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Abstract

Maintenance is an important technical measure to maintain and restore the performance status of equipment and
ensure the safety of the production process in industrial production, and is an indispensable part of prediction and
health management. However, most of the existing remaining useful life (RUL) prediction methods assume that there
is no maintenance or only perfect maintenance during the whole life cycle; thus, the predicted RUL value of the system
is obviously lower than its actual operating value. The complex environment of the system further increases the difficulty
of maintenance, and its maintenance nodes and maintenance degree are limited by the construction period and working
conditions, which increases the difficulty of RUL prediction. An RUL prediction method for a multi-omponent system
based on the Wiener process considering maintenance is proposed. The performance degradation model of components
is established by a dynamic Bayesian network as the initial model, which solves the uncertainty of insufficient data
problems. Based on the experience of experts, the degree of degradation is divided according to Poisson process sim-
ulation random failure, and different maintenance strategies are used to estimate a variety of condition maintenance
factors. An example of a subsea tree system is given to verify the effectiveness of the proposed method.

Key words: remaining useful life, Wiener process, dynamic Bayesian networks, maintenance, subsea Christmas tree

system

Citation: Wu, Q.B., Cai, B.P., Fan, H.Y., Wang, G.N., Rao, X., Ge, W.F., Shao, X.Y., Liu, Y.H., 2024. Remaining useful life prediction method

for multi-component system considering maintenance: subsea christmas tree system as a case study. China Ocean Eng., 38(2): 198-209, doi:

https://doi.org/10.1007/s13344-024-0017-y

1 Introduction

Recently, the traditional machinery industry has experi-
enced rapid development. In order to effectively improve
production safety and economic benefits, and avoid accident
hazards, the use of machinery industry prognostic and
health management technologies is gradually increasing,
and has been widely studied by many researchers (Li et al.,
2019). Predicting the RUL is an important part of Prognostic
and Health Management (PHM) (Li et al., 2022). It is an
important bridge connecting diagnosis and maintenance,
that can prevent the occurrence of accidents in time and

effectively and avoid the high costs of total failure
(Tamssaouet et al., 2021). Prediction techniques can be clas-
sified in different ways (Hu et al., 2020; Cai et al., 2023).
The most commonly used classification methods are model-
driven methods, data-driven methods and mixed methods
(Lee et al.,, 2014, Liu et al., 2023). The model-driven
method constructs the corresponding physical model based
on the failure mechanism of the system, and explains the
degradation law in detail (Zhai and Ye, 2017). If the degra-
dation mechanism and the factors to influence the system
are fully considered, the prediction result will be accurate
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(Lei et al., 2018; Wu et al., 2018). However, the complexity
of the system makes its degradation mechanism difficult to
explain (Liao and Kottig, 2014). The data-driven approach
is effective for condition monitoring and remaining service
life prediction (Kumar et al., 2019; Cai et al., 2020).

A statistical model, artificial intelligence technology or
similarity analysis technology is used to directly model the
obtained monitoring data and explore the product degradation
law (Li et al., 2016). The prediction method is based on the
analysis of degraded data, and the results are relatively sim-
ple, not universal, and require high data integrity (Lei et al.,
2018; Cai et al., 2022). Li et al. (2020) proposed a prediction
method based on deep learning, which solved the problem
that the first prediction time of the remaining service life
was difficult to determine. The mixed-drive prediction
method combines the above advantages, avoids these disad-
vantages to some extent, and has been widely applied in
recent years (Gou et al., 2020). However, there are still
problems such as the difficult combination of models and
data (Peng et al., 2019; Hanachi et al., 2018). Maintenance
is an important technical means to restore the performance
of equipment in industrial production (Chen et al., 2020).
The degree of repair can generally be divided into perfect
maintenance, imperfect maintenance and minor repair
(Wang et al., 2020). However, most of the existing RUL
prediction methods assume that there is no maintenance or
only perfect maintenance (Han et al., 2021). As a result, the
above methods are difficult to apply to the RUL prediction
of equipment with imperfect maintenance (Mosayebi Omshi
and Grall, 2021; Shahraki et al., 2020). Study the mechanism
of the influence of imperfect maintenance activities on the
state of health of equipment and accurately quantifying the
uncertainty of prediction results are urgent problems (Zhu et
al., 2021). However, most of the related research has
focused on the study of maintenance free behavior interven-
tion, but according to engineering practice, it is difficult to
implement a more unified maintenance operation (Liu et al.,
2022). It is important to establish a reasonable and effective
performance degradation model to accurately evaluate the
health status of multicomponent systems and adjust appro-
priate maintenance factors (Hesabi et al., 2022). Guida and
Pulcini (2009) studied the Weibull process model in depth,
and established a model of a repairable system. In order to
assess the reliability of CNC machine tools under incomplete
maintenance, Li et al. (2021) proposed a method for evalu-
ating the reliability of several CNC machine tools based on
the log-linear proportional strength model. At present, many
complex systems face problems such as long life cycle,
insufficient data collection and individual difference (Hu et
al., 2022). The method of forecasting the RUL while con-
sidering maintenance still needs to be optimized.

This paper presents a novel approach for predicting the
RUL of a multicomponent system while considering main-
tenance activities. The method incorporates several key ele-

ments: the Wiener process is utilized to simulate the initial
degradation state of the system, the Poisson process is
employed to model the failure time and strength of the com-
ponents, and the impact of maintenance events and their
extent are comprehensively considered in RUL prediction.
By addressing the limitations of existing methods that
assume either no maintenance or perfect maintenance
throughout the system’s lifecycle, this approach provides
more accurate RUL estimates that align with the actual
operating conditions of the system.

The remainder of the paper is organized as follows: in
Section 2, an RUL prediction method is proposed; in Section
3, the subsea tree system is studied, and the results are ana-
lyzed and discussed; and Section 4 summarizes the work.

2 Methodology: RUL prediction for a multicomponent
system considering maintenance

An RUL prediction method for a multicomponent system
based on the Wiener process taking maintenance into
account is proposed. The method describes the performance
of the system under different maintenance strategies and
restores the degraded prediction accuracy of the model,
which is proposed using the system component failure time
of Poisson process simulation, a comprehensive variety of
maintenance. The framework of the proposed method based
on the Wiener process is shown in Fig. 1.

First, according to the historical data collected and the
experience of experts, the degradation process is divided
into early, middle and late stages, and the initial performance
degradation model is established by combining the dynamic
Bayesian network (DBN) and the Wiener process. Then, the
failure nodes and failure interval of each component of the
system are studied, which can be obtained from historical
data and simulated Poisson process. Based on the failure of
each component, the maintenance strategy is coordinated,
the maintenance node A(¢) and the maintenance degree g(x)
are formulated, and the maintenance factors P,,, F;, F,, and
F, represent the failure nodes, and 73, 7,, and 7, are
obtained by combining with the physical model and stand
for the failure interval.

Initial maintenance mainly considers two aspects, the
maintenance node and the degree of maintenance. The
appropriate maintenance time is selected according to the
severity of the fault, namely, immediate maintenance, group
maintenance and extreme maintenance. For the components
after a system failure, the maintenance intervention activities
combined with the initial prediction model and preliminary
maintenance model are established in the preliminary main-
tenance prediction model. C; is the parameter that affects the
performance, X; represents the initial performance predic-
tion, P, is the maintenance factor under different mainte-
nance activities, M; represents the influence degree of main-
taining the performance prediction, and X;  represents the
performance degradation forecast for consideration of main-
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Fig. 1. RUL prediction method based on the Wiener process considering maintenance.

tenance. The proposed method includes four steps: modeling
of performance degradation, modeling of preliminary main-
tenance, modeling of prediction taking maintenance into
account and estimation of the RUL.

2.1 Performance degradation modeling

A model consistent with the degradation process of the
whole life cycle of the system is established, which is
divided into three stages according to the experience of
experts, namely, the early test stage, the middle use stage
and the late accelerated wear stage. The failure rate of each
stage together constituted the bathtub curve. System mainte-
nance generally occurs at the early and middle stages, and
the degradation process of each component at different
stages can be obtained through an empirical formula and
historical data from the Wiener process as a continuous time
stochastic process. Describing the random degradation pro-
cess of the system has important significance. Using the
Wiener process to parameterize the estimate of the intercon-
nected historical degradation data, the corresponding shape
parameter and scale parameter are obtained, because the ini-
tial parameter prediction model in the process of the actual
production data in dynamic change, not a fixed value, is
uncertain. The empirical formula of failure data and the esti-
mated parameters obtained by the Wiener process are input
into the DBN system. There is a series and parallel relation-
ship among the components, and the formula for calculating
the reliability of the corresponding relationship is:

k
Reeries (1) = | [ Ri(0); (1)
i=1
k
Rparanel () = 1= [ 11 =R )], @)
i=1

where, R(?) represents the reliability of the system, 7 is the

number of components, and R(¢) represents the reliability of
the i-th component. The overall performance of the system
is obtained by the performance degradation of each compo-
nent and its serial-parallel relationship.

2.2 Maintenance modeling

In actual production, with increasing working time, the
reliability of the system will decrease due to structural
fatigue, wear defects or other reasons. The model under the
assumption of good maintenance assumes that the perfor-
mance can return to the initial time after maintenance,
which is obviously unreasonable and will cause the evaluation
result to be higher than the actual reliability level. Therefore,
in the remaining service life of the system, considering the
prediction of the preliminary maintenance model, it is a rea-
sonable preliminary maintenance process, as shown in
Fig. 2. The preliminary maintenance model is based on
expert experience. Historical data and the Poisson process
are set up first, the fault time and severity of the items con-
stituting the system are determined, and the relevant param-
eters are obtained by calculating the Poisson process. Then,
according to the breakdown state, the corresponding mainte-
nance strategy is formulated to determine the maintenance
time node and degree.

Maintenance factor P,, is related to maintenance node
h(?), maintenance degree g(x), system state before mainte-
nance u, and state monitoring after maintenance v. Relevant
maintenance nodes include three types, 4,(f), h,(f), and h;(f)
respectively representing immediate maintenance (once a
fault is found, maintenance should be taken immediately for
the components), unitized maintenance (unified maintenance
carried out for the components that failed at different time
while the whole system is still on operation), and limit
maintenance (maintenance activities after the system breaks
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Fig. 2. Preliminary maintenance modeling process.

down). The degree of maintenance consists of full service
gi(x), imperfect maintenance g,(x) and minimum mainte-
nance g;(x), and the minimum maintenance means that the
system can only restore to the state when the fault happens
after the maintenance.

Assuming that the time of fault occurrence follows the
Poisson process, i.e., N(f), where t==0 represents the number
of fault events occurring in the time interval (0, 7], then
{N(?), t=0} is called a counting process, and the counting
process {N(f), t==0} obeys the Poisson process with a force
of A. Suppose that {N(¢), t=0} in the time interval (0, 7], ¢,
ty, **, t, is the time series of fault intervals, and follows the
homogeneous Poisson process of intensity 4; then, the math-
ematical expectation and variance are expressed as:

E[N®] =1t 3)

var[N ()] = Jt. 4)
The unbiased estimate of the failure rate A is:

1= NO 5)

The reliability function is expressed as:
R(t)=e™. (6)

During the initial maintenance process, P, can be calcu-
lated as follows:

Py = M(h(1), g(x), u, v), (7)
where, u and v represent the state of the system before and

after maintenance, respectively, which can be obtained
through the initial prediction model and state monitoring.

2.3 RUL prediction modeling considering maintenance
Maintenance-aware RUL prediction modeling is carried
out mainly by maintenance intervention activities based on
performance degradation modeling. The specific modeling
process is shown in Fig. 3. The Wiener process, as a contin-
uous-time stochastic process, is a mathematical model that
can well describe the system performance degradation in the
reliability field. The conditional probability distribution
between nodes in Bayesian networks can not only describe
the deterministic logical relationship among variables, but

Maintenance
intervention
activities

Poisson
process

Wiener
process

Time: t+1

Time: ¢

Fig. 3. Modeling of prediction after initial maintenance.

also describe the probabilistic relation of uncertainty among
variables. The proposed method combines the Wiener process
with the Bayesian network. The use of DBNs for predicting
the RUL is significant due to their capacity to model and
analyze intricate relationships among variables. By employ-
ing DBN, the interdependencies between diverse factors
that impact the lifespan of a system or component can be
captured accurately. These factors encompass environmental
conditions, operational parameters, maintenance activities,
and component characteristics. The network can effectively
represent these relationships and conduct inference to esti-
mate the RUL or predict failure probabilities. Firstly, a pre-
diction model based on the Wiener process is established.
The historical data are analyzed by the EM algorithm, and
the drift coefficient x and the diffusion coefficient o are
obtained iteratively. The physical model of the performance
degradation of the system is established by a Bayesian net-
work. u and o are input to the Bayesian network as interme-
diate nodes.

Nodes with an influence relationship between time
slices are connected by interchip arcs to perform DBN mod-
eling of the initial prediction model. Then, the failure time
and severity are predicted according to the Poisson process,
denoted by F. Combined with the maintenance time #,
maintenance degree g, pre-maintenance state u and post-
maintenance state v, a maintenance model based on the
Bayesian network is established to obtain the mean value
and probability density function of the maintenance factor
P,,. According to the Poisson process, the maintenance factor
P, generated by the maintenance intervention activities was
inserted into the established initial prediction model of the
DBN in the time slice of fault occurrence, and the modeling
of the RUL prediction taking maintenance into account was
complete.

2.4 RUL calculation

The RUL is estimated based on the dynamic perfor-
mance, as shown in Fig. 4. Blue represents the normal per-
formance degradation curve of the system without consider-
ing the maintenance situation, while green represents the
degradation curve of the system with some recovery after
the corresponding maintenance activities are carried out
after the occurrence of the fault. When the performance of
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the system degrades to the threshold, i.e. the system fails,
the time between the prediction point and the failure point is
the RUL of the system. Suppose that 4(¢) describes the per-
formance degradation of the system, and that 4y, is the failure
threshold of the system. More specifically, the RUL can be
defined as:

T =inf{t: A(H) <A |A0) ZAu ). (8)

3 Case study: RUL estimation of a subsea Christmas
tree system

3.1 Key structure and maintenance strategy of subsea

Christmas tree

The subsea Christmas tree can be defined as a combination
of valves and fittings for producing or injecting water to
control the flow of products, chemicals, water or gas into
the well, and is equipped with valves, pipes, joints, etc. The
subsea Christmas tree serves as a valuable case for predicting
the RUL due to the complex interactions and dependencies
among its components. Factors such as wear, corrosion, and
fatigue need to be considered when estimating the RUL of
these components, making it be a challenging task. Fortu-
nately, subsea Christmas trees are typically equipped with
sensors and monitoring equipment that provide real-time
data on parameters such as working status, vibration, tem-
perature, and pressure. Leveraging these real-time monitoring
data allows for the establishment and validation of RUL
prediction models, thereby enhancing the accuracy and reli-
ability of predictions. Furthermore, as various maintenance
plans are implemented throughout the operational period of
subsea Christmas trees, this case exhibits strong adaptability
to the application scenarios of RUL prediction models.
Fig. 5 shows the structure of the subsea Christmas tree sys-
tem. During normal operation, surface-controlled downhole
safety valves continuously transfer oil from the wellhead to
the tank. Production main valve (PMV), production wing
valve (PWYV), production throttle valve, production isolation
valve to keep open state. Two chemical injection valves pre-
cisely control the flow of glycol and inhibitor injection. In
addition, annulus intervention valves,
valves, annulus wing valves (AWVs), and annulus main

annulus exhaust
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Fig. 5. Structure and composition of the subsea tree system.

valves (AMVs) are used to balance pressure in the upper
and lower spaces of the tubing hanger during normal pro-
duction. The tree body mainly contains various production
valves, pipelines and connectors. Valves are classified
according to their functional characteristics, which can be
divided into process isolation valves, practical isolation
valves, check valves, throttle valves and control valves. In
addition, frequent maintenance of the ROV can lead to sig-
nificant maintenance costs due to the environment of subsea
Christmas trees. Therefore, it is necessary for maintenance
plans to integrate individual maintenance activities into sev-
eral groups to share costs and further minimize expected
maintenance costs over the considered scheduling cycle.

Taking the system composed of key structural compo-
nents of the subsea tree as the evaluation object, the RUL
value is calculated in combination with the maintenance sit-
uation, and the proposed method based on the Wiener process
considering maintenance is verified.

3.2 Modeling process

3.2.1 Degradation analysis based on the Wiener process

In order to compensate for the problem of insufficient
data samples, the parameters of the Wiener process are esti-
mated (Cai et al., 2021) after the extension of the exponential
distribution. The reliability calculation is as follows:
R=e™". )

This paper mainly analyzes subsea Christmas tree
pipelines, connectors, process isolation valves, practical iso-
lation valves, check wvalves, throttle valves and control
valves. The failure rate and maintenance time for each com-
ponent are shown in Table 1.

Different components have different degradation rates
due to their different functions. According to the different
failure rates of each component, the performance degradation
trend based on the Wiener process is simulated, and the drift
parameter u and the diffusion coefficient o of the different
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Table 1 Failure rate and maintenance data of each component
Failure rate (107%/h) ) )
Component Farly Middle Late Maintenance time(h)
Process isolation valves 1.04 0.75 2.64 8
Utility isolation valves 5.42 3.25 13.99 3.7
Check valves 391 2.76 10.6 2
Choke valves 9 7.36 24.54 13.6
Control valves 8.94 5.56 10.42 22.9
Connectors 1.33 0.34 1.75 72
Pipelines 1.3 1.59 3.01 19.8
components are obtained. Combining the Wiener process V.= 1-Re , (15)
and the physical performance model, a DBN is constructed 1 + 1
to evaluate the RUL of the subsea Christmas tree system Vi W

without maintenance decision. First, the fatigue model of
the subsea tree system is established, and the physical per-
formance model of the fatigue crack propagation is the Paris
formula, namely:

dD

— =C(AK)M, (10)
dn

where, D represents the crack depth, n is the number of
stress load cycles, AK is the strength factor, C and M are
constant parameters, which are generally determined by
experience.

1
AK:AF(1+%)M aD, (11)

where I is the gamma distribution function, and 4 and & are
the shape parameters and the scale parameters of the
Weibull distribution, respectively.

Then, the crack depth during the n-th stress cycle can be
expressed as:

D(n) ={(Do)1M/2 +(1- M/2)C[/1F(1+

/MM 1/(1-M/2)
M
7) }nM/Zn} , (12)

where, D, is the initial crack depth.

Next, the sand erosion model is established, which can
be represented by the Salama model:
(1-R,) V2d,

S pdpprm
where, E), is the rate of sand erosion, R, is the corrosion
resistance coefficient, V7, is the mixture velocity, d is the

Ep = 13)

size of the sand and gravel, S, is the geometric constant, d,,
is the pipe diameter of the system valve, and p,, is the mixture
density.

Vin = Vi + Vg, (14)

where, V| and V, represent the flow velocities of liquid and
gas flowing through the subsea Christmas tree system
respectively.

Finally, the corrosion model of the subsea tree system is
established, which can be represented by the Shell model:

where, R, is the corrosion protection factor, V. is the corrosion
rate, V, is the reaction rate, and V; is the conversion rate.

1119
log(V}) =4.93 - m +0.58log (ncPy); (16)
VO.S
Vi = 245~ —nepo, (17)
dp

where, T, is the temperature of the liquid flowing through
the tree system, n, is the carbon dioxide fraction in the gas
phase, p, is the operating pressure, V] is the flow rate of the
liquid, and d,, is the diameter of the key component.

In summary, physical models of different influencing
factors are established. Each physical model is integrated as
the current degradation state x; of each key component of
the subsea tree system, and each component is connected in
series and parallel mode to obtain the degradation state X
of the overall performance of the system. The drift parameter
u and diffusion coefficient ¢ are used to update the parame-
ters. The update process is shown in Eq. (18) to establish a
DBN model of the overall performance degradation of the
subsea Christmas tree system, as shown in Fig. 6.

X(t) = Xo +ut +oB(b). (18)

Component 1

Component »

Fig. 6. DBN model of the overall performance degradation of the subsea
tree system.
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3.2.2 Preliminary maintenance analysis based on the Poisson

process

The failure time and strength of each key component of
the subsea Christmas tree system are analyzed by homoge-
neous Poisson process (Gupta and Kumar, 2023), and the
model is based on the failure rate function.

Table 1 presents the failure rate of each component. Let
T\, T, -+, T, be the failure time series. The homogeneous
Poisson process failure time 7; obeys the Gamma distribu-
tion, and the first failure time obeys the exponential distri-
bution; then, the probability density function of the failure
time 1s:

;{nl‘n_l 2
= —¢e " . 1
f@) T © ,1>0 (19)
The probability of failure is:
N
F(t):P{Tn<t}=Ze " (20)
=n
The mathematical expectation of the failure time is:
0 . lntnfl it n
E(Tn)_f0 tfra (01 = [ i e = Q1)

The occurrence time of the k-th failure in the future is:

o0 n+k

Tok = | tfr,. (01 = —

The corresponding failure intensity function w(?) of the
homogeneous Poisson process is shown as follows:

o={e ).

where, =0, and »*=1. The function w() is essentially a
fault intensity function with a monotonically increasing
fault intensity.

The maintenance process is modeled considering the
maintenance time node and the maintenance degree. The
maintenance node is divided into immediate maintenance,
group maintenance and extreme maintenance. The mainte-
nance degree is divided into complete maintenance, incom-
plete maintenance and minimum maintenance. The mainte-
nance node /(¢) is determined according to the failure fre-
quency of each component. The fault intensity { is the basis
for determining the maintenance time node. { determines the
fault and maintenance time interval /;(#)=0 by expert expe-
rience. The fault and maintenance time intervals /4,(¢) and
hs(f) of group maintenance and extreme maintenance are
obtained according to the monitoring state.

(o) 9O=
@) =0, w®)>(

The degree of maintenance g(x) is determined based on
the maintenance node and the current performance degrada-
tion of each component. Suppose that the failure threshold
of each component of the subsea Christmas tree system is X;=

(22)

(23)

h() = (24)
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Thj, and the current system performance degradation is X(?).
When X(¢)< Th/a, the repair operations can achieve a com-
plete repair, ie., to restore as new, g;(x)=1. When Th/
a<X(t)<Th;/b, the maintenance is regarded as incomplete,
and the maintenance degree g,(x) varies with the current
performance degradation and the fault degree. When Th;/
b<Xj(t), the maintenance is minimum, and the maintenance
effect can only return the system to the state at the time of
the fault.

g1 (=1, X;()=<Thj[a
g(x)=1{g2(x), Th;|a < X;(t)<Th;[b
83 (x), X/(t)>Thj/b

(25)

3.2.3 RUL prediction analysis considering maintenance

The RUL prediction for the subsea Christmas tree systems
considering maintenance operations is based on the following
two steps.

X()=Xo()-M(); (26)
Y(t)=1-X(), @7
where, M(¢) represents the amount of performance recovery
generated by maintenance intervention activities, and X()

represents the predicted value of performance degradation
during initial maintenance.

M (1) = PXo (1), (28)
where, P is the maintenance factor, representing the degree
of maintenance activities, and the value range is 0<SP<<1. P=
1 means complete maintenance, i.e., repair to new. 0<P<]
indicates incomplete maintenance. P=0 means minimum
maintenance, repair as old, fix fault only, and system perfor-
mance has not been restored.
u

exp{-[h(N(1-g0]},

vo—Uu

p=_

(29)

where, # and v are the states before and after maintaining
the random degradation index collected by the sensor,
respectively.

3.3 Results and discussions

3.3.1 Performance degradation analysis

The initial prediction model of each key component of
the subsea tree system is established. The failure rates of
different components throughout their lifes are shown in
Fig. 7.

Each component conforms to the three-stage degradation
process. The performance of each component is in a rapid
decline stage, and each component can easily fail. At the
mid-term degradation stage, the failure rate of each compo-
nent is in descending order, i.e., the throttle valve, control
valve, practical isolation valve, check valve, process isolation
valve, pipeline and connector. The failure rates of the
pipeline and process isolation valve are similar, and the
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Fig. 7. Failure efficiency of each component of the subsea Christmas tree
system.

curves basically coincide. At the last stage of degradation,
the failure rates of the throttle valve, practical isolation
valve and check valve increase rapidly.

Based on the failure rate of each component, the insuffi-
cient data are expanded and the degradation process is trans-
formed into a Wiener process. Combined with the fatigue
model, sand erosion model and corrosion model, the perfor-
mance degradation trend of each component at different
degradation stages is obtained, as shown in Fig. 8.

The degradation order of each component performance
in the early and middle stages is throttle valve, control valve,
practical isolation valve, check valve, pipeline, process iso-
lation valve and connector. Compared with the initial failure
rate, the sequence of components remained largely unch-
anged; however, those of the pipeline and process isolation
valves were changed. The process isolation valve plays the
role of fluid isolation, equivalent to a switch with relatively
high safety and reliability requirements. In the subsea tree
system, the valve has a low frequency of use and is in the
normally open state. Thus, its performance degradation is in
a relatively stable state. At the 20th year, its performance is
0.635, higher than those of the other valves in the middle of
degradation. However, due to the long-term exposure of the
subsea pipeline to the complex marine environment with
high temperature and pressure, corrosion occours. Consider-
ing corrosion, fatigue, sand erosion and other factors, the
performance degradation is greater than that of the process
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isolation valve when the failure rate is lower than that of the
valve process isolation.

In terms of the whole degradation cycle, the degradation
of each component is relatively stable at the beginning and
in the middle of the period, and roughly follows a linear or
exponential distribution. The throttle valve performance
degradation is the fastest, falling below 0.5 in the 11th year,
the connector performance degradation is the slowest, and at
the end of the middle degradation its performance remains
above 0.9. In the late stage of degradation, the performance
of each component drops sharply. The fastest decline rate is
for the practical isolation valve, which decreases from 0.658
to 0.147. When the performance degradation exceeds 0.5,
urgent maintenance is needed. The performance degradation
of the other components is at an intermediate level. Fig. 8
shows the overall performance degradation curve of the
subsea tree system. At the beginning of the degradation, the
performance drops sharply to 0.35, far exceeding the failure
threshold and the maintenance threshold. In the 15th year,
the performance is close to 0. Therefore, in the whole cycle
of the system, maintenance is essential, and it is necessary
to consider the distribution of system life according to dif-
ferent maintenance strategies.

3.3.2 Maintenance process analysis

(1) Fault analysis

The Poisson process is used to analyze the failure time
and intensity of each key component. The probability density
function of the failure time is shown in Fig. 9. At the initial
stage of degradation, the probability density function values
of the failure time of each component are obviously differ-
ent, and the order of failure probability from large to small
is the throttle valve, practical isolation valve, check valve,
control valve, pipeline, process isolation valve and connec-
tor. Among them, the highest probability of the throttle
valve is 0.14, while the lowest probability of the connector
is 0.015, and the difference between the two is significant.
The probabilities of the line, process isolation valve, and
connector decrease steadily, and the probability of failure is
almost evenly distributed throughout the life cycle, while
the probability density function of the throttle valve
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Fig. 8. System performance degradation curve without considering maintenance.
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Fig. 9. Probability density function of the failure time.

decreases quickly, and after 15 years, the probability of failure
is lower than that of the connector. Therefore, in practical
engineering, monitoring and management of convection
valve, practical isolation valve, check valve and control
valve should be strengthened to achieve the purpose of early
failure detection and early maintenance.

Due to the complex environment and long operation
cycle of the subsea tree system, there is a lack of arrangement
and analysis of its fault data. In order to facilitate maintenance
prediction, the number and specific time of failures in the
entire life cycle of each component are simulated based on
the probability density function of the failure time and the
Poisson process. The simulation results are shown in Fig. 10.
Moreover, the failure frequencies of the throttle valve, prac-
tical isolation valve and check valve are greater. The throttle
valve fails in the 1st, 3rd, 4th, 6th, 13th and 15th years,
respectively. The practical isolation valve fails in 5.5, 6, 7.4,
8.9, 10.8 and 12.6 years.
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Fig. 10. Simulation diagram of the failure time.

Fig. 11 shows the fault intensity relationships of the
components at different times. It can be seen from Fig. 11
that the fault intensity of each component of the subsea tree
system increases with time. The throttle valve has the lowest
initial failure intensity and the fastest growth tendency. The
failure intensity of the connectors is relatively high and
increases essentially linearly. The intensity of the pipeline
failures is slightly lower than that of the connector failures.
The fault resistance of the process isolation valve is at an
intermediate level at the initial stage, but its growth rate is
slow. After 16 years, the fault resistance becomes the lowest
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nent.

of all components. The practical isolation valve failure
intensity is always in the top three. The overall distribution
of the failure intensity of each component is concentrated.

(2) Maintenance analysis

Based on the fault intensity and fault intensity threshold
of each component in Fig. 12, the maintenance node for
each component after a fault occurs can be determined. { is
the basis for determining the maintenance time node. A,(¢)=
0; the fault and maintenance time intervals /,(7) and /(¢) of
group maintenance and extreme maintenance, respectively,
were obtained according to the actual monitoring state.
Based on expert experience and historical data, the fault
strength threshold {'is set to 0.2. As shown in Fig. 12, below
this threshold strength, the time required for different com-
ponents to take immediate maintenance measures is as fol-
lows: 6.4 years for the process isolation valve, 6.2 years for
the service isolation valve, 7.8 years for the check valve, 8.2
years for the throttle, 7 years for the control valve, 5.2 years
for the connector, and 5.5 years for the pipeline.
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Fig. 12. Maintenance node for each component.

Before the time node where each component needs to
adopt an immediate maintenance strategy, the fault degree
of different components or the same component can be
comprehensively considered to adopt the minimum mainte-
nance and group maintenance strategy. The first group
maintenance concerns only the two failures of the throttle
valve. At the same time, since the throttle valve is repaired
after two failures, its degree of repair will also decrease to a
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certain extent. The second group maintenance involves the
third failure of the throttle valve and the first failure of the
control valve. The third group maintenance involves the
first and second failures of the process isolation valve, the
first and second failures of the practical isolation valve, the
first failure of the check valve and the first similar failure of
the throttle valve. The fourth group repair involves the second
failure of the check valve and the second failure of the control
valve. Different maintenance nodes will also have some
impact on system performance recovery.

Fig. 13 shows the degree of maintenance. The specific
maintenance nodes and the current performance degradation
of each component determine the degree of maintenance.
The higher the maintenance level, the stronger the perfor-
mance recovery. The overall degree of maintenance is the
product of each maintenance degree, and with increasing
maintenance time, the overall degree of maintenance gradu-
ally decreases.
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Fig. 13. Degree of group maintenance for each component.

As it can be seen from Fig. 13, the group maintenance of
the process isolation valve is the third group maintenance,
and the degree of maintenance is 0.85. Indeed, it experienced
two failures, but no maintenance measures were taken. An
increase in the delay time leads to the deterioration of its
ability, which has a certain impact on the degree of repair
recovery. The group maintenance of the practical isolation
valve is the third group maintenance, and the maintenance
degree is 0.89. The maintenance degrees of the third mainte-
nance group and the fourth maintenance group are 1 and 0.9,
respectively. The maintenance degrees of the throttle valve
undergoing the first group maintenance, the second group
maintenance and the third group maintenance are 0.8, 0.95
and 1, respectively, and the overall maintenance degree of
the group maintenance stage is 0.76. The maintenance
degrees of the second group maintenance and the third
group maintenance of the control valve are 1 and 0.95,
respectively.

Fig. 14 shows the degree of immediate maintenance.
The maintenance degrees of the process isolation valves are
0.9 and 0.88, respectively, and the overall maintenance
degree is 0.792. The maintenance degrees of the practical
isolation valves are 0.85, 1, 0.81 and 0.98, respectively. The
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maintenance degree of check valves is 0.71 and 0.689
respectively. The maintenance degrees of the throttle valves
are 0.68 and 0.355, respectively. The degree maintenance of
the control valves are 0.9 and 0.86, respectively. The main-
tenance degrees of the pipelines are 1, 0.9 and 0.883,
respectively, and an overall maintenance degree is 0.7947.
Among them, the throttle valve requires the minimal main-
tenance; other components obtain a certain degree of incom-
plete maintenance.

3.3.3 Performance prediction analysis considering mainte-

nance

The performance degradation of the subsea tree system
was predicted by integrating the initial prediction results,
the maintenance nodes and the degree of maintenance of
each component. Fig. 15 shows the main structural compo-
nents of the subsea tree system considering maintenance
and performance prediction results of the system. At the
beginning, the practical isolation valve degrades rapidly and
remains more intensive; therefore, the performance fluctuates
greatly. The performance degradations of the connector,
pipeline and process isolation valve are low, with relatively
small fluctuations. The control valve has undergone complete
repair, and its performance is restored from 0.754 to 1. In
the middle of the period, most components changed from
group maintenance to immediate maintenance. The prompt
maintenance response has interrupted the tendency of per-
formance deterioration and relieved the deterioration trend
of the components to some extent, causing them to fluctuate
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Fig. 15. Prediction of the component performance during initial mainte-
nance.
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slowly in a small range and extending the remaining life. In
the 20th year , the performance prediction results for each
component are as follows: 0.755 for the connector, 0.638
for the process isolation valve, 0.61 for the pipeline, 0.32
for the check valve, 0.18 for the control valve, 0.16 for the
utility isolation valve, and 0.113 for the throttle valve.

3.3.4 RUL calculation

The failure thresholds for different components and sys-
tems were set based on expert experience and historical data:
0.7 for the process isolation valve, 0.2 for the utility isolation
valve, 0.45 for the check valve, 0.1 for the throttle valve, 0.2
for the control valve, 0.6 for the connector, 0.6 for the
pipeline, and 0.0015 for the subsea tree system. The RUL is
shown in Fig. 16. To sum up, the normal and stable operation
of the system is inseparable from the maintenance support.
The connectors and pipelines show minimal changes in pre-
dicted RUL before and after maintenance. Specifically, both
connectors have an RUL of 20 years before and after main-
tenance, while the pipeline’s RUL is 19.5 years without
maintenance and 20 years with maintenance. Therefore, the
connectors and pipelines are least affected. The preliminary
RUL prediction after the initial maintenance is around 19
years, which is more reliable compared with the 20-year
design life of the subsea trees. The RUL of the process iso-
lation valve is 18.5 years, 19.2 years for the practical isolation
valve, 18.5 years for the check valve, 20 years for the throttle
valve, and 19.75 years for the control valve. The RUL of the
subsea tree system is 15.2 years without maintenance, and
19.1 years with maintenance.
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Fig. 16. RUL for the components and systems with or without mainte-
nance.

4 Conclusions

An RUL prediction method based on the Wiener process
is proposed in this study, which considers the influence of
maintenance nodes and maintenance degree on the predic-
tion. The subsea tree system is used as an example to
demonstrate the structure and function of key components
such as the throttle valves, convenient isolation valves, and
check valves, and the proposed method is verified. The veri-
fication results indicate that both the maintenance time node
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and maintenance degree have an impact on the performance
recovery of the components. Compared with group mainte-
nance, immediate maintenance has a greater effect on the
performance recovery of each component in the system.
Furthermore, the level of maintenance also determines
whether the system can be restored to a like-new condition.
Without maintenance, the RUL of the subsea tree system is
estimated to be 15.2 years, while with maintenance, the
RUL extends to 19.1 years, indicating a significant devia-
tion. By considering the effect of maintenance in the predic-
tion process, the proposed method effectively calculates the
RUL of the subsea tree system, bringing it closer to real-life
scenarios. This finding emphasizes the importance of incor-
porating maintenance process analysis when calculating the
RUL of systems in practical applications.
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