水驱砂岩气藏型地下储气库气水二相渗流机理

石磊等.水驱砂岩气藏型地下储气库气水二相渗流机理.天然气工业,2012,32(9):85-87.

摘 要 水驱砂岩气藏型地下储气库的渗流机理具有特殊性及复杂性,并客观上决定了地下储气库多周期运行的注采效果。为此,针对其储层特征,开展了多轮次气、水互驱物理模拟实验,研究了储气库储层气、水二相渗流特征,分析了储气库储层孔隙空间可利用率的变化规律,并揭示了该类储气库建设及运行的主要影响因素。研究表明:①该类储气库经长期注采运行,水相渗流能力相应增强,导致边水运移越发活跃,储层孔隙空间出现大量残余气、束缚水,气相渗流阻力相应增加,气库扩容及注采效果受到影响;②储气库运行中边水往复运移造成储层空间形成大量死气区,导致储层孔隙空间利用效果变差,库容可利用率降低,储层孔隙空间可利用率介于40%~70%;③该类储气库建设及运行过程中应重视储层含水量的变化,并采取相应措施以降低水侵对储气库运行效果的影响。

关键词 水驱砂岩气藏 地下储气库 渗流机理 注采循环 储层孔隙空间可利用率 气、水互驱物理模拟 **DOI**:10.3787/j.issn.1000-0976.2012.09.020

水驱砂岩气藏内部及周边存在一定规模的边、底水,因此,在水驱砂岩气藏型地下储气库的设计中,充分认识气库建设及运行中的气、水二相渗流机理是很重要的^[1]。气库运行中边水侵入储层可造成储层伤害,导致注气损失、库容动用效果变差等,致使气库运行指标难以预测^[2-6]。由于水驱砂岩气藏型储层岩石的亲水性,多周期运行过后孔隙喉道壁面易形成水膜,造成气相渗流阻力,影响气库扩容及注采能力^[7-17]。

根据水驱砂岩气藏型地下储气库储层及运行特征,设计了气、水互驱模拟实验系统,开展多轮次气、水互驱实验,针对水驱砂岩气藏型储气库运行过程中气、水二相渗流机理及库容可动空间变化特征,分析了气库储层孔隙空间可利用程度变化规律,并揭示了该类储气库建设及运行的主要影响因素。

1 气、水互驱物理模拟实验

根据水驱砂岩气藏型储气库建设及运行特征,设计了室内气、水互驱物理模拟实验系统(图1)。

1.1 实验样品

实验样品选取某水驱砂岩气藏型储气库储层岩

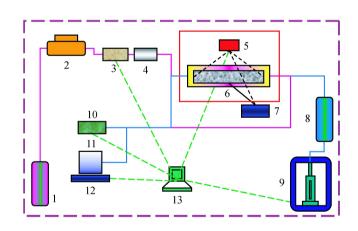


图 1 气、水互驱模拟实验系统流程图

注:1.气瓶;2.气体压缩机;3.气体控制流量计;4.加湿器;5.压力传感器;6.岩心夹持器;7.围压泵;8.液体活塞中间容器;9.QUIZIX驱替泵;10.气体流量计;11.接液管;12.电子天平;13.电脑

心,代表地下储气库高、中、低各类渗透率级别的储层, 样品基础参数见表 1。

1.2 气、水互驱实验流程

高、中、低渗透率的小岩心样品分别连续完成3组气、水互驱实验。实验环境为标准状态,实验过程中记

作者简介:石磊,1982年生,工程师,博士;主要从事油气田开发研究工作。地址:(065007)河北省廊坊市44号信箱储气库研究中心。电话:(010)69213725,13401002192。E-mail;jinfish19821230@163.com

表 1 岩心样品基本参数表

岩石编号		/ 直径/ cm	孔隙度	气测渗透率 mD	/ 水测渗透率/ mD
K4	7.76	6 2.516	24 .564%	50.439	16.530
K1	2 7.34	4 2.518	5 .275%	0.018	0.005
K2	3 7.90	0 2.451	25.307%	120.215	54.522

录时间、流量、压力,并绘制气、水相对渗透率与含水饱和度的关系曲线。具体实验流程如下:

- 1)用模拟地层水饱和岩心样品。
- 2)气驱水,记录各时间点气、水流量及压力等实验数据,绘制气、水相对渗透率曲线,气驱结束计算束缚水饱和度及束缚水下气相相对渗透率。
- 3)水驱气,记录各流量及压力等实验数据,水驱结束后记录残余气饱和度及残余气下水相相对渗透率。
- 4)如此往复3次,实验结束后称取岩心质量以验证实验精度。

2 实验结果及分析

针对各类储层岩心的 3 轮气、水互驱结果(表 2), 分析水驱砂岩气藏型储层气、水二相的渗流特征及两 相流动区间的变化规律。

表 2 气、水互驱实验结果统计表

			41131-3	V(1) = 3E) (3E 2H) (3E 7 3E				
样品号	储层 类型	周期	束缚水 饱和度	束缚水下 气相相对 渗透率	残余气 饱和度	残余气下 水相相对 渗透率		
K12	低渗透 储层	1 2 3	52 .3% 53 .4% 54 .6%	21 .8% 19 .6% 18 .7%	10 .2% 10 .4% 11 .8%	56 .3% 54 .8% 54 .0%		
K 4	中渗透 储层	1 2 3	34 .1% 37 .0% 37 .5%	75 .9% 73 .3% 71 .2%	26 .9% 27 .2% 27 .5%	68 .9% 64 .8% 61 .5%		
K23	高渗透 储层	1 2 3	31 .4% 31 .8% 32 .1%	87 .5% 76 .0% 68 .3%	35 .4% 36 .0% 36 .4%	80 .0% 70 .0% 62 .2%		

2.1 气、水二相渗流特征

图 2 为 3 轮气、水互驱相对渗透率曲线的对比效果图。

随着气、水互驱轮次的增加,气、水两相区间收窄, 气相渗流等渗点下移。表明气库经长期运行,储层受 边水运移影响孔隙空间可利用程度逐步降低,气相渗 流阻力逐步增加,影响气库扩容及注采效果。

对比各轮气、水互驱结束的束缚水、残余气饱和 度。随着气、水互驱轮次的增加,储层束缚水饱和度及 残余气饱和度相应增加。其中,由于低渗透率层孔喉

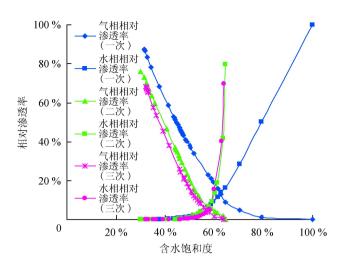


图 2 气、水相对渗透率曲线对比示意图

发育差,气驱水效果较差,孔隙水动用效果不佳,导致 束缚水饱和度较高;而高渗透率层孔喉发育均质性较 差,水驱气过程中容易产生绕流封闭气,储层空间出现 大量死气区致使残余气饱和度较高。

2.2 储层孔隙空间可利用率

为描述水驱砂岩气藏型储气库储层孔隙空间的动用效果,提出孔隙空间可利用率的概念,用来表示气库运行中储层孔隙空间的可动用程度,下面给出具体算法:

可利用孔隙空间饱和度
$$=1-S_{wc}-S_{gc}$$
 (1)

孔隙空间可利用率=
$$\frac{1 - S_{wc} - S_{gc}}{1 - S} \times 100\%$$
 (2)

式中 S_{wc} 为束缚水饱和度; S_{gc} 为残余气饱和度。

利用各轮气、水互驱的束缚水、残余气饱和度,计算各类储层岩心孔隙空间可利用率,结果见图 3。经 3 轮气、水互驱,各类储层孔隙空间可利用率的差距较为明显,高、中、低渗透率层孔隙空间可利用率分别为 46.5%、56.0%、74.0%,并且随着气、水互驱轮次的增加,储层孔隙空间可利用率表现为下降趋势。其中低

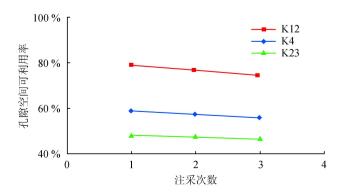


图 3 孔隙空间可利用率变化趋势图

渗透率层孔隙空间可利用率下降幅度较大,表明由于 孔喉发育较差,低渗透率储层孔隙空间动用能力受水 驱效果影响更加明显。

3 水驱砂岩气藏型储气库运行影响因素

水驱砂岩气藏型储气库运行过程中,随着采气循环,库内压力迅速下降,为缓冲库内压力变化,边水侵入储层孔隙空间,由于高渗透率储层孔喉发育非均质性较强,边水选择优势通道流动,而临近较细孔喉空间无法有效动用,形成大量封闭气死空间,导致残余气饱和度较高,储层孔隙空间可利用率较低,影响库容可动用率。

地下储气库运行过程属于高速注采过程,在细孔 喉的减切作用下,孔隙空间出现气、水互锁现象。水驱 砂岩气藏型储气库经长期运行,储层孔隙空间气、水二 相分布趋于复杂,出现大量残余气及束缚水,气库扩容 及注采能力受到影响。因此,针对水驱砂岩气藏储气库 的建设及运行,要特别重视储层含水状况,将边水运移 控制在一定范围之内,以降低气库运行中的水侵伤害。

4 结论

- 1)自主设计研发了水驱砂岩气藏型地下储气库运行物理模拟实验系统,并通过气、水互驱实验进一步揭示了气库运行气、水二相渗流规律。
- 2)水驱砂岩气藏型地下储气库经长期注采运行, 水相渗流能力相应增强,导致边水运移越发活跃,储层 孔隙空间出现大量残余气、束缚水,气相渗流阻力相应 增加,气库扩容及注采效果受到影响。
- 3)由于气库运行中边水往复运移造成了储层伤害,导致库容可动用率降低,储层孔隙空间可利用率介于40%~70%。储气库实际运行中应重视储层含水的变化,采取措施以降低水侵对气库运行效果的影响。

参考文献

- [1] 王皆明,郭平,姜凤光.含水层储气库气驱多相渗流机理物理模拟研究[J].天然气地球科学,2006,17(4):597-600.
- [2] WOOD D J, LAKE L W, JOHNS R T, et al. A screening model for CO₂ flooding and storage in gulf coast reservoirs based on dimensionless groups [J]. SPE Reservoir Evaluation & Engineering, 2008, 11(3):513-520.
- [3] COSTA A .Permeability-porosity relationship a reexamination of the Kozeny-Carman equation based on a fractal porespace geometry assumption [J].Geophysical Research Let-

- ters, 2006, 33:L02318, 5PP.
- [4] WITHERSPOON PA, NEUMAN S P. Evaluating a slightly permeable caprock in aquifer gas storage: 1. Caprock of infinite thickness [J]. Journal of Petroleum Technology, 1967, 19 (7): 949-955.
- [5] ARNS C H, BAUGET F, LIMAYE A, et al. Pore-scale characterization of carbonates using X-Ray microtomography[J].SPE Journal, 2005, 10(4):475-484.
- [6] 王皆明,姜凤光.地下储气库注采动态预测模型[J].天然气工业,2009,29(2):108-110.
- [7] XU Peng, YU Boming Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry [J]. Advances in Water Resources, 2008, 31(1):74-81.
- [8] RIOS RB, BASTOS-NETO M, AMORA JR MR, et al. Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption [J]. Fuel, 2011, 90(1):113-119.
- [9] 李明诚,李伟,蔡峰,等.油气成藏保存条件的综合研究[J]. 石油学报,1997,18(2):41-48.
- [10] BEN Teng, PEI Cuiying, ZHANG Daliang, et al. Gas storage in porous aromatic frameworks [J]. Energy and Environmental Science, 2011, 4(10):3991-3999.
- [11] 陈祖安,伍向阳,孙德明,等.砂岩渗透率随静压力变化的 关系研究[J].岩石力学与工程学报,1995,14(2): 155-159.
- [12] SHIN C H, LEE J H.A numerical study on the compositional variation and the validity of conversion of a gas condensate reservoir into underground storage [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2011, 33 (20): 1921-1932.
- [13] 罗群,孙宏智.断裂活动与油气藏保存关系研究[J].石油 实验地质,2000,22(3):225-231.
- [14] 张守良,沈琛,邓金根.岩石变形及破坏中渗透率变化规律的试验研究[J].岩石力学与工程学报,2000,19(增刊):885-888.
- [15] YU B M .Analysis of flow in fractal porous media [J]. Applied Mechanics Review ,2008 ,61(4):50-80.
- [16] 贺玉龙,杨立中.围压升降过程中岩体渗透率变化特性的 试验研究[J].岩石力学与工程学报,2004,23(3):415-419.
- <code>[17] WANG Z</code>, HOLDITCH S A .A comprehensive parametric simulation study of the mechanisms of a gas storage aquifer <code>[J]</code>.Society of Petroleum Engineers ,2005(6):1-8.

(修改回稿日期 2012-07-05 编辑 何 明)