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Abstract Local search methods are convenient alternatives for solving discrete optimization problems (DOPs).

These easy-to-implement methods are able to find approximate optimal solutions within a tolerable time limit.

It is known that the quality of the initial solution greatly affects the quality of the approximated solution found

by a local search method. In this paper, we propose to take the initial solution as a random variable and learn

its preferable probability distribution. The aim is to sample a good initial solution from the learned distribution

so that the local search can find a high-quality solution. We develop two different deep network models to deal

with DOPs established on set (the knapsack problem) and graph (the maximum clique problem), respectively.

The deep neural network learns the representation of an optimization problem instance and transforms the

representation to its probability vector. Experimental results show that given the initial solution sampled

from the learned probability distribution, a local search method can acquire much better approximate solutions

than the randomly-sampled initial solution on the synthesized knapsack instances and the Erdős-Rényi random

graph instances. Furthermore, with sampled initial solutions, a classical genetic algorithm can achieve better

solutions than a random initialized population in solving the maximum clique problems on DIMACS instances.

Particularly, we emphasize that the developed models can generalize in dimensions and across graphs with

various densities, which is an important advantage on generalizing deep-learning-based optimization algorithms.
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1 Introduction

It is well known that many discrete optimization problems are NP-hard [34], such as knapsack problem

(KP) [9], maximum clique problem (MCP) [67], and other problems. Exact approaches, such as

dynamic programming [6] and branch-and-bound (B&B) algorithm [36], can find the global optimum of a

discrete optimization problem (DOP) with mathematical guarantee. However, these algorithms are with

extremely-high time complexities which make it impractical to solve large-scale DOPs in a tolerable time.

Alternatively, approximate algorithms, such as heuristics and meta-heuristics, are able to find a high-

quality solution within a reasonable time. Approximate methods are widely used in discrete optimization

and can be classified into single-solution based and population-based algorithms [19,46,51,56,60].

*Corresponding author

http://crossmark.crossref.org/dialog/?doi=10.1007/s11425-023-2290-y&domain=pdf
https://doi.org/10.1007/s11425-023-2290-y
math.scichina.com
link.springer.com
https://doi.org/10.1007/s11425-023-2290-y


1318 Liu X et al. Sci China Math June 2024 Vol. 67 No. 6

Single-solution based approximate methods, such as local search (LS), tabu search (TS) [21] and

simulated annealing (SA) [32], start from an initial solution and update it to a ‘nearby’ solution in its pre-

defined neighborhood by certain rules iteratively [13]. The key components in a single-based approximate

method usually include the initial solution construction, a neighborhood structure, and a rule for solution

selection in the neighborhood. For example, the best candidate solution in a neighborhood is admissible

to replace the current one in TS, while in SA a worse solution is allowed with some probability [32].

In the variable neighborhood search algorithm [24], the neighborhood structure is adaptively adjusted

during the search process depending on the solution quality.

Population-based approximate methods, such as particle swarm optimization, differential evolution,

ant colony optimization and many others, maintain a group of solutions (called population). At each

iteration, new solutions are generated by exchanging information among solutions in a way inspired by

natural and physical phenomena, while those yielding better objectives are to be retained with high

probability to the next iteration by selection [17].

We can see that all these methods start their search processes from an (or some) initial solution(s) in the

feasible region. Initial solution(s) can be constructed by either random, greedy or heuristic methods [1,68].

Random initialization means to generate the initial solutions in a random way. For example, to construct

a solution x ∈ {0, 1}n, we could sample from a Bernoulli distribution with parameter p for each element

xi, 1 6 i 6 n. A greedy method makes the optimal choice at each step as it attempts to find the overall

optimal way to solve an optimization problem. The solution found by the greedy method can yield good

performance by exploiting the considered problem. However, it fails to find the global optimum because

it makes decisions based only on the information it has at any one step, without regard to the overall

problem [65]. The heuristic methods, on the other hand, attempt to construct initial solution(s) according

to some sort of domain knowledge, mainly trying to generate feasible solutions. For example, the first

items satisfying the constraint are taken as the initial solution after sorting all items in an ascending

(resp. descending) order of the cost-to-size (resp. profit-to-weight) ratio for the min-knapsack (resp.

max-knapsack) problems [14, 47]. For MCP, an initial clique can be derived by successively discarding

the node whose degree is less than the core number of the current subgraph after rearranging the nodes

in the increasing order of node degrees [27, 53,54].

All these aforementioned algorithms require initial solution(s). It has been well acknowledged that

the quality of initial solution(s) can greatly affect the performance of these algorithms. It is easy to

understand since an initial solution which locates close to the global optimum can lead the algorithm

to the global optimum more easily than a solution far away from the global optimum. Furthermore,

for population-based algorithms, an initial population with weak diversity would suffer from stagnation,

while one with low-quality could take too long to converge. Thus, it is necessary to form appropriate

initial solutions for different DOPs and different heuristics. It is thus important to develop an algorithm

for initial solution generation.

In this paper, different from the aforementioned initial solution construction methods, we propose to

use deep-learning-based technology. The underlying idea of this technology is to use deep learning (DL)

technology to extract the experiences obtained when optimizing some related optimization problems to

usable knowledge. The knowledge can then be used to facilitate the optimization on new problems for

improving the algorithm’s efficiency and efficacy.

We focus on DOPs with binary variables, including KP and MCP on behalf of the set-based and graph-

based discrete problems. In this paper, we propose to take the initial solution as a random variable, and

learn a probability distribution with respect to the initial solution by using deep learning. It is expected

that by sampling initial solution(s) from the learned probability distribution, the performance of existing

heuristic and meta-heuristic methods can be improved significantly.

The main contributions of this work can be summarized as follows:

• We propose to learn an optimal probability distribution for the initial solution of an LS so that the

quality of the final solution found by the LS could be greatly improved.

• A learning algorithm is developed to search for the optimal initial probability distribution of a given

DOP instance.
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• To avoid the high computational cost of the learning algorithm required for high-dimensional DOPs,

a deep neural network (DNN) is used to learn the mapping between a DOP instance and its corresponding

optimal initial probability vector. Two different models are applied to learn the mapping function on

set-based and graph-based problems, respectively.

• We conduct extensive experiments to compare sampling initial solution(s) from the learned

probability and random sampling on various KP and MCP instances with various sizes. Experimental

results favor the proposed sampling against random sampling. Furthermore, it is verified that the learned

distribution is able to generalize well to complex DOP instances with large sizes.

The remainder of this paper is organized as follows. In Section 2, we introduce some related pieces

of work on using deep-learning-based technology for optimizing DOPs. The framework for finding the

optimal probability distribution of the initial solution to a DOP is proposed in Section 3. In Section 4,

we present two studies on learning the mapping between the probability vector and the problem instance

taking knapsack and maximum clique problem as examples, respectively. Experimental results are

summarized in Section 5. We conclude this paper in Section 6.

2 Related work

Basically, there are three ways to use deep learning to address DOPs: end-to-end learning, learning-to-

configure and embedding learning [5, 61].

End-to-end learning means to use deep learning technology to find an approximate solution to a DOP

directly. For example, a pointer network is proposed based on the attention mechanism [3,64], in which a

decoder (formed as a deep neural network) outputs the selection probability of a DOP’s solution over the

input sequence of the DOP [66]. The point network has been applied to tasks such as traveling salesman

problem (TSP), convex hull problem and feature point matching problem [48, 66]. A similar model for

TSP is proposed and trained by reinforcement learning (RL) [59] via the tour length, i.e., the distance of

the route where each city is visited only once, taken as the utility [4]. Compared with supervised learning,

RL eliminates the need for computing optimal solutions of DOPs as labels [50]. For example, a graph

attention network takes the coordinates of each node in a graph as input and generates a permutation

of the input nodes for routing problems [33]. In [15], the evaluation function is firstly parameterized by

embedding node features and neighborhood information, then the node with the highest evaluation value

is selected to construct the solution recursively. Moreover, graph neural networks (GNNs) are applied

to solve DOPs on graphs, such as graph coloring and vertex cover problems, which can be encoded

as propositional satisfiability problems [37, 55, 63, 70]. Besides, the graph convolutional neural network

(GCN), which is a specialized class of GNN incorporating spectral graph convolution [16], also has been

applied to graph-based classification tasks [23, 31].

Learning-to-configure means to extract features using machine learning and/or deep learning and to use

these features for parameter configuration in optimization algorithms. Algorithmic parameters commonly

exist and are important to algorithmic performance. Traditional methods to configure these parameters

usually require a great deal of effort to evaluate each set of configurations, which is tedious and time-

consuming. DL-based work turns the parameter configuration problem into a machine learning problem

by gaining some extra information from optimizing a class of similar instances. For example, Kruber

et al. [35] proposed to learn to predict whether Dantzig-Wolfe decomposition is necessary for solving

mixed-integer linear programming (MILP). Ansótegui et al. [2] developed a dynamic self-adaptation of

reactive tabu search which builds a functional dependency between four search parameters involved in

tabu search and eleven search features regarding the runtime statistics. Mahmood et al. [43] used the

generative adversarial network to learn to predict a primary dose distribution of radiation therapy, which

is an inverse optimization problem.

Embedding learning means to embed a DL model within the execution procedure of an optimization

algorithm. Taking the branch and bound method for MILP as an example, choosing the branching

variable heuristically is computationally intensive, while constantly running heuristic searches consumes
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a lot of running time. To address these issues, DL can be used to carry out variable selection and node

selection in B&B for avoiding unnecessary computations, e.g., searching at nodes which result in no

benefit to the solution [25, 41]. Moreover, Khalil et al. [30] proposed to learn a binary classification

model for inferring whether the primal heuristic could find a better solution at the current node than the

best one already found so far, and designed several features scalable to different dimensions of instances

to characterize the current search state. They also proposed to transfer a DOP instance into a bipartite

graph representation, and adopted a GCN to learn the variable selection strategy. Furthermore, imitation

learning is applied to learn to select a variable among all fractional ones [20, 26]. Li et al. [39] proposed

to use GCN to predict the probability map for each node to indicate whether it belongs to the optimal

solution, which can then be employed in a heuristic local search to refine the probability into the final

solution to DOPs defined on graphs.

The aforementioned DL-based methods assist in providing good-quality solutions directly and

indirectly. It is also promising to produce the high-quality initial solution(s) by utilizing the knowledge

extracted from optimization experiences [29]. For example, Louis et al. [42] proposed to combine some

learned individuals based on similar solved problems, namely case-based initialization, and other random

ones as the initial population for the genetic algorithm. Li and Olafsson [38] used the historical scheduling

data to induce a decision tree for capturing the features of dispatching rules. Similarly, Nasiri et al. [49]

extracted rules from the optimal solutions of the training problems by data-mining and sorting operations

according to the confidence value. In [58], DNN is used to adjust and control algorithmic parameters,

while it is trained to be an agent to construct reproduction operators [40] in evolutionary algorithms.

In general, the study on deep-learning-based technology for discrete optimization is promising yet still

in its infancy. Particularly, using DL for assisting the construction of initial solution(s) is very scarce.

3 The framework

3.1 Problem definition

In this paper, we consider the following 0-1 discrete optimization problem,

max f(x) =
∑
i

ci(xi), x ∈ {0, 1}n s.t.
∑
i

xi = K, (3.1)

where x = (x1, . . . , xi, . . . , xn)
⊤ is an n-dimensional binary vector, and ci(xi) is the profit of choosing the

i-th element xi, which makes up the total profit f(x). The goal of the problem is to find a maximizer x∗

with K non-zero elements.

3.2 The proposed framework of learning the preferable initial probability

Rather than obtaining a single initial solution, learning an optimal probability vector for the initial

solution is more flexible. To realize this, we take the initial solution as a random variable. In the

sequel, we denote q = (q1, . . . , qn)
⊤ ∈ [0, 1]n as a probability vector to characterize the distribution of

the promising initial solution for a local search method, i.e., P (xi = 1) = qi, s.t.
∑n

i=1 qi = 1, where qi
denotes the probability of xi taking 1. In this paper, we propose to learn q by maximizing the utility

with respect to the final solution found by local search.

Figure 1 summarizes the entire workflow. For each problem instance, an algorithm, i.e., Algorithm 1,

is firstly applied to find its preferable probability vector. The pair of a problem instance (denoted by

Z) and its probability vector (Z, q) can be regarded as a datum. By applying Algorithm 1 on a set of

problems (Z1, . . . , ZN ), we can obtain a dataset {(Z1, q1), . . . , (ZN , qN )}. The mapping between Z and

q is then approximated by DNN.
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Figure 1 (Color online) The workflow of the proposed framework. Given N instances (Z1, . . . , ZN ), an algorithm, i.e.,

Algorithm 1 to be introduced in the next subsection, is firstly designed to find their preferable probabilities (q1, . . . , qN ).

Then, a DNN is trained to predict the initial probability vector p for a DOP instance Z

3.3 Finding the optimal initial probability of each problem

Algorithm 1 The learning algorithm for achieving an optimal probability distribution for the initial solution

Require: the objective function f , the number of trajectories Ns, the number of repeated runs Ne, the momentum

coefficient µ, and the learning rate β;

Ensure: the probability distribution q;

1: Initialize q0 ← 0 and V0 ← 0;

2: for t = 1→ maxEpoch do

3: ◃ Perturb the current probability vector ;

4: for s = 1→ Ns do

5: Sample ϵst ∈ Rn ∼ N (0, σ2I);

6: qs
t ← qt−1 + ϵst ;

7: ◃ Evaluate the performance of the perturbed probability vector ;

8: for j = 1→ Ne do

9: Sample an initial solution xj ∼ qs
t by roulette selection;

10: Conduct an LS to find a best solution x∗
j and the corresponding objective value f∗

j by begining with xj :

[x∗
j , f

∗
j ]← LocalSearch(xj ; f);

11: end for

12: Compute the utility of the perturbed probability: rs ← R(qs
t );

13: end for

14: ◃ Update q;

15: r̄s = 1
Ns

∑Ns
s=1 rs;

16: ∆qt ←
∑Ns

s=1(q
s
t − qt) ·max( rs−r̄s

r̄s
, 0);

17: Vt ← µVt−1 + β∆qt;

18: qt ← qt−1 + Vt;

19: end for

20: qt ← softmax(qt);

21: return q ← qt.

The learning algorithm is summarized in Algorithm 1. At each iteration t, a perturbation is made to

the current distribution qt to produce multiple perturbed probability vectors (Line 6). These perturbed

probabilities qs, 1 6 s 6 Ns, are evaluated (Lines 4–13). To evaluate each perturbed probability qs, a set

of initial solutions xj , 1 6 j 6 Ne, is sampled and each xj is deemed as an independent initial solution for

an LS method, denoted as LocalSearch in Algorithm 1, which takes xj as an argument (Lines 8–11). The

LS returns the optimal solution x∗ and f∗ = f(x∗). The utility is then calculated according to all optimal

solutions by running LS Ne times (Line 12). The utility function R(·) can be generally formulated as

R(q) = Ex∼q[f(x
∗)]− λ∥q∥22, (3.2)

where λ > 0 is a weight factor of the L2 regularization. Note that the L2 regularization is minimized for

evolving a denser initial probability so as to explore diverse areas of the feasible region.

At the end of the epoch, q is updated by a momentum V and a measurement ∆q to characterize the

performance of the current probability (Lines 16–18). To make the learning procedure more stable, a

ReLU function, i.e., ReLU(·) = max{0, ·}, is adopted in the increment computation, which means we
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only consider those probability vectors that can yield larger utility values than average (Line 16). At the

end of the outer loop, the current qt is transformed into (0, 1) by the softmax function (Line 20) to make

sure of its legitimacy, where

softmax(q) =

(
eq1∑n
j=1 e

qj
, . . . ,

eqn∑n
j=1 e

qj

)⊤

. (3.3)

Algorithm 2 The roulette selection

Require: a probability vector q, the maximum cost W , the expected count of the selected components K and the cost

function fs;

Ensure: a solution x;

1: Initialize x← 0 and k ← 0;

2: while k < K or fs(x) 6 W do

3: set ℓ← 0, r ← rand(0, 1);

4: for i = 1→ n do

5: ℓ← ℓ+ qi;

6: if ℓ > r then

7: xi ← 1, k ← k + 1;

8: break;

9: end if

10: end for

11: if k > n then

12: Exit;

13: end if

14: end while

15: return x.

The sampling of an initial solution (Line 9) by the roulette selection method is given in Algorithm 2.

This procedure repeats until K variables in the initial solution are assigned as 1 or the cost associated

with the current option, denoted as fs, exceeds M (Lines 2–14). In the algorithm, we firstly sample a

random number r uniformly in (0, 1) (Line 3). Then the accumulated value of probabilities ℓ =
∑m

i=1 qi
is computed until there exists an index m such that ℓ is greater than r for the first time (Lines 4–10).

Accordingly, the value of the m-th entry in x is set as 1, i.e., xm = 1 (Line 7).

3.4 Remarks

We see that Algorithm 1 aims to find a probability vector q such that the utility over the sampled

solutions is maximized. In Algorithm 1, the computational complexity mainly lies in the evaluation of

each perturbed probability vector qs
t , which involves a collection of samples xj , 1 6 j 6 Ne, specified as

the starting points for local search. There are Ns perturbations per qt and Ne initial solutions per qs
t to

be measured, which results in a total of Ns ×Ne searches to be done by LS.

It is known that the more samples are measured, the more reliable the evaluation of qs
t will be. However,

the number of samples increases exponentially with the problem dimension, which makes Algorithm 1

time-consuming and impracticable to higher-dimensional problems. To alleviate the computational

complexity, we propose to adopt a DNN to learn useful knowledge from past experiences about optimizing

a set of low-dimensional problems, and then generalize the acquired knowledge to deal with high-

dimensional problems. This procedure is problem-specific. In this paper, we take the knapsack and

maximum clique problems as exemplar studies.

4 Exemplar studies

In this section, we present how to apply the proposed framework to the knapsack problem and the

maximum clique problem. These two problems can be seen as representative DOPs established on set

and graph, respectively.



Liu X et al. Sci China Math June 2024 Vol. 67 No. 6 1323

ଶܘଵܘ ேܘ

F
C
3

F
C
2

A
v
g
-P
o
o
l

F
C
1

output layerpermutation equivariant layer

ڰଶ܈ଵ܈ ே܈
input layer

Figure 2 (Color online) The structure of Set2Pro. Set2Pro receives N knapsack instances (Z1, . . . ,ZN ) as input and

outputs N corresponding probability vectors (p1, . . . ,pN ). FC1 (resp. FC2 and FC3) is a fully connected layer behind

the input layer (resp. in the permutation equivariant layer and before the output layer). Avg-Pool is the average pooling

operation

4.1 Model for the knapsack problem

For a KP with n candidate items denoted as Z = {z1, . . . , zn}, 1 6 i 6 n, its objective function can be

stated as

max f(x) = v⊤x, x ∈ {0, 1}n, v,w ∈ Rn s.t. w⊤x 6 W, (4.1)

where xi = 1 means that the i-th item zi = (vi, wi) where vi and wi represents its value and weight,

respectively, is selected to the knapsack which can only carry a maximal capacity of W . xi = 0 means

the i-th item is not selected in the knapsack.

The utility function for the KP with respect to the probability distribution q is proposed to be

R(q) = Ex∼q[v
⊤x∗]− λ∥q∥22, (4.2)

where Ex∼q[v
⊤x∗] indicates the expected value over all possible x∗ found by LS starting from the initial

solutions sampled from q.

Given a KP instance Z = {z1, . . . , zn}, we hope to find a model G such that it outputs a probability

vector p = G(Z),p ∈ [0, 1]n under the constraint that it is equivariant to the order of items in Z. That

is, for any permutation π to the elements in Z, elements in p are rearranged in the order of those in Z,

i.e., G(π(Z)) = π(p). Specifically,

G([zπ(1), zπ(2), . . . , zπ(n)]) = [pπ(1), pπ(2), . . . , pπ(n)]. (4.3)

Inspired by the network developed by Zaheer et al. [69], which is equivariant to permutation, we

construct a deep learning model named as Set2Pro to maintain the permutation equivariant property.

Values and weights of each instance make up the input Z = [v,w] ∈ Rn×2 to Set2Pro.

Figure 2 illustrates the structure of Set2Pro. Besides the input and output layers, it consists of

two types of hidden layers, including the feature extraction layer (denoted as FC1 and FC3) and the

permutation equivariant layer (in the middle block). FC1 captures the individual feature of each element.

The permutation equivariant layer aims to maintain the permutation effect of the intermediate solution,

followed by FC3 which combines the element features and extracts the overall features from a higher

perspective. The output layer is composed of a multilayer perceptron (MLP) to map the features extracted

by the permutation equivariant layer into a probability distribution vector.

Note that there is no bias in FC1 and FC3, which would not jeopardize the permutation equivariant

property of Set2Pro. FC1 and FC3 serve as the embedding layers, mapping the input data into vectors in

another dimension and gathering local features of each item, whereas the pooling layer in the permutation

equivariant layer takes into account the global feature by integrating the weight and value of each item,

on the set-wise level.

A standard neural network layer G with permutation equivariance can be formulated as

G(x;W ) = σ(Wx), (4.4)
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where W ∈ Rn×n is the weight parameter, σ : Rn → Rn is the point-wise nonlinear activation function,

such as the sigmoid function σ(x) = 1
1+e−x . The lemma in [69] gives the necessary and sufficient conditions

for G as summarized in Theorem 4.1.

Theorem 4.1. The function G(x;W ) = σ(Wx) is permutation equivariant, if and only if all the

off-diagonal elements of W are tied together and all the diagonal elements are equal as well, i.e.,

W = αI + β(11⊤), α, β ∈ R1, 1 = [1, 1, . . . , 1]⊤ ∈ Rn, (4.5)

where I ∈ Rn×n is the identity matrix.

When the weight matrix W satisfying (4.5) is applied to its input Z:

WZ = αIZ + β(11⊤)Z, (4.6)

the output WZ can be regarded as a weighted sum of the input IZ and the input sum (11⊤)Z. Since

the summation of these two terms is permutation invariant, this layer is thus permutation equivariant

depending on Z, which means that G(π(Z)) = π(p) can be satisfied. If we change the summation to

another pooling function, such as the average

WZ = αIZ + β meanpool(Z)1,

where meanpool(Z) is an average pooling that calculates the average of elements in each column of Z,

this layer is still permutation equivariant. We can also replace the real-valued parameters α and β to

the matrix A,B ∈ RH1×H2 respectively to obtain H2 feature maps by H1/H2 (input/output) channels

as follows:

G(Z) = σ(ZA+ 11⊤ZB), (4.7)

where H1 (resp. H2) is the number of neurons used in the layer FC1 (resp. FC2). To reduce the amount

of parameters, letting ZA ≈ ZB + γ, γ ∈ Rd, we have

G(Z) = σ(γ + (Z + 11⊤Z)B). (4.8)

Although both (4.7) and (4.8) represent a permutation equivariant neural network layer, (4.8) has fewer

parameters which is beneficial for easy training and better generalization [69]. The stack of multiple

permutation equivariant layers can still guarantee the characteristic of permutation equivariance.

4.2 Model for the maximum clique problem

Given an undirected graph G = (V,E), where V = {1, . . . , n} is the node set and E ⊆ V × V is the edge

set, the objective of MCP can be written as

max f(x) =
n∑

i=1

xi, x ∈ {0, 1}n s.t. xi + xj 6 1, ∀ {i, j} ∈ Ē, (4.9)

where xi = 1 (resp. xi = 0) means the node i is (resp. is not) in the clique that is a node subset where

every two are adjacent; Ḡ = (V, Ē) is the complementary graph of G, i.e., {i, j} ∈ Ē if {i, j} /∈ E. The

maximum clique of G is equivalent to the independent set of Ḡ. An independent set is a node subset

where every two nodes are not connected by an edge [67]. The objective is to find the maximum clique

with the largest cardinality in G.

The local search method for finding a maximal clique proposed by Marchiori [44,45] is adopted, which

is summarized in Algorithm 3. Note that the algorithm takes a node subset as input. We can transform

a binary vector x ∈ {0, 1}n easily to a node subset U ⊆ V by setting U = {i, for all xi = 1, 1 6 i 6 n}.
In Algorithm 3, firstly a repair procedure is developed to shrink the node subset U by removing those

nodes that are not adjacent with any others so that U is a clique (Lines 2–16). The clique U is then

expanded to a maximal one by adding the nodes that are connected with all nodes in U (Lines 17–25).
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Algorithm 3 The local search method for finding a maximal clique

Require: a vector x on an undirected graph G = (V,E);

Ensure: a maximal clique U in G;

1: Initialize U ← {i, for all xi = 1, 1 6 i 6 n};
2: ◃ Repair: reduce the node subset U to a clique;

3: Copy W ← U ;

4: repeat

5: Randomly select a node w ∈W ;

6: if rand(0, 1) < 0.01 then

7: Delete the node w in U ;

8: else

9: for u ∈ U do

10: if u is not adjacent to w in G then

11: Remove u from both U and W ;

12: end if

13: end for

14: end if

15: Delete w in W ;

16: until W = ∅
17: ◃ Extend: extend a clique U to a maximal clique;

18: Initialize W ← V \ U ;

19: repeat

20: Choose a node w ∈W randomly;

21: if {w} ∪ U is a clique then

22: Add w to U ;

23: end if

24: Delete w in W ;

25: until W = ∅;
26: return U .

The utility function for MCP can be written as

R(q) = Ex∼q|U | − λ∥q∥22, (4.10)

where |U | =
∑n

i=1 xi is the cardinality of U , i.e., the clique size of U found by Algorithm 3.

Regarding the mapping from a problem instance to its preferable probability vector, we employ a two-

layer GCN to create the probability over all nodes in a graph. The GCN transforms the input matrix to

a new representation by the following layer-wise forward propagation:

X l+1 = σ((I +D−1/2AD−1/2)X lH l), (4.11)

where X l (resp. X l+1) denotes the input (resp. output) of the l-th hidden layer taking H l as the weight

matrix, and A (resp. D) as the adjacency (resp. degree) matrix of G. Readers can refer to [8,16,31] for

the detailed mathematical formulation of GCN in the context of spectral graph theory, and the theoretical

foundation about the equivariance of GNN has been analyzed in [10].

Suppose we define the input feature of a graph as Z ∈ Rn×c, where zi, 1 6 i 6 n, denotes a c-

dimensional feature of each node. In this paper, we take the degree of each node, i.e., the number of the

adjacent nodes, as its feature representation, which indicates c = 1. The output, denoted as P ∈ Rn×1,

of the two-layer GCN by stacking two hidden layers can be calculated as follows:

P = ÂReLU(ÂZH1)H2, (4.12)

where Â = I +D−1/2AD−1/2, H1 ∈ R1×H (resp. H2 ∈ RH×1) is the weight of the first (resp. second)

hidden layer, and ReLU is the rectified linear unit activation function max{0, x}. The softmax function

is then applied to all entries of P over one graph to obtain the probability vector p. Note that p is

the predicted probability vector according to the feature of a graph, whereas q is the label derived by

enhancing the quality of solutions found by LS in Algorithm 1.
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4.3 Supervised learning

The mapping between a DOP instance and its corresponding probability distribution can be learned as

follows. The preferable probability vectors collected by Algorithm 1 on some DOP instances are deemed

as labels, while DOP instances can be considered as the input of the DL model. To carry out the learning,

we use the classical cross entropy as the loss function:

L(q,p) = −
∑
i

qi × log(pi). (4.13)

5 Experimental results

5.1 Experiments on the knapsack problem

5.1.1 Training settings

The following hyper-parameter values are set in Algorithm 1 for KP, including Ns = 100, Ne = 500,

σ = 0.01, the standard deviation of perturbation σ = 0.1, the regularization weight λ = 0.04 and

maxEpoch = 1000. The size of the hidden layer FC1 (resp. FC2) in Set2Pro is H1 = 30 (resp. H2 = 30).

The learning rate β decays (resp. the momentum coefficient µ increases) linearly from β0 = 30 to the

minimum value βτ = 0.3 (resp. from µ0 = 0.5 to the maximum value µτ = 0.99) during the first τβ = 700

(resp. τµ = 300) epochs, and remains the same for the rest epochs. As suggested in [22], at the t-th

epoch, β shrinks and µ raises as follows:

βt =

β0 +
t

τβ
(βτ − β0), 0 6 t 6 τβ ,

βτ , t > τβ

and µt =

µ0 +
t

τµ
(µτ − µ0), 0 6 t 6 τµ,

µτ , t > τµ.

(5.1)

5.1.2 Experimental results

Synthetic problem. To verify the developed algorithm, we first generate a set of synthetic knapsack

problems and use these problems for learning and testing. We randomly generate 10,000 knapsack

problems in 15–30 dimensions, i.e., the number of items n changes from 15 to 30, where v ∈ {1, 2, . . . , 30}
and w ∈ {1, 2, . . . , 20} with the maximum capacity limited to be W = 100.

Algorithm 1 is applied on each problem Zj to obtain the corresponding probability vector qj , 1 6 j 6
10, 000. All the pairs {(Zj , qj), 1 6 j 6 10, 000} constitute the data set for the supervised learning. We

take the first 9,000 pairs as the training set and the remaining 1,000 pairs as the test set, respectively.

The following score is used to measure the quality of the learned probability vector

score(q) = Ex∼q
v⊤x∗

v⊤xbest
, (5.2)

where xbest is the global optimal solution of the knapsack problem, which is acquired by an exact dynamic

programming algorithm [62]. Clearly, the score can measure the proximity between the objective value

of the global optimal solution xbest and the best one found by the LS with the initial solution sampled

from the preferable probability q. The closer the score is to 1, the more likely the LS method is to find

the optimal solution.

We apply Algorithm 1 to obtain the optimal probability vectors on the generated knapsack problems.

For each probability vector, we sample 1,000 initial solutions for hill climbing1) to evaluate the

performance in terms of the score defined in (5.2).

1) Hill climbing [12] is a kind of local search algorithm which searches along the neighborhood of an initial solution

and returns the best solution in this neighborhood. In this experiment, the neighborhood of a solution x is defined as

N (xj) = {x | ∥x − xj∥H = 1}, where ∥ · ∥H denotes the Hamming distance, i.e., the number of occurrences of different

values at the same position between two Boolean vectors.
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Figure 3 (Color online) The scores obtained by random initialization (RI), AL initialization and DL initialization on

training and test problems, respectively

In the following, we name the initialization method by Algorithm 1 as AL, the deep-learning-based

initialization method as DL and the random initialization as RI. Random initialization (RI) is compared

with the proposed AL-based and DL-based initialization methods. Figure 3 summarizes the results. In

Figure 3, the first two (resp. the third, fourth and the last two) columns present the results obtained by

RI (resp. AL and DL) on the training and test problems. We see that the average scores obtained by AL

and DL are much greater than those obtained by RI. Furthermore, the average score on the training set

obtained by Set2Pro is 0.91 (the fifth column), and that on the test set is 0.92 (the sixth column) which

is similar to the score on the test set obtained by AL (the fourth column). However, Set2Pro requires

much less computational power to obtain the probability vector than AL since it does not need to run

many simulations as it does in Algorithm 1.

We may conclude that (1) the proposed learning algorithm (Algorithm 1) can find a preferable

probability distribution for initialization; (2) the mapping learned by the proposed deep neural network

Set2Pro is able to well approximate the learned probability vectors for initialization on knapsack problems

in 15–30 dimensions, which can greatly save computational resources.

Large-scale benchmark. To assess the performance of the learned DNN model, Set2Pro trained

above is tested to predict the optimal initial probability on a large-scale 0-1 KP benchmark dataset.

This benchmark comprises three types of KPs, including uncorrelated data instances, weakly correlated

instances and strongly correlated instances, in {100, 200, 500, 1000, 2000, 5000, 10000} dimensions [11] 2).

The weakly and strongly correlated instances amount to most situations in real life, which are hard to

solve [52]. The setting of each instance in the large-scale benchmark is shown in Table 1.

We again use the iterated local search (ILS) [57] algorithm as the local search method in the following

experiments. The score of each instance obtained by applying the learned probability and the uniformly

sampled initial probability on the large-scale benchmark is depicted in Figure 4.

As we can see from Figure 4, due to the superior performance of Set2Pro on the weakly and strongly

correlated instances, the effectiveness of the learned probability in finding the optimal solution is clearer

on harder and higher-dimensional KPs.

2) The dataset is available to download from http://artemisa.unicauca.edu.co/∼johnyortega/instances 01 KP/.

http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP/
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Table 1 Large-scale 0-1 knapsack problem benchmark

Problem ID n W f∗

Uncorrelated

data

instances

KP U100 100 995 9147

KP U200 200 1008 11238

KP U500 500 2543 28857

KP U1000 1000 5002 54503

KP U2000 2000 10011 110625

KP U5000 5000 25016 276457

KP U10000 10000 49877 563647

Weakly

correlated

instances

KP W100 100 995 1514

KP W200 200 1008 1634

KP W500 500 2543 4566

KP W1000 1000 5002 9052

KP W2000 2000 10011 18051

KP W5000 5000 25016 44356

KP W10000 10000 49877 90204

Strongly

correlated

instances

KP S100 100 997 2397

KP S200 200 997 2697

KP S500 500 2517 7117

KP S1000 1000 4990 14390

KP S2000 2000 9819 28919

KP S5000 5000 24805 72505

KP S10000 10000 49519 146919
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(a) Uncorrelated data instances
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(b) Weakly correlated instances
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(c) Strongly correlated instances

Figure 4 (Color online) The scores of the random initial probability and the learned probability by the learned Set2Pro

on the large-scale 0-1 knapsack problem benchmark. Specifically, the score of uniformly sampled (resp. learned) probability

by hill climbing is denoted as ‘RI(LS)’ in green (resp. ‘DL(LS)’ in cyan) and by ILS as ‘RI(ILS)’ in blue (resp. ‘DL(ILS)’

in red)

5.1.3 Generalization

Firstly, we investigate the generalization performance of the proposed deep learning model, Set2Pro, in

dimension. To this end, we generate 1,000 knapsack problem instances in {5, 10, . . . , 100, 150, . . . , 1000}
dimensions, then employ the learned Set2Pro, trained on 15–30 dimensional KPs in Subsection 5.1.2, to

predict corresponding preferable probability vectors. The boxplot (resp. average) of the scores obtained

by hill climbing and ILS using DL initialization and RI are shown in Figure 5(a) and Figure 5(b) (resp.

Figure 5(c) and Figure 5(d)), respectively.

From Figure 5(a) and Figure 5(c), we observe that the average scores of the learned Set2Pro for

hill climbing and ILS are both greater than those of the uniform sampling on KP instances up to 100

dimensions, respectively. As the scale increases up to 1,000 dimensions, in Figure 5(b) and Figure 5(d),

the scores of the initial solution by RI for hill climbing and ILS are both less than 0.2, due to the sharp

drop of ILS by randomness. However, it is worth noting that scores of Set2Pro with hill climbing and

ILS stay around 0.8, and they just decline slightly within a narrow range over the dimensions.
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(a) Test dimensions in {5, 10, . . . , 100}
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(b) Test dimensions in {100, 150, . . . , 1000}
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(c) Test dimensions in {5, 10, . . . , 100}
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(d) Test dimensions in {100, 150, . . . , 1000}

Figure 5 (Color online) All scores on KPs in {5, 10, . . . , 100, 150, . . . , 1000} dimensions are shown in boxplots ((a) and

(b)) and the average scores ((c) and (d)). The scores of the initial probabilities acquired by Set2Pro (resp. by the uniform

distribution) and then used in ILS and in the simple hill climbing are designated as ‘DL(ILS)’ in red (resp. ‘RI(ILS)’ in

blue) and ‘DL(LS)’ in cyan (resp. ‘RI(LS)’ in green), respectively. Boxplots of DL(ILS) in red and DL(LS) in cyan are

overlapped and indistinguishable in (a) and (b)

We may conclude that the initial vectors sampled from the probability vector obtained by Set2Pro are

promising in high-dimensional knapsack problems. This also indicates that learning from a less-capable

LS is also beneficial for a more-capable LS.

Secondly, we investigate how well Set2Pro generalizes to various KP instances with larger coefficients.

We generate 1,000 knapsack problems with larger values v ∈ {1, 2, . . . , 60} and larger weights w ∈
{1, 2, . . . , 40} than those in the training KP instances in {5, 10, . . . , 100} dimensions. The left (resp.

right) plot of Figure 6 shows the boxplot of scores (resp. the average score) on KP instances with larger

values and weights in each dimension.

From Figure 6, we see that Set2Pro with ILS exhibits the best performance on new instances across

dimensions, which implies it can generalize well to KP instances with larger values and weights, which

have not been seen in the training set.

5.1.4 Component analysis

We carry out component analysis on the permutation equivariant layer in the Set2Pro network and the

regularization term in the loss function.

Permutation equivariance. Here we randomly generate 10 knapsack problems per dimension in

{5, 10, . . . , 100}, and then shuffle the order of all elements in each problem 100 times. The scores of

the permuted instances on each dimension are shown in Figure 7. We can see that on the same problem

with different permutations, Set2Pro can still achieve a preferable probability distribution than random
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(a) The box plots of scores on the KP instances with

larger values and weights
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(b) The average scores on the KP instances with larger

values and weights

Figure 6 (Color online) All scores by Set2Pro with the legend ‘DL’ (ILS in red and LS in cyan) and the uniformly

distributed initial vector with the legend ‘RI’ (ILS in blue and LS in green) on the knapsack instances with various values

and weights are summarized in boxplot (a) and the average scores (b)
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(a) The box plots of scores on the KP instances after

permuting the order of items
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(b) The average scores on the KP instances after

permuting the order of items

Figure 7 (Color online) All scores by Set2Pro with the legend ‘DL’ (ILS in red and LS in cyan) and the uniformly

distributed initial vector with legend ‘RI’ (ILS in blue and LS in green) on the knapsack instances with various permutations

are represented in boxplot (a) and summarized by the average scores (b)

initialization in all dimensions in terms of a higher score. Furthermore, we can observe a significant

improvement against hill climbing by the learned model.

Regularization. To validate the effectiveness of the regularization term, i.e., λ∥q∥22, on generating

preferable q and improving the robustness of the training process, we compare it with the utility function

without the regularization term, denoted as R0.

We generated 1,000 knapsack problems with dimension n = 50. For each problem instance, the values

{vi} are random integers in {1, 2, . . . , 100}, and the weights {wi} are randomly selected in {1, 2, . . . , 20}.
The final scores obtained by taking R0 and R (see 4.10) as the utility function in Algorithm 1 are shown

in Figure 8, which provides the number of KP instances as the score varies from 0 to 1 with the interval

of 0.02. Table 2 provides the mean scores and the standard deviations by using R0 and R in Algorithm 1.

From Figure 8, we can see that the majority of the scores on the KP instances fall in [0.8, 1.0], which

implies that the solution found by the initial probability generated by Algorithm 1 is fairly close to the

optimal solution. From Table 2, we can also see that the initial solutions obtained by maximizing R have

a higher mean score and a lower variance than that by R0.

The statistics of the probability distribution obtained by running Algorithm 1 taking R0 and R as
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(a) The scores of the initial probability by R0.
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(b) The scores of the initial probability by R.

Figure 8 (Color online) The scores of the initial probability obtained by Algorithm 1 with R0 (a) and R (b) are summarized

in histogram. The x-axis is the acquired score from 0 to 1 with an interval of 0.2 and the y-axis represents the number of

the KP instances

Table 2 The means and standard deviations of scores by Algorithm 1 with the utility functions R0 and R

Mean Std. Dev.

R0 0.9237 0.096

R 0.9408 0.073

Table 3 The statistics of the optimal initial probability distribution by Algorithm1 with the utility functions R0 and R

Median Q3 > 0.8 > 0.9

R0 6.40E−07 3.45E−04 356 221

R 2.70E−06 2.67E−03 2 2

reward, respectively, including the median and the 75-th percentile of all probabilities, and the number

of items whose probability value is larger than 0.8 and 0.9, are summarized in Table 3.

From Table 3, we can see that there are many items with probability values larger than 0.9 obtained

by Algorithm 1 running on R0, which means that the probability vector moves and traps in some specific

locations in the search space. In contrast, the utility function R, which includes a regularization term, can

form a more uniform probability distribution. This indicates that such a utility function is able to capture

more information and diverse features in various search areas. Therefore, by using such probability vectors

as labels to train the DNN, it is more possible that a preferable probability distribution can be learned.

In light of these observations, in the following, we take R as the utility function for the sake of robustness.

5.2 Experiments on the maximum clique problem

5.2.1 Training settings

The size of the hidden layer in GCN is H = 64, and the learning rate is 0.0001. Analogical to (5.2),

the score in MCP is the ratio between the clique size found by Algorithm 3 beginning with the initial

probability and the size of the largest clique found:

scoreMCP(q) = Ex∼q
∥x∗∥1

∥xbest∥1
, (5.3)

where xbest is the maximum clique size by the backtracking tree and the branch and bound algorithm as

proposed in [7], and ∥x∥1 =
∑n

i=1 |xi|.
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Figure 9 (Color online) The scores of the initial probabilities obtained by the uniform sampling designated as “rand p”

(resp. “rand p test”) in the first (resp. second) column, by R0 in Algorithm 1 as “train p R0” (resp. “test p R0”) in the

third (resp. forth) column, by R in Algorithm 1 as “train p R” (resp. “test p R”) in the fifth (resp. sixth) column and by

a two-layer GCN as “train set” (resp. “test set”) in the seventh (resp. eighth) column on the training (resp. test) set

5.2.2 Experimental results

Synthetic graphs. To verify the proposed framework is adaptable to the graph-based DOPs, the

proposed algorithms are examined for finding the maximum clique on the Erdős-Rényi (ER) random

graph [18], which is a commonly-used graph generator [15]. Here we choose the G(n, p), p ∈ [0, 1] model

without the restriction to the number of edges for gaining random graphs with diverse density. G(n, p)

is an undirected graph with n nodes, where every two nodes are joined by an edge with the probability

p independently. The larger p is, the denser G(n, p) becomes because more edges emerge.

We randomly synthesize totally 5,000 ER random graphs, with 100 graphs per G(n, p), where the

number of nodes n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and the probability p ∈ {0.2, 0.4, 0.5, 0.6, 0.8}.
In this subsection, the training (resp. test) set consists of 4,000 (resp. 1,000) graphs with 80 (resp. 20)

graphs per G(n, p). Compared with the uniform initial solution, all scores of the training and test sets

obtained by R0 and R in Algorithm 1 in terms of (5.3) are depicted in Figure 9, and the detailed scores

in each size are shown in Figure 10.

From Figure 9, we can see that the median scores of the initial probabilities derived from Algorithm 1

by R0 and R on the training and test sets are all very close to 1. They both perform the best. The

score of the initial vector by R is slightly better than R0, since the minimum of the boxplot by R on the

training set is higher than that by R0. Consequently, we use R in the following experiments. We can also

see that the median scores by GCN are around 0.8 on both the training and test sets, which is better

than the uniform initial probability.

Moreover, it is observed in Figure 10 that GCN achieves superior performance on both training and

test graphs in all graph sizes, which reveals that the proposed method remains effective in gaining a

preferable probability distribution, from which an initial solution is sampled for LS, to find a high-quality

solution.

Large-scale graph. To evaluate the performance of the learned 2-layer GCN, which is trained above,

on large-scale MCP instances, we randomly synthesize a total of 360 ER random graphs with 20 graphs

per G(ntest, ptest), where ntest ∈ {200, 300, 400, 500, 600, 700, 800, 900, 1000} and ptest ∈ {0.2, 0.4} as the

test graph dataset. The scores on the large-scale MCP are shown in Figure 11 in terms of boxplot and

the mean clique size.
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(a) The scores of the training graphs summa-

rized by the box plot
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(c) The scores of the test graphs summarized by
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(d) The average score of the test graphs

Figure 10 (Color online) The scores of the probability by GCN to sample the initial solution (in red) and the scores of

the uniform initial solution (in green) for MCP in terms of the boxplot ((a) and (c)) and the average ((b) and (d)), when

the training and test graphs have the same number of node and the same probability

From Figure 11, we can see that, when the node of the graph increases to 1,000, the clique found by

the learned GCN is slightly larger than the random uniform initialization in each test dimension.

5.2.3 Generalization

As the network parameters, i.e., H1 and H2 in (4.12), are irrelevant to the graph size, the GCN can

be trained and tested on graphs with different scales. Here we assess the generalization ability of GCN

on (1) larger-size ER graphs, (2) denser graphs, and (3) larger as well as denser graphs, respectively.

Accordingly, in this subsection, we generate 80 (resp. 20) ER random graphs per G(ntrain, ptrain) (resp.

G(ntest, ptest)) to compose the training (resp. test) set, which is set up as follows:

(1) The training and test graph sizes differs as ntrain ∈ {10, 20, 30, 40, 50}, ntest ∈ {60, 70, 80, 90, 100},
while the probability values remain the same ptrain, ptest ∈ {0.2, 0.4, 0.5, 0.6, 0.8}. There are 2,000 training

graphs and 500 test graphs in total.

(2) The graph sizes are the same ntrain, ntest ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, while the

probability values varies as ptrain ∈ {0.2, 0.4, 0.5}, ptest ∈ {0.6, 0.8}. There are a total of 2,400 training

graphs and 400 test graphs.

(3) Both the graph size and the probability change in the training and test sets as: ntrain ∈
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(a) The scores of the test (large-scale) graphs

summerized in terms of box plot
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Figure 11 (Color online) The scores of the probabilities predicted by GCN which are used to sample the initial solution

(in red) and the scores of the uniform initial solution (in green) for MCP in terms of box plot (a) and the mean clique size

(b), when the test graphs have a large size up to 1,000 nodes (ntest ∈ {200, 300, 400, 500, 600, 700, 800, 900, 1000})
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(a) The scores of graphs summarized by the box

plot
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(b) The average score of graphs

Figure 12 (Color online) The scores of the probability by GCN to sample the initial solution (in red), of the node subset

by GGTS (in blue) and of the uniform initial solution (in green) for MCP in terms of the boxplot (a) and the average

(b), when the test graphs have the larger sizes than the training graphs and the same probability as the training graphs

(ntest ∈ {60, 70, 80, 90, 100})

{10, 20, 30, 40, 50}, ptrain ∈ {0.2, 0.4, 0.5};ntest ∈ {60, 70, 80, 90, 100}, ptest ∈ {0.6, 0.8}, totally 1,200

training graphs and 200 test graphs.

Since there is a paucity of research about the DL-based initialization for DOPs, we compare a DL-based

combinatorial optimization method referred to as GGTS [39], which can directly provide a solution for

graph-based DOPs, to evaluate the generalization ability of the proposed framework. When computing

the score of GGTS, the solution obtained by GGTS is taken as the initial node subset and then we use

Algorithm 3 to refine it to a maximal clique.

In comparison with the uniformly sampled initial solution and GGTS, the scores of the generated

probability by GCN within the same duration of training time in the three cases above are shown in

Figures 12–14, respectively. From these figures, we can see the following:

(1) generally the probabilities produced by GCN have higher scores than RI in all dimensions, even on
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(a) The scores of the training graphs summa-

rized by the box plot
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(b) The average score of the training graphs
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(c) The scores of the test (denser) graphs

summarized by the box plot
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(d) The average score of the test (denser) graphs

Figure 13 (Color online) The scores of the probability by GCN to sample the initial solution (in red), of the node subset

by GGTS (in blue) and of the uniform initial solution (in green) for MCP in terms of the boxplot ((a) and (c)) and the

average ((b) and (d)), when the test graphs are denser than the training graphs and they are of the same graph sizes

(ptest ∈ {0.6, 0.8})

the graphs with the larger scale and density, on the training and test graphs;

(2) when the test graph is denser than the training graph, there is no significant difference between

DL and GGTS on the training graphs as the scale of the graph increases;

(3) when the test graphs have both larger sizes and densities, the proposed DL exhibits superior

performance than both GGTS and RI on both training and test graphs in all graph sizes, except n = 10.

This indicates that the proposed model has a good generalization ability to the larger and denser

graphs for the MCP.

5.2.4 Deep-learning-based initialization for population-based heuristic

In this subsection, we examine the effect of the learned probability vector on sampling the initial

population for a population-based algorithm. Here we use a classical genetic algorithm, HGA [44] for

solving the MCP. HGA requires a population of solutions as input, together with some algorithmic

parameters. Here we use the same set of parameters as in the original reference.

To conduct the investigation, we divide the generation of the initial population into two parts. With

a certain proportion, the initial population is generated by DL, while the rest is generated by RI. The
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(a) The scores of graphs summarized by the box

plot
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(b) The average score of graphs

Figure 14 (Color online) The scores of the probability by GCN to sample the initial solution (in red), of the node subset

by GGTS (in blue) and of the uniform initial solution (in green) for MCP in terms of the boxplot (a) and the average (b),

when the test graphs are both larger and denser than the training graphs (ntest ∈ {60, 70, 80, 90, 100}, ptest ∈ {0.6, 0.8})

Table 4 The average (with standard deviation) and the largest clique size by HGA with different percentages of random

initialization. Mean(std): the average (standard deviation) value of the clique size in ten runs. Best: the size of the largest

clique found in ten runs

Graph
100% 75% 50% 25% 0%

Mean(std) Best Mean(std) Best Mean(std) Best Mean(std) Best Mean(std) Best

brock200 2 11.8(0.6) 12.0 11.4(0.9) 12.0 11.6(0.8) 12.0 11.9(0.3) 12.0 11.8(0.6) 12.0

brock200 4 15.3(1.0) 17.0 15.0(0.4) 16.0 15.1(0.9) 17.0 14.8(0.6) 16.0 15.0(0.6) 16.0

brock400 2 22.0(0.6) 23.0 22.1(0.5) 23.0 23.1(0.3) 24.0 22.7(0.8) 24.0 22.4(0.7) 23.0

brock400 4 22.8(0.6) 24.0 22.3(0.5) 23.0 22.6(0.7) 24.0 22.4(0.9) 24.0 22.4(0.8) 24.0

C125.9 33.6(0.7) 34.0 34.0(0.0) 34.0 34.0(0.0) 34.0 33.7(0.5) 34.0 33.8(0.4) 34.0

C250.9 42.6(1.1) 44.0 41.9(0.9) 43.0 42.0(0.9) 44.0 41.5(0.8) 43.0 41.8(1.0) 43.0

C500.9 49.7(1.2) 52.0 51.0(1.1) 53.0 50.2(1.7) 53.0 50.2(1.8) 53.0 50.2(1.5) 52.0

DSJC500 5 11.9(0.5) 13.0 11.8(0.4) 12.0 12.0(0.0) 12.0 12.1(0.3) 13.0 12.1(0.8) 13.0

gen200 p0.9 44 40.2(3.0) 44.0 40.7(2.6) 44.0 39.8(2.2) 44.0 39.7(2.9) 44.0 40.1(2.3) 44.0

gen200 p0.9 55 55.0(0.0) 55.0 55.0(0.0) 55.0 55.0(0.0) 55.0 55.0(0.0) 55.0 55.0(0.0) 55.0

gen400 p0.9 55 47.4(1.3) 50.0 47.4(1.2) 49.0 47.0(1.2) 48.0 47.1(1.2) 50.0 47.0(0.9) 49.0

gen400 p0.9 65 49.5(5.3) 65.0 49.4(5.2) 65.0 54.6(8.7) 65.0 50.8(5.5) 65.0 53.3(7.2) 65.0

gen400 p0.9 75 69.9(10.2) 75.0 72.6(7.2) 75.0 67.3(11.8) 75.0 74.7(0.9) 75.0 66.0(11.8) 75.0

hamming8-4 16.0(0.0) 16.0 16.0(0.0) 16.0 16.0(0.0) 16.0 16.0(0.0) 16.0 16.0(0.0) 16.0

keller4 11.0(0.0) 11.0 11.0(0.0) 11.0 11.0(0.0) 11.0 11.0(0.0) 11.0 11.0(0.0) 11.0

MANN a27 125.0(0.0) 125.0 125.0(0.0) 125.0 125.0(0.0) 125.0 125.0(0.0) 125.0 125.0(0.0) 125.0

p hat300-1 7.8(0.4) 8.0 7.9(0.3) 8.0 7.8(0.4) 8.0 8.0(0.0) 8.0 8.0(0.0) 8.0

p hat300-2 24.8(0.6) 25.0 25.0(0.0) 25.0 24.8(0.6) 25.0 25.0(0.0) 25.0 24.7(0.5) 25.0

p hat300-3 34.2(0.7) 36.0 34.0(0.9) 36.0 34.1(0.8) 36.0 34.2(1.2) 36.0 33.7(0.6) 35.0

average (with standard deviation) size and the maximum size of the largest clique found in ten runs by

using different numbers of random initial individuals in HGA are summarized in Table 4. In Table 4,

the first (resp. second, third, fourth and fifth) set of columns reports the results in the case of all (resp.

75%, 50%, 25% and none of) random individuals in the initial population.

Figure 15 shows the size of the maximal clique found at each generation on 19 DIMACS graphs [28] by

HGA with different proportions of random initial individuals. In the figure, the number following ‘Rnd’

refers to the percentage of the random initialization. From Table 4 and Figure 15, it is seen that the mean

size of the maximal clique found by HGA with DL initialization is larger than that with RI on 9 out of

19 DIMACS graphs, including brock400 2, C125.9, C500.9, DSJC500 5, gen200 p0.9 44, gen400 p0.9 65,
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gen400 p0.9 75, p hat300-1, and p hat300-2. As for the other 10 graphs, there is no significant difference

between the clique size found by HGA with DL and RI. We may conclude that the learned probability

vector is beneficial for improving the quality of the solution in terms of the clique size by population-based

algorithm on solving MCP.

(a) brock200 2 (b) brock200 4 (c) brock400 2 (d) brock400 4

(e) C125.9 (f) C250.9 (g) C500.9 (h) DSJC500 5

(i) gen200 p0.9 44 (j) gen200 p0.9 55 (k) gen400 p0.9 55 (l) gen400 p0.9 65

(m) gen400 p0.9 75 (n) hamming8-4 (o) keller4 (p) MANN a27

(q) p hat300-1 (r) p hat300-2 (s) p hat300-3

Figure 15 (Color online) The size of the maximal clique found at each generation on DIMACS graphs by HGA, when

some initial individuals are sampled from the learned probability and others are random ones. The number following ‘Rnd’

refers to the proportion of the random individuals in the initial population
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6 Conclusion

In this paper, we proposed a framework to improve the performance of local search algorithms on 0-1

discrete optimization problems, by learning a preferable initial probability distribution and then sampling

the initial solution from the learned probability. We first developed an algorithm to find a preferable

probability distribution for a specific DOP instance. Then, a deep neural network model was employed to

learn the mapping between the problem instance and the preferable distribution. The proposed framework

was applied to solve two kinds of discrete problems established on set and graph: the knapsack problem

and the maximum clique problem. We constructed a network called Set2Pro, which preserves equivariance

for set-based discrete problems, for the knapsack problem and utilized a graph convolution network for

the maximum clique problem, respectively, to learn the mapping. Experimental results showed that

our framework yields a better solution than the uniformly sampled initial solution for both KP and

MCP. We also observed that our framework can be well generalized to problems in different types and

scales. Furthermore, the learned probability distribution is also beneficial to find a larger clique for a

population-based method. In the future, we intend to learn the search method and enhance the capability

for much larger and more complex graphs, as well as other discrete optimization problems over graphs

and real-world problems.
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