氢气氢化油酸臭氢化物合成千二酸的催化剂

孙自才 a 为 吾满江、艾力 a * 徐同玉 a 为 ("中国科学院新疆理化技术研究所 乌鲁木齐 830011 ; 中国科学院研究生院 北京)

摘 要 油酸臭氧化法是合成壬二酸(包括臭氧氧化和氧气催化氧化)的2步反应。考察了在水、壬酸和醋酸 的混合溶剂体系中,第2步反应所需要的催化剂。通过监测反应过程中活性氧浓度(Concentration of active oxygen CAO)的变化。得出了几种有效的氧化 - 还原催化剂的活性顺序为 V2O5 > MnO2 > MoO3 > PbO2 > 醋酸 钴>醋酸锰。通过考察各催化剂对壬二酸收率的影响。得出了它们选择性的顺序为 MoO₃ > PbO₂ > MnO₃ > 营 酸钴 > 醋酸锰 > V_2O_3 。当以 MoO_3 或 PbO_3 为催化剂时 ,壬二酸的收率可以稳定在 75% 以上。

关键词 油酸 臭氧化 壬二酸 活性氧浓度(CAO)

中图分类号:0643.3;TQ032.4

文献标识码:A

文章编号 :1000-0518(2006)02-0161-04

壬二酸(HOOC(CH,),COOH)是一种重要的有机化学试剂,被广泛应用于高分子材料合成、医药、 香料、电容器制造、润滑剂等工业生产中[12]。油酸经臭氧化法是合成壬二酸的一种重要方法,其反应过 程包含臭氧化和氧气催化氧化 2 步[3 4]。由于臭氧的强氧化性和对双键的高选择性,其中第 1 步只需要 选择合适的溶剂体系 控制好反应温度 反应将进行得很完全。而从第2步成为影响整个反应中壬二酸 产率的关键步骤。由于在没有催化剂存在的情况下,第2步反应缓慢,将出现氧化不完全,中间产物聚 合等现象 导致壬二酸产率低 产品质量差 所以选择适当的催化剂对这步反应十分重要。当前采用该 法生产壬二酸的 Emery 公司使用的是分子筛载担锰盐为催化剂[5] ,同时也有人研究以醋酸钴为催化 剂[6],壬二酸的产率在50%~70%之间。本文对工业上已经应用的催化剂醋酸锰和醋酸钴进行了考察, 同时对多种金属氧化物的催化效果也进行了研究,筛选出 V,O,、MnO,、MoO,和 PbO,4 种有效的催化 剂 详细研究了它们的催化活性和选择性。实验证明 无论从活性还是从选择性上比较 锰盐和钴盐都 不是最好的催化剂 在工业上应用新型催化剂十分必要。

实验部分

1.1 试剂和仪器

油酸 质量分数为80.04%),冰醋酸 工业级),壬酸 化学纯),氧气 工业级);三氯甲烷、乙酸 分 析纯)饱和碘化钾溶液 质量分数为 0.5% 淀粉溶液 0.01 mol/L 硫代硫酸钠标准溶液 :NP1000 型臭氧 发生器(山东绿邦光电设备有限公司) ;FTS3000 型傅里叶红外光谱仪(美国 Varian 公司) 美国 PE Autosystem XL-TurboMass 气相色谱-质谱连用仪。

直接使用分析纯 Co(OAc), · 4H,O 和 Mr(OAc), · 4H,O 为催化剂考察醋酸锰和醋酸钴的催化性 能。称取分析纯 V₂O₅、PbO₂和 MnO₂各 25 g ,用瓷坩埚置于马福炉中 ,控制温度在 350 ℃ ,空气气氛中焙 烧3 h 后 将所得固体研成细粉 并放于真空干燥器中备用。 称取 30 g(NH3)6 Mo7 O24 · 4H2 O 加入 5 mL 蒸馏水混合均匀后 ,用瓷坩埚置于马福炉中 ,逐步升温至水分蒸干后 ,在 350 ℃左右焙烧 5 h ,得白色 MoO₃固体 研成细粉 放于真空干燥器中备用。

1.2 实验步骤

向气液搅拌反应器中加入 50 g 油酸、100 mL 壬酸、50 mL 醋酸和 200 mL 蒸馏水 ,强烈搅拌混合均 匀 用冷水浴控制体系温度在 10~15 ℃ ,通入含体积分数为 3.3% 臭氧的臭氧和氧气混合气体按 0.2 m³/h进行臭氧化反应1.5 h 后。向反应器中加入所要考察的催化剂 通氧气0.08 m³/h 加热使体系

在约30 min持续升温至 93 $^{\circ}$ 。从加热开始,在强烈搅拌下每隔一段时间从乳状反应体系中取出 0.500 0 ~ 1.000 0 g 混合液体,并测定其活性氧的浓度。直到体系活性氧浓度 < 5 × 10 $^{-5}$ mol/g 时,停止反应。反应后过滤除去混合物中固体催化剂,用近沸水萃取滤液多次后,在 0 $^{\circ}$ 左右结晶,经抽滤、洗涤、干燥后称重,计算壬二酸的产率。用红外光谱鉴定产品为壬二酸,用气相色谱-质谱连用仪可以测定壬二酸的纯度在 98% 左右,产品溶点在 106 ~ 108 $^{\circ}$ 。

1.3 活性氧浓度的定义和测定方法

参照文献 7]方法 将取出的样品加入 250 mL 锥形瓶中 ,用 10 mL 三氯甲烷和 15 mL 乙酸溶解后 ,加入 1 mL 饱和碘化钾溶液后迅速盖好塞子,混合均匀,在 $15\sim25$ $^{\circ}$ 避光静置 5 min。加入约 75 mL 蒸馏水,以质量分数为 0.5% 淀粉溶液为指示剂,用 0.01 mol/L 硫代硫酸钠标准溶液滴定析出的碘。用过氧化物的表观质量摩尔浓度来表示试样整体的活性氧浓度(CAO):

CAO(
$$1 \times 10^{-5} \text{ mol/g}$$
) = $100 \times d(V_1 - V_0)/m$

式中 m 为试样质量(g); V_1 为用于测定的硫代硫酸钠标准溶液(mL); V_0 为用于空白的硫代硫酸钠标准溶液(mL);E为硫代硫酸钠标准溶液浓度(mol/L)。

2 结果与讨论

2.1 反应条件的选择

在油酸臭氧化这步反应中,反应能否彻底进行与溶剂体系的选择密切相关。本文采用壬酸-水-醋酸混合溶剂体系,这是因为用水作为主溶剂可以延长臭氧的寿命,加强散热;加入壬酸可以防止油相中油酸的浓度过高,使反应趋于温和,同时有利于产品的分离,醋酸是反应参与型溶剂 31 ,可以调节 $_{\rm PH}$ 值,增强臭氧的反应活性,稳定反应中间体,也可以促进两相之间的物质交换,使反应进行彻底。在该溶剂体系对设备的腐蚀性相对于醋酸小,得到壬二酸的产率高,不同溶剂体系的比较见表 1。臭氧化反应最佳温度范围在温度为 $10 \sim 15~$ ℃,第 2 步催化氧化的最佳温度为 $90 \sim 95~$ ℃ $^{[6]}$ 。理论上使用与反应物等量的臭氧,以及在第 2 步中用微量氧气维持氧化氛围即可。但是为保证实验的稳定性,本文实验中采用的臭氧为过量,第 2 步中氧气的流量都保持为 0.08~ m 3 /h。同时为了便于考察,实验中加入各催化剂的量为 1.0~ g。

表 1 不同溶剂体系的比较

Exp.	$m($ Oleic acid)/g ($\omega($ Oleic acid) = 80.04%)	(H ₂ O) ∕mL	Pelargonic acid/mL	V(Acetic acid)/mL	Catalyst	Azelaic acid/ (m · g ⁻¹)	Yield Azelaic acid)/%
1	50.0	200	100	50	1.0 g MoO ₃	22.0	82.5
2	50.0	30	0	-	$1.0~\mathrm{g}$ Mn(Ac) ₂ $\cdot 4\mathrm{H}_2\mathrm{O}$	13.5	57.1
3	50.0	_	_	250	_	15.6	62.7

Table 1 Comparison of the effect of different solvent systems

2.2 催化剂活性的考察

根据 Criegee 臭氧化反应机理^[8~10] 在极性溶剂中,臭氧化反应生成多种形态的臭氧化物,当有氧化剂存在时,这些臭氧化物可以被氧化成羧酸或发生其它氧化分解反应。一般情况下,臭氧化物被氧化成羧酸的活化能较大,需要使用适当的催化剂。臭氧化物被氧化成羧酸或分解后,都将失去氧化活性,所以深度氧化反应速度越快,反应体系中活性氧的浓度下降就越快,从而检测反应过程中活性氧浓度的变化可以考察催化剂的催化行为。

理论上能够使氧气活化并实现氧中转作用的多数金属盐、金属氧化物和贵金属都可以做第 2 步氧气氧化反应的催化剂 $^{[2,5]}$ 。如图 1 所示,当无催化剂存在时,随着反应温度的升高,有部分臭氧化物分解,体系活性氧的浓度下降,接着臭氧化物和氧气结合,活性氧的浓度有所升高。当温度升高到 80 $^{\circ}$ 以上后,氧气的氧化能力增强,逐步将臭氧化物氧化成羧酸,体系的活性氧浓度持续下降,但速度缓慢。当用醋酸锰或氯化钴作催化剂时,体系活性氧的浓度开始有所上升,再持续下降,说明金属盐需要一个与氧气结合而被活化的过程。通过考察多种金属氧化物的催化效果,发现 V_2O_5 、 MnO_2 、 MoO_3 和 PbO_2 等能

够成功地实现氧的中转作用,使体系中活性氧的浓度持续稳定下降(见图 2)。 定义各催化剂的活性系数 μ 为与之相对应的反应体系的活性氧浓度的半衰期的倒数的 1×10^3 倍,即 μ = $1~000/t_{1/2}$,并用以描述各催化剂的相对活性。从图 1~ 和图 2~ 可以看出,各催化剂催化活性的顺序为 $V_2O_5 > MnO_2 > MoO_3 > PbO_2 >$ 醋酸钴 > 醋酸锰,相应的活性系数分别为 50.0, 20.6, 12.8, 11.7, 8.0, 4.8。

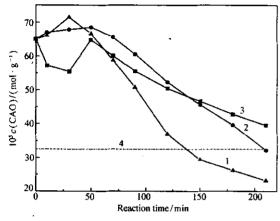


图 1 不同催化剂下反应体系中活性氧 浓度随时间的变化(I)

Fig. 1 CAO of the reaction system with different catalyst at different time(I)

Catalysts: 1. Co(OAc)₂; 2. Mn(OAc)₂;

3. No Cat.; 4. Half-life of CAO

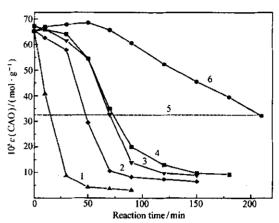


图 2 不同催化剂下反应体系中活性氧 浓度随时间的变化(Ⅱ)

Fig. 2 CAO of the reaction system with different catalyst at different time(II) Catalysts 1. V₂O₅; 2. MnO₂; 3. PbO₂; 4. MoO₃; 5. Half-life of CAO; 6. Mr(OAc)₂

2.3 催化剂活性原因的分析

催化剂活性的大小与所选择的溶剂体系密切相关,因为溶剂直接影响催化剂的溶解性、表面存在状态和氧化还原能力。在实验所选择的弱酸性溶剂体系中,难溶或微溶于体系的金属氧化物的催化效果普遍比金属盐好,如 MnO_2 的活性($\mu=20.6$)大于醋酸锰($\mu=4.8$),这可能是由于金属氧化物更容易与氧气和臭氧化物反应,实现氧的中转作用,而金属盐则需要一个活化的过程。被筛选出来的 4 种氧化物的氧化能力顺序为 $V_2O_5 > MnO_2 > PbO_2 > MoO_3^{[11]}$,除 MoO_3 以外,与催化剂的活性顺序相一致。实验中发现,钼酸铵与 WO_3 对该反应的活性都很低,唯有 MoO_3 对该反应具有优良的催化效果,这取决于 MoO_3 特殊的结构和氧化能力。因为在弱酸性条件下, MoO_3 很容易聚合成分子量很大的同多酸根离子,这种庞大的原子族化合物具有活性点分布密集,对反应物的吸附能力强等特点,从而催化效果好。 WO_3 虽然也具有这种性质,但是由于其氧化能力太弱而导致催化活性很低[$^{[12]}$]。

2.4 催化剂活性对壬二酸的选择性的影响

通过比较壬二酸的产率可以判定催化剂的选择性。各催化剂的活性系数与壬二酸产率的对应关系如表 2 所示。从表 2 可以看出,各催化剂选择性高低顺序为 $MoO_3 > PbO_2 > MnO_2 > 醋酸钴 > 醋酸锰 > V_2O_5$ 。从工业角度上看,催化剂活性越高,所需反应时间就越短,节省能量和氧气越多。但是,当催化剂活性太高时,如 V_2O_5 ,会造成臭氧化物被过度氧化成其它副产物,使得壬二酸的产率很低。反之,催化剂活性太低,如醋酸锰和醋酸钴等,会使反应进行缓慢,氧化不彻底,产率低、均低于 70%),而且产品质

表 2 催化剂活性对壬二酸产率的影响

Table 2 Influence of the catalyst activity on the yield of azelaic acid

Catalyst	μ	Yield/%	Catalyst	μ	Yield/%
None	-	45.7	MoO_3	12.8	82.5
Mr(OAc) ₂	4.8	60.6	MnO_2	20.6	73.5
Co(OAc) ₂	8.0	64.5	V_2O_5	50.0	11.2
PbO_2	11.7	79.4			

量差 ,所以活性适中的催化剂是该反应的最佳选择。当 MoO_3 、 PbO_2 作催化剂时 ,壬二酸的产率可以稳定在 75% 以上。

参考文献

- 1 GU Zhi-Yong(谷志勇) HU Wang-Ming(胡望明). Chin Spec Petrochem(精细石油化工] J] 1998 6 40
- 2 QIAN Wei-Qur(钱为群), HUANG Zu-You(黄祖佑), ZHU Nai-Jing(朱乃京). Chin Fine Chem(精细化工)[J], 1994, 11(1) 56
- 3 Zelikman E S Berezova L V Kutaeva E P , et al. J Org Chem[J] 1976 12 769
- 4 Yasmine Katrib Scot T Martin ,Hui-Ming Hung , et al. J Phys Chem [J] 2004 ,108 16 686
- 5 Charles G Goebel , Aexander C Broun , et al. US 2 813 113 [P] , 1957
- 6 LI Ying-Chur(李英春) SONG Zhan-Qian(宋湛迁). Chin Spec Petrochem(精细石油化工 []] 2003 6 37
- 7 Louis Rebrovic. J Am Oil Chem Sod [J] 1992 69(2):159
- 8 Bailey P.S. Ozonation in Organic Chemistry M. J. New York :Academic Press. Vol. I 1978, Vol. II 1982
- 9 Tamar Moise ,Yinon Rudich. J Phys Chem [J] 2002 ,106 to 469
- 10 Nishikawab Naoki ,Yamada Kaoru ,Matsutani Shigeaki. J Am Oil Chem Sod J] ,1995 ,72(6) 735
- 11 CAO Xi-Zhang(曹锡章) SONG Tian-You(宋天佑) ,WANG Xing-Qiao(王杏乔). Inorganic Chemistry(无机化学) [M] ,Part II(下册) 3rd Edr(第 3 版). Beijing(北京) :Higher Education Press(高等教育出版社) ,1994
- 12 WU Yue(吴越). Catalytic Chemistry(催化化学 [M], Chapt. 10(第10章). Beijing(北京) Science Press(科学出版社),1995

Catalysts for Oxidation of the Ozonolysis Product of Oleic Acid with Oxygen to Make Azelaic Acid

SUN Zi-Cai^a, WUMANJIANG Eli^a, XU Tong-Yu^a, ZHANG Ya-Gang^a (^aXinjiang Technical Institute of Physics and Chemistry Chinese Academy of Sciences Urumqi 830011; ^bGraduate School of the Chinese Academy of Sciences Beijing)

Abstract Oxidation of oleic acid with ozone is an important way to produce azelaic acid. The process contains a two-step reaction , ozonization and further oxidation by oxygen in the presence of a catalyst. A mixed solvent system was used for the first step and a series of new catalysts were respectively introduced into the second step. The activity of each catalyst was studied by determining the concentration of active oxygen(CAO) in the reaction and the selectivity was investigated by comparing the corresponding yield of azelaic acid. The results show that the reactivity order of the catalysts studied is $V_2O_5 > MnO_2 > MoO_3 > PbO_2 > Co(OAc)_2 \cdot 4H_2O > Mn(OAc)_2 \cdot 4H_2O > Mn(OAc)_2 \cdot 4H_2O > V_2O_5$. With MoO_3 or PbO_2 as the catalyst , the yield of azelaic acid can be maintained above 75%.

Keywords oleic acid ozonization azelaic acid concentration of active oxygen (CAO)