添加料剂

肉的嫩化与番木瓜蛋白酶

蔡晓雯 韩陆奇 (漳州大学食品系,福建漳州 363000) 江千雍 (漳洲农业学校)

摘 要 本文主要介绍了番木瓜蛋白酶在肉类嫩化中的应用方法。 关键词 肉 嫩化 番木瓜蛋白酶

1 肉的嫩化

肉的人工嫩化的历史,至少要追溯到 500 年前^[1]。当时许多墨西哥印第安人,用巴婆树和香木瓜树上采来的叶子包裹肉,使肉在煮制时可以吸收植物的叶^[2]。从这些植物中提取的嫩化剂,主要是从番木瓜蛋白酶干燥的胶乳,制得商业用酶制剂,通常被称为"番木瓜蛋白酶"(Papain)。

当牲畜屠宰后得到的肉类,在冷库里经过一段时间存放后,可以变得更为柔软幼嫩。这主要是由于肌肉组织本身的组织蛋白酶,对肌肉纤维作用的结果,但是,它对结缔组织的胶原蛋白和弹性蛋白,并无作用。

使用酶制剂嫩化肉类 (尤其是牛肉), 主要采用植物蛋白酶, 其作用见下表^[3]。

表 1 植物蛋白酶对肉类组织的作用

酶制剂种类	肌肉纤维	结 缔 胶原蛋白	组 织 弹性蛋白
无花果蛋白酶	+ + +	+ + +	+ + +
香木瓜蛋白酶	+ +	+	+ +
菠萝蛋白酶	微量	+ + +	+

2 番木瓜蛋白酶

2.1 番木瓜

番木瓜(carica Papaya L.)为热带名果之一,属番木瓜科多年生常绿小乔木。早在十六世纪,番木瓜就普遍存在于美洲热带地区。目前,已广布于巴西、墨西哥等拉丁美洲和非洲国家,以及东南亚和澳大利亚。我国台湾、福建、广东、广西、四川、云南等省,都有栽培^[4]。

番木瓜果肉较甜,鲜食可口,帮助消化,降低 血压,催<mark>乳</mark>剂等,是一种传统清补保健食品。特别 用于乳母催乳,"肾虚"补肾,最为适宜。

番木瓜含有番木瓜蛋白酶(Papain) 番木瓜碱(Carpaine) 凝乳酶(Renin)及各种色素。

2.2 番木瓜蛋白酶

番木瓜蛋白酶与其他蛋白酶相比,热稳定性高。80℃维持 40 分钟,达到活力半衰期。而菠萝蛋白酶在 45℃以上 20 分钟,就显著失活,在 35 – 45℃比较适宜。

适合于肉类嫩化的蛋白酶,应具有较高的耐热性。因为嫩化作用主要发生在当肉类被烧煮,温度逐渐升高,而酶还没有完全失活这个阶段。烧煮的高温,能导致肉类结缔组织中胶原蛋白和弹性蛋白变性。而番木瓜蛋白酶对肉类在 $40 \sim 70 ^{\circ}$ 温度范围内,有最强的活性。在 $60 ^{\circ}$ 以上温度,胶原蛋白开始变性,并变得容易被番木瓜蛋白酶降解。而且,在 $70 ^{\circ}$ 左右断裂最多。所以,在肉类嫩化中,使用最多的蛋白酶是番木瓜蛋白酶。

3 嫩肉粉的制备和使用

3.1 在未成熟的番木瓜青果乳液中,含有丰富的番木瓜蛋白酶。用特制的"竹刀",将挂在番木瓜树上的青果果皮划破,白色乳液即可从青果果皮划破处流出。让白色乳液慢慢滴入清洁的容器里,等容器盛有较多白色乳液时,再将容器放入烘干箱里烘干。注意温度不能升得太快太高,以防破坏蛋白酶的活性。

将烘干的白色块状物,用捣碎机捣成干燥粉末。再加适量赋形剂(如淀粉)稀释。最后装瓶或装塑料袋,经检验合格,装箱包装,即可低温贮存

此种番木瓜蛋白酶粗制品,即"嫩肉粉",还可以作进一步提纯精制。

- 3.2 目前,使用番木瓜蛋白酶嫩化肉类的方法, 主要有三种:
- 一是撒粉或浸泡法。通常将粉末状番木瓜蛋白酶(如嫩肉粉),均匀地撒在肉块上。或者将肉块放在液态番木瓜蛋白酶中,浸泡一段短时间。一般经 10 分钟,即可烹煮。
- 二是宰前注射法。在牲畜屠宰前 $5\sim10$ 分钟,注射番木瓜蛋白酶,通过血管分布全身,在其宰后产生嫩化作用。此法最早在上世纪 60 年代初,由 Swift 公司开发的一种新工艺。这种工艺,在商业上称为 $Proten^{(6)}$ 。
- 三是宰后注射法。即在牲畜屠宰后僵直前,采 用强制多针头注射番木瓜蛋白酶,使酶主要分布在 肌肉部分,集中于肉类的嫩化。
- 3.3 我国将番木瓜蛋白酶作为嫩肉粉,虽然起步较晚,但是进步很快。由广州市园艺植物蛋白食品厂出品的嫩肉粉(Meat Tenderizer):配料为淀粉、番木瓜蛋白酶;用途能使肉类松嫩可口易吸收,提高营养价值,可节省 60% 烹饪时间和燃料;用法为与肉片拌匀后,10分钟左右即可烹饪。每 500克肉用本品(小匙):鸡鸭鹅猪肉 2~4,牛羊狗猪肚鱿鱼 3~5。净重:25克/瓶;保存期:一年。
- 4 酶在肉类嫩化中的前景

伴随着第四次工业革命的到来,在有机领域里,生物工程将起主导作用。将生物工程引入食品工程领域中来,最主要是酶的应用和发酵工程。^{[7][8]}

早期酶制剂多数是从动物脏器里提取的。如用于分解蛋白质、脂肪和淀粉的胰酶,取自动物的胰脏。因为胰脏里含有胰蛋白酶(Trypsin)、胰脂肪酶(Steapsin)和胰淀粉酶(Amylopsin)。

我国不少生物化学制药厂和肉类联合加工企业 的生化制药分厂,已经能够生产用猪胰为原料制成 的多酶片,作为助消化药,而被广为使用。

美国从 1980 年开始大力发展真菌蛋白酶和番木瓜蛋白酶,用它来嫩化肉类。根据政府的统计数据,在 20 世纪 80 年代末,英国牛肉产品大约 2%是用宰前注射番木瓜蛋白酶处理的。而美国,这个比例更高⁽⁹⁾。

最近,美国政府已批准,用蛋白酶嫩化禽肉、 猪肉和牛肉,从而使蛋白酶制剂工业,有了进一步 的发展。

参考文献

- 1 Tucker G A 等著,李雁群等译. 酶在食品工业中的应用(第二版),2002
- 2 Lawrie R A. Meat Science (4th End), 1985
- 3 钟立人主编. 食品科学与工艺原理,1999
- 4 林文权等著. 热带果汁饮料制造,1996
- 5 蔡晓雯等. 番木瓜及其果酱的研究. 福建热带 科技,2000(1)
- 6 Beuk J F. Improvements in or relating to meat products 1962
- 7 高雯,食品酶学原理与分析方法,1991
- 8 钱嘉渊译. 酶的测定方法. 1992
- 9 Maclean D. Beef. 1989

Tenderization of Meat and Carpain Protease

Cai Xiaowen

ABSTRACT The applying method of carpain protease in meat tenderization is introduced.

KEY WORD Meat; Tenderization; Carpain protease

(上接第30页)

The Method of Applying High Pressure Kettle to Produce Low temperature Contracted Sausage Casing

Zhao Junzhe

ABSTRACT The Theory of producing low temperature contracted sausage casing by high – pressure kettle is illustrated, producing method and its advantages are introduced as well.

KEY WORD High pressure kettle; contracted casing products 万方数据