- 13 Huang L, Liu J, Yang D C, et al. Real-variable characterizations of new anisotropic mixed-norm Hardy spaces. Commun Pure Appl Anal, 2020, 19: 3033–3082
- 14 Jiao Y, Weisz F, Xie G H, et al. Martingale Musielak-Orlicz-Lorentz Hardy spaces with applications to dyadic Fourier analysis. J Geom Anal, 2021, 31: 11002–11050
- 15 Jiao Y, Zuo Y, Zhou D, et al. Variable Hardy-Lorentz spaces $H^{p(\cdot),q}(\mathbb{R}^n)$. Math Nachr, 2019, 292: 309–349
- 16 Kempka H, Vybíral J. Lorentz spaces with variable exponents. Math Nachr, 2014, 287: 938-954
- 17 Liu J. Fourier transform of variable anisotropic Hardy spaces with applications to Hardy-Littlewood inequalities. Math Inequal Appl, 2022, 25: 447–465
- 18 Liu J, Weisz F, Yang D C, et al. Littlewood-Paley and finite atomic characterizations of anisotropic variable Hardy-Lorentz spaces and their applications. J Fourier Anal Appl, 2019, 25: 874–922

- 19 Liu J, Yang D C, Yuan W. Anisotropic variable Hardy-Lorentz spaces and their real interpolation. J Math Anal Appl, 2017, 456: 356–393
- 20 Müller S. Hardy space methods for nonlinear partial differential equations. Tatra Mt Math Publ, 1994, 4: 159-168
- 21 Stein E.M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: University Press, 1993
- 22 Taibleson M H, Weiss G. The Molecular Characterization of Certain Hardy Spaces. Paris: Soc Math France, 1980
- 23 Triebel H. Theory of Function Spaces III. Basel: Birkhäuser, 2006
- 24 Yang D C, Liang Y Y, Ky L D. Real-Variable Theory of Musielak-Orlicz Hardy Spaces. Cham: Springer, 2017
- 25 Yang D C, Yang D Y, Hu G E. The Hardy Space H^1 with Non-Doubling Measures and Their Applications. Cham: Springer, 2013

Fourier transform of variable anisotropic Hardy-Lorentz spaces and its applications

Jun Liu & Mingdong Zhang

Abstract Let $p(\cdot)$ be a measurable function on \mathbb{R}^n satisfying the globally log-Hölder continuous condition. Its essential supremum p_+ and infimum p_- satisfy $0 < p_- \leqslant p_+ \leqslant 1$. Let $H_A^{p(\cdot),q}(\mathbb{R}^n)$ be the variable anisotropic Hardy-Lorentz spaces defined via the radial grand maximal function, where $q \in (0,1]$ and A is an expansive matrix. In this article, by using the atomic decomposition of $H_A^{p(\cdot),q}(\mathbb{R}^n)$, we prove that the Fourier transform of $f \in H_A^{p(\cdot),q}(\mathbb{R}^n)$ equals a continuous function F on \mathbb{R}^n in the sense of tempered distributions. Moreover, the function F can be pointwisely controlled by the product of the $H_A^{p(\cdot),q}(\mathbb{R}^n)$ norm of f and the homogeneous quasi-norm associated with the transpose matrix of A. As applications, we obtain a higher order of convergence for the function F at the origin, and an analogue of Hardy-Littlewood inequalities in the present setting of $H_A^{p(\cdot),q}(\mathbb{R}^n)$. All these results are new even for the isotropic Hardy-Lorentz spaces $H^{p,q}(\mathbb{R}^n)$ and they generalize the corresponding conclusions of Taibleson and Weiss on classical Hardy spaces $H^p(\mathbb{R}^n)$.

Keywords anisotropic Euclidean space, variable Hardy(-Lorentz) space, Fourier transform, Hardy-Littlewood inequality

MSC(2020) 42B35, 42B30, 42B10, 46E30

doi: 10.1360/SSM-2022-0007