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Physiological characters and gene mapping of a dwarf and wide-leaf mutant
osdwll in rice (Oryza sativa L.)
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Fu-Deng”, CHENG Fang-Min', and PAN Gang""
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Abstract: Plant height is one of the important factors affecting rice lodging. The semi-dwarf rice varieties possess high level of
lodging resistance, and could reduce yield loss and improve grain quality. Thus, it is very important to study the molecular and
physiological mechanism of dwarf formation in rice. In this study, a stable hereditary dwarf and wider-leaf mutant osdw/l was
obtained from *’Co y-radiated indica restore line Zixuan 1, and its morphological and physiological characteristics, cytological
observation, genetic analysis and gene mapping were investigated. Under field condition, the mutant osdw/! exhibited dwarf and
wider-leaf after the tillering stage due to shorter length of the parenchyma cells, and its panicle length and all internodes length
were significantly shorter compared with wild type plants at mature stage. Paraffin sections and scanning electronic microscopy
(SEM) observation revealed that the number of small vascular (SV) bundles and the distance between SVs increased significantly,
resulting in wider-leaf blade in osdw/l. Moreover, the number of microhairs on the abaxial and adaxial epidermis were also
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increased significantly in osdwli. In addition, starting at the 3—4 leaf seedling stage, yellowing was visible at the upper middle
parts of old leaves in osdwll. Physiological analysis and transmission electron microscopy (TEM) observation indicated that the
lamellar structure of chloroplast was distorted and began to collapse in some mesophyll cells, which led to the reduction of total
chlorophyll contents, net photosynthetic rate and F,/F,, ratio of the second and third leaves from top in osdwl! at the heading stage.
Relative to the wild type plants, the soluble protein content, catalase (CAT) and superoxide dismutase (SOD) activities were sig-
nificantly decreased, which in turn resulting in the accumulation of H,O, and O,", and a steady increase of malondialdehyde
(MDA) contents in the mutant leaves. Genetic analysis and gene mapping showed that osdw/l was controlled by a single recessive
nuclear gene, located in a region of 333 kb between SSR marker RM19297 and the InDel marker ID269-2 on the short arm of
chromosome 6. The results would further facilitate the cloning and functional analysis of OsDWLI gene.

Keywords: rice; osdwll; dwarf and wider-leaf; physiological analysis; gene mapping
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Fig. 1 Phenotypes of osdwll and its wild-type (WT) plants at the different growth stages
A: ; B: ; C: s F , 2~4 ; D: s E: , P
,1~5 ; F:2019 ; G~H: (G) (H) A~F 20
cm, G~H 20um 0.05 0 0.01 (t-test)

A: seedling stage; B: early-flowering stage; C: leaves at the early-flowering stage, and F means flag leaf and 2—4 means 2nd to 4th leaf from
top in order, respectively; D: mature stage; E: panicle and the internodes at the mature stage, P means panicle, 1-4 means the 1st to Sth
internode from top, respectively; F: the length of different internodes at the mature stage in 2019; G—H: longitudinal sections of the 2nd in-
ternode from top in wild-type plants (G) and osdwll (H); Bar = 20 cm in A—F; Bar = 20 um in G-H. Values marked with * and ** indicate
significant differences at P < 0.05 and P < 0.01 by Student’s ¢-test, respectively.
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Table 1 Main agronomic traits of osdwlI and its wild-type plants

2018 2019
Trait
WT osdwll WT osdwll
Plant height (cm) 110.74+2.16 65.90+3.62" 82.91+4.96 58.40+2.38"
Panicle length (cm) 24.35+0.31 14.87+1.26™ 23.07+0.82 15.67+1.25™
Effective panicle number 6.20+1.64 3.60+1.55™ 11.80+3.56 5.20+2.49"
Grain number per panicle 165.96+7.64 97.56+12.67"" 177.72410.51 117.74+21.217
Seed-setting rate (%) 90.92+3.19 55.07+1.97" 79.5743.01 43.57+8.017
1000-grain weight (g) 23.17+1.04 26.91+1.317 22.42+0.67 26.06+1.06"
Yield per plant (g) 19.44+1.34 3.27+0.91" 20.89+2.13 4.76£1.00"

0.01 (t-test) Values marked with ™ indicate significant differences at P < 0.01 by Student’s #-test.
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Fig. 2 Phenotypic characteristics of leaf blade in osdwlI and its wild-type plants
A: ; B: s , LV ; C:
, SV ; D: ; E, F:
(E) (F); G: SV JH, T
H) ) 200 pm 0.05 j Rk 0.01 (t-test)

A: leaf blade width of the osdw/l and its WT plants; B: transverse cross-sections of the flag leaf blade of the osdw// and its WT plants, blue
triangles indicate small vascular bundles (SV), and LV means large vascular bundle; C: number of SVs in the whole flag leaves of osdwll and
its WT plants; D: the distance between the two SVs in the osdwl! and its WT plants; E: adaxial epidermal cell numbers between two SVs;
F: adaxial epidermal cell width; G: SEM analysis of the abaxial and adaxial epidermis of the flag leaf blade in the osdwll and its WT plants,
double arrow means the distance between two SVs; H, I: number of macrohairs and microhairs on the abaxial (H) and adaxial epidermis (I) of
the flag leaf in the osdw/! and its wild-type plants. Bar = 200 pm. Values marked with * and ** indicate significant differences by Student’s

t-test at P < 0.05 and
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Fig. 3 Photosynthetic characteristics and chloroplast ultrastructure of leaves in the osdwil and wild-type plants at the booting stage

A~D: a(A) b (B) ©) alb (D); E~H: (G, H) (E,
F) , nu ; Cl ; og 3 I~T: (I) F.Fn
& L: 328 ;3 * 0.05 ; ¥* 0.01 (t-test)

A-D: Chl a (A), Chl b (B) and total Chl contents (C), and Chl a/b ratio (D) of leaves in osdwll and wild-type plants; E-H: ultrastructure of
chloroplast in osdwll (G, H) and wild-type plants (E, F), nu means nucleus, Cl means chloroplast, og means osmiophilic granule; I, J: Net
photosynthesis rate (I) and F,/F,, ratio (J) of leaves in osdw// and wild-type plants. 1: flag leaves; 2: 2nd leaves from top; 3: 3rd leaves from
top. Values marked with * and ** indicate significant differences by Student’s 7-test at P < 0.05 and P < 0.01, respectively.
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Fig. 4 Accumulation analysis of O, and H,O, contents, and CAT and SOD activities in the osdwlI and its wild-type plants at booting
stage

1: ;28 : 3: * 0.05 ;¥ 0.01 (t-test)

1: flag leaves; 2: 2nd leaves from top; 3: 3rd leaves from top. Values marked with * and ** indicate significant differences by Student’s #-test
at P <0.05 and P <0.01, respectively.
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Fig. 5 MDA and soluble protein contents of osdwll and the wild-type plants at booting stage

1: ;28 : 3: * 0.05 ;o 0.01 (t-test)

1: flag leaves; 2: 2nd leaves from top; 3: 3rd leaves from top. Values marked with * and ** indicate significant differences by Student’s #-test
at P <0.05 and P <0.01, respectively.
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ID269-2 , 333 kb, AP001168 EST ORF 37  (http://rapdb.dna.
AP002838 AP000391  AP000559 BAC( 6), affrc.go.jp/viewer/gbrowse/irgspl/) ( 2)

#2 EMNREAEERINGEERE

Table 2 Gene names and their functional annotations in the target interval

Locus identifier Functional annotation

LOC_0s06g03390 Expressed protein

LOC_0s06g03486.1  Expressed protein

LOC_0Os06g03514.1  Expressed protein

LOC_0s06g03520.1  DUF581 domain containing protein, expressed

LOC_0s06g03530.1  Pentatricopeptide, putative, expressed

LOC _0s06g03540.1  Oligopeptide transporter, putative, expressed

LOC_0s06g03560.1  Oligopeptide transporter, putative, expressed

LOC_0s06g03570.1  Pentatricopeptide, putative, expressed

LOC_0s06g03580.1  Zinc RING finger protein, putative, expressed

LOC_0s06g03600.1  Transcriptional corepressor SEUSS, putative, expressed
LOC_0s06g03610.1  The CrRLK1L-1 subfamily has homology to the CrRLK1L homolog, expressed
LOC _0s06g03640.1 BAG domain containing protein, expressed

LOC_0s06g03660.1  Peroxisomal biogenesis factor 11, putative, expressed
LOC_0s06g03670.1  Dehydration-responsive element-binding protein, putative, expressed
LOC _0s06g03676.1  CAMK includes calcium/calmodulin dependent protein kinases, expressed
LOC_0s06g03682.1  Calcium-dependent protein kinase isoform AK1, putative, expressed
LOC_0s06g03690.1  RNA recognition motif containing protein, putative, expressed

LOC _0s06g03700.1  Oligopeptide transporter, putative, expressed

LOC_0s06g03710.1  DELLA protein SLR1, putative, expressed

LOC_0s06g03720.1  Ribonucleoside-diphosphate reductase small chain, putative, expressed
LOC_0s06g03750.1  Dehydration response related protein, putative, expressed
LOC_0s06g03760.1  LMBRI integral membrane protein, putative, expressed
LOC_0s06g03770.1  ABC transporter, putative, expressed

LOC 0s06g03780.1 NUCI153 domain containing protein, expressed

LOC_0s06g03790.1 39S ribosomal protein L47, mitochondrial precursor, putative, expressed
LOC_0s06g03800.1  Pollen ankyrin, putative, expressed

LOC_0s06g03810.1  Expressed protein

LOC_0s06g03820.1  Expressed protein

LOC_0s06g03830.1  Retinol dehydrogenase, putative, expressed

LOC _0s06g03840.1  Bric-a-Brac, Tramtrack, Broad Complex BTB domain with H family conserved sequence, expressed
LOC_0s06g03850.1  Impaired sucrose induction 1, putative, expressed

LOC_0s06g03860.4  Uncharacterized membrane protein, putative, expressed
LOC_0s06g03890.1  Alpha-L-fucosidase 3 precursor, putative, expressed
LOC_0s06g03910.1  Hydrolase, NUDIX family, domain containing protein, expressed
LOC_0s06g03920.1  Expressed protein

LOC 0s06g03930.1  Cytochrome P450 86A1, putative, expressed

LOC_0s06g03940.1  Spastin, putative, expressed
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Table S1 Molecular markers used for OsDWL1 gene mapping

Marker Forward primer (5'-3") Reverse primer (5'-3")
RM7399 CAGATATGATGTTCTTGCCCTTGC GCTTGCCAGATCACCTACCTACC
RM19288 CGGAGCTGTTGCCGTTCTGC CGATGTGCCATGTCAGGATGACC
RM19297 ATTTGCTCCGCTTCCAAATCACC AGCGGCCAACAGAGACAACTGG
1D269-2 AGGGTGTGTTTAGTTCACGA AAAATTTGTCATGGCTGTTG
RM3805 ACACCACCATCAACGTACCAACC AAGTCGAGAGGAAGAAGCCAAGG

RM19549

CCTGGTACTAACCATGTGATTGAGC

AACGTCAGAGTCTCACCACAAGC




