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Dear editor,

Employing observability analysis of a dynamic system is

necessary to determine the efficiency of a Kalman filter de-

signed to estimate the state of dynamic system, and the

system state is a set of variables which can describe the mo-

tion state of the dynamic system. The observability sets

a lower limit for the estimation error, and the lower the

limit, the better the likelihood of obtaining an accurate es-

timate of the system state. In other words, if the system

is not observable, it is not possible to accurately estimate

the system state, even if the noise level is negligible. While

the observability analysis of a constant linear system is sim-

ple, analyzing a time-varying nonlinear system is quite com-

plicated. Goshen-Meskin and Bar-Itzhack [1] modeled the

time-varying nonlinear system as the piece-wise constant

system (PWCS) to analyze its observability, which is pre-

sented as a step-by-step procedure. Chen [2] introduced a

concept of the local observability for the time-varying linear

system, and Bartosiewicz [3] extended this concept to the

nonlinear system. For the observability of the system state,

singular value decomposition (SVD) [4] has been widely used

to analyze the observable degree. However, this method had

a theoretical limitation, namely, the dimensions of singular

values corresponding to different system states are different;

therefore it is unreasonable to directly compare the singular

values. However, to the best of our knowledge, little re-

search has been conducted on the observability analysis of

the time-varying nonlinear system.

Based on the above observation, a local observability

analysis method for the time-varying nonlinear system based

on PWCS is proposed. In this method, the observability

of the time-varying nonlinear system is separated into two

parts, the observability of the system and observable degree

of the system state. The observability of the system indi-

cates whether the system is observable, which provides a fur-

ther indication of whether the system state can be estimated

using a Kalman filter. However, the observable degree is

the quantitative indicator of the observability of the system

state, which can indicate the estimate efficiency of the sys-

tem state in the Kalman filter. First, the PWCS method

was extended to the time-varying nonlinear system, and the

stripped observability matrix (SOM) was derived based on

the definition of local observability. The transformation re-

sults of the SOM were then used to represent the observable

degree of the system state. Furthermore, this method was

applied to the continuous self-calibration system, and the

simulation results confirmed its rationality.

Local observability analysis of the time-varying nonlinear

system. A type of time-varying nonlinear system is repre-

sented by the following state space equations:

{

x(k + 1) = A(k)x (k) + f k(x (k)),

z (k) = C (k)x (k),
(1)

where x(k) ∈ R
n is an n-dimensional vector; z (k) ∈ R

m is

an m-dimensional vector; A(k) ∈ R
n×n and C (k) ∈ R

m×n

are n × n and m × n time-varying matrices respectively;

f k : Rn → R
n is a nonlinear bounded mapping. The PWCS

of the system can be modeled as

{

x (k + 1) = Ajx(k) + f j(x (k)),

z (k) = C jx (k),
(2)

where j = 1, 2, . . . , r. The local observability is defined

in [2]. More specifically, a system represented by (2) is said

to be “locally observable” if the system state x (k) can be

determined from the knowledge of z (j) for j = [k, k+n−1],

which can be formulated as
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z (k) = Cx (k),

z (k + 1) = CAx (k) +Cf (x (k)),

...

z (k + n− 1) = CAn−1x(k)

+
n−2
∑

i=0

CAn−i−2f (x (i)).

(3)
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Table 1 Simulation results

Error coefficients Relative observable degrees Convergence time (s) Relative error (%)

Scheme 1 0.62 52 −0.0050

kg13y
Scheme 2 0.47 50 0.0042

Scheme 3 1.44 36 −0.0021

Scheme 1 0.0016 480 −8.88

∆sx Scheme 2 0.51 320 −3.96

Scheme 3 0.31 280 −6.03

Scheme 1 2.2 × 10−6 500 −11.21

ka0z Scheme 2 0.00055 270 2.94

Scheme 3 0.0014 200 −1.58

kg11x
89.61 96 0.0040

Scheme 2 kg11y
71.73 120 0.0016

kg11z
96.04 50 0.0009

∆sx 0.31 270 −0.94

Scheme 3 ∆sy 0.58 180 0.11

∆sz 0.42 280 0.16

Let Q = [ CT (CA)T (CA2)
T

· · · (CAn−1)
T ]T,

Z = [ z (k)T z (k + 1)T · · · z (k + n− 1)T ]T, F (x ) =

[ 0T

3×1
(Cf (x (k)))T · · · ]T, and then Eq. (3) can be written

as

Z = Qx (k) + F (x ). (4)

For rank(Q)=n, this equation has a solution in R
n.

Based on the definition of local observability, we can

know that the local observability matrix of (2) is Qj =

[CT

j (C jAj)
T (C jA

2

j )
T

· · · (C jA
n−1

j
)
T
]T. We can then

use the local observability matrix to compose the SOM of

(1) as Q̃s(r) = [ QT

1
QT

2
· · · QT

r ]T. Based on the PWCS

theory, if rank(Q̃s(r)) = n, the time-varying nonlinear sys-

tem of (1) is locally observable.

Analysis of the relative observable degree of the time-

varying nonlinear system. Based on the PWCS theory, the

transformation results of SOM can be used to represent the

observable degree of the system state. The procedures for

transforming Q̃s(r) to Ũ s(r) are as follows:

(1) Q̃s(r) is transformed into an upper triangular matrix

using the Gaussian elimination method. While performing

the elementary row transformation on row i (1 6 i 6 n) of

Q̃s(r), if the absolute value of uji (i < j 6 mnr) (which

is the element of Ũ s(r)) is maximal in column i, row i and

row j must be exchanged before the transformation. (2) If

uii 6= 0 (1 6 i 6 n), Gaussian elimination is performed on

row n to row 1 of the upper triangular matrix to change

the elements in row i (1 6 i 6 n) to 0 except uii. (3) If

uii < 0 (1 6 i 6 n), row i is multiplied by −1 to make the

value of uii positive.

Based on the definition of observability, the relative ob-

servable degree of the system state is defined in the following

manner. In line i (1 6 i 6 n) of Ũ s(r), if uii 6= 0 and other

elements are equal to 0, uii is defined as the relative ob-

servable degree of the system state xi (1 6 i 6 n) in the

state vector X = [ x1 x2 · · · xn ]T. Because the dimen-

sions of system states in X are different, the dimensions of

uii (1 6 i 6 n) are also different and we cannot compare

the value of uii directly. Therefore, the defined observable

degree is named as the relative observable degree. However,

the relative observable degree can be used to compare the

observability of different system states as long as they have

the same dimension or the same system state in different

time segments.

Observability analysis of the continuous self-calibration

system. The continuous self-calibration system is a time-

varying nonlinear system that has the same form as (1) [5];

therefore the above conclusion can be used to analyze its

observability. Considering that the rotation scheme affects

the observability of the continuous self-calibration system,

the estimation efficiency and the relative observable degree

of three different rotation schemes were compared by simu-

lation to verify the rationality of the proposed method.

Scheme 1. (1) Rotate 1◦/s around axis Z for π beginning

with α = 0, γ = 0; (2) Rotate 1◦/s around axis X for π/2

beginning with α = 0, γ = π; (3) Rotate 1◦/s around axis

Z for π beginning with α = π/2, γ = π; (4) Rotate 1◦/s

around axis X for π/2 beginning with α = π/2, γ = 0.

Scheme 2. (1) Rotate 1◦/s around axis Z for 9π/4 be-

ginning with α = 0, γ = 0; (2) Rotate 1◦/s around axis X

for 7π/3 beginning with α = 0, γ = π/4; (3) Rotate 1◦/s

around axis Z for 11π/8 beginning with α = π/3, γ = π/4;

(4) Rotate 1◦/s around axis X for 8π/3 beginning with

α = π/3, γ = π.

Scheme 3. (1) Rotate 1◦/s around axis Z for 9π/4 be-

ginning with α = 0, γ = 0; (2) Rotate 1◦/s around axis X

for 3π/2 beginning with α = 0, γ = π/4; (3) Rotate 1◦/s

around axis Z for 9π/4 beginning with α = −π/2, γ = π/4;

(4) Rotate 1◦/s around axis X for 9π/4 beginning with

α = −π/2, γ = π/2; (5) Rotate 1◦/s around axis Z for

3π/2 beginning with α = −π/4, γ = π/2; (6) Rotate 1◦/s

around axis X for 9π/4 beginning with α = −π/4, γ = 0.

In Table 1, kg13y , ∆sx and ka0z are the error coeffi-

cients in the continuous self-calibration system, which are

regarded as the system states to be estimated. The esti-

mation efficiency of the Kalman filter includes two funda-

mental aspects, estimation precision and estimation speed.

In this study, the estimation precision and estimation speed

are represented by the relative error of the error coefficients

and the convergence time associated with the Kalman fil-

ter. By comparing the convergence time and relative error

with their relative observable degrees in Table 1, it is pos-

sible to see that the larger the relative observable degree,

the faster the convergence speed and the lower the relative

error, which proves that the observability obtained by our

proposed method can be used to indicate the estimation ef-

ficiency of the Kalman filter.



Wang Q, et al. Sci China Inf Sci January 2021 Vol. 64 119201:3

Conclusion. We proposed a local observability analysis

method based on PWCS to analyze the observability of the

time-varying nonlinear system. Based on the definition of

local observability and the PWCS theory, SOM and observ-

able condition of a type of time-varying nonlinear system

were obtained. For the observability of the system state,

the relative observable degree of the system state was de-

fined and represented by the transformation results of the

SOM. Using this method, the observability of the continu-

ous self-calibration system with three rotation schemes was

analyzed, and the results revealed that the larger the rela-

tive observable degree, the faster the convergence speed and

the lower the relative error, thus proving the rationality of

the proposed observability analysis method.
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