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Third generation semiconductors for piezotronics and piezo-phototronics, such as ZnO and GaN, have
both piezoelectric and semiconducting properties. Piezotronic devices normally exhibit high strain sen-
sitivity because strain-induced piezoelectric charges control or tune the carrier transport at junctions,
contacts and interfaces. The distribution width of piezoelectric charges in a junction is one of important
parameters. Capacitance-voltage (C-V) characteristics can be used to estimate the distribution width of
strain-induced piezoelectric charges. Piezotronic metal–insulator-semiconductor (MIS) has been mod-
elled by analytical solutions and numerical simulations in this paper, which can serve as guidance for
C-V measurements and experimental designs of piezotronic devices.

� 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Wurtzite structure semiconductors, such as ZnO and GaN
exhibiting coupled piezoelectric and semiconducting properties,
have been developed in many novel high performance devices
[1–5]. Polarization of ions in these crystals can be used to tune
or control the charge transport behavior in the nanowire based
devices [6]. Piezotronics is a new emerging field for third genera-
tion semiconductor applications [1,4]. Novel nanodevices includ-
ing nanogenerators [7,8], multifunctional strain-gated logic
nanodevices [9], flexible transistors [10,11], high-performance
piezotronic diodes [12], biomedical sensors [13] and piezopho-
totronic LEDs [13,14] have been demonstrated with excellent
performances.

Based on the fundamental theoretical framework of piezotron-
ics [14–16], analytical solutions and numerical simulations are
presented for better understanding and quantitatively calculating
the carrier transport behavior in the device. Recently, models of
piezotronic p-n junction, metal-semiconductor contact [15] and
heterojunctions [17,18] have been studied based on the principle
of piezotronic effect. Piezotronic effect on novel quantum states
such as topological insulator [19], Rashba spin-orbit interaction
[20] has also been studied based on quantum theory and experi-
ments. Furthermore, piezotronic effect has been used to enhance
the performance of nanodevices such as solar cells [21], the
enhancement of luminescence [22–25]. Piezotronic logic units
based on strain-gated transistors have been demonstrated in Refs.
[26,27].

From fundamental theory of piezotronics [15], the distribution
width of strain-induced piezoelectric charges is an important
parameter. It is an open question to obtain the width from
experiments by semiconductor physics measurement. Here,
capacitance-voltage (C-V) characteristics of the metal-insulator-
semiconductor (MIS) contact has been studied for providing a
method to estimate the distribution width of strain-induced piezo-
electric charges. We provide analytical solutions and conduct the
numerical simulation using the COMSOL software package. For a
typical MIS contact, a thin insulator sits between a metal contact
and semiconductor, as shown in Fig. 1a. Metal serves as the gate,
which controls the carrier transport by an applied gate voltage.
The piezotronic MIS structure is made by a piezoelectric semicon-
ductor material. Fig. 1b and c show a piezotronic nanowire device
under tensile and compressive strain, respectively. Detailed
analysis of the C-V characteristics of the device is presented in
the following sections.
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Fig. 1. (Color online) (a) Schematic of a typical metal–insulator-semiconductor
(MIS) transistor. Piezotronic MIS transistor under tensile (b) and (c) compressive
strain.
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2. Analytical solution for 1D piezotronic MIS structure

Piezotronic theory includes electrostatic equations, current
density equation and continuity equation based on semiconductor
physics [28–31]. Piezoelectric equation is used to describe the
induced charges under applied strain [32]. MIS structure is one
of the most useful modern devices to investigate semiconductor
surfaces. C-V characteristics are important for device operations
[33]. A variety of theories and articles have been put forward on
the MIS characteristics since the model was first presented [34–
36]. An ideal and simplified model is used to study the character-
istics of piezotronic MIS. For convenience, a few assumptions are
made below: the working function differences between the metal
and the semiconductor are neglected; surface states and other
anomalies are not considered in this model; the resistance of the
insulator is infinite, i.e., no current going through the insulator.

The semiconductor part of MIS is designated by a ZnO nanowire
synthesized along the c-axis. The positive piezocharges are created
at the interface of insulator and semiconductor while compressive
strain is applied along the c-axis. As in our previous work, it is
assumed that for nanodevices the piezocharges are distributed at
the insulator and semiconductor interface within a width ofWpiezo.

The ZnO is n type and the distribution of impurity is in box pro-
file with the donor concentration ND. Donors are fully ionized in
the depletion zone; we use the Poisson’s equation to calculate
the electronic potential distribution in the device. The 1D model
of the Poisson’s equation would be degenerated to

�d2wi

dx2
¼ dE

dx
¼ �qðxÞ

es
¼ 1
es
½qNDðxÞ þ qqpiezo�; ð1Þ

where wi is electric potential, qðxÞ is the charge density distribution,
es is the dielectric constant of the semiconductor, E is the electric
field, ND is the donor concentration, qpiezo is the piezocharges den-
sity, WDn is the depletion layer width, and di is the thickness of
the insulator as shown in Fig. 2a. When the charge distribution is
given, the electric field can be integrated using the Poisson’s equa-
tion (Fig. 2b).

EðxÞ ¼
qNDðx�WDnÞ

es þ qqpiezoðx�WpiezoÞ
es ; ð0 6 x 6 WpiezoÞ;

qNDðx�WDnÞ
es ; ðWpiezo 6 x 6 WDnÞ:

8<
: ð2Þ

At the interface x = 0, we can obtain the electric field in the
semiconductor and insulator, respectively. According to the Pois-
son’s equation, relationship of the two electric fields is as follows
Esð0Þes ¼ Eið0Þei ¼ �Q s; ð3Þ
where es and ei are the dielectric constants of the semiconductor
and the insulator respectively, Q s is the total charge in the
semiconductor.

Q s ¼ qðNDWDn þ qpiezoWpiezoÞ: ð4Þ
The potential distribution is shown in Fig. 2b. ws is the surface

potential of the semiconductor,

wðxÞ ¼ � qNDðx�WDnÞ2
2es � qqpiezoðx�WpiezoÞ2

2es ; ð0 6 x 6 WpiezoÞ;
� qNDðx�WDnÞ2

2es
; ðWpiezo 6 x 6 WDnÞ:

8<
: ð5Þ

The surface potential can be calculated as

ws ¼ wð0Þ ¼ � q
2es

NDW
2
Dn þ qpiezoW

2
piezo

� �
: ð6Þ

To calculate the total capacitance, the relation between Q s and
ws should be calculated first. The external voltage is applied on
both the insulator and semiconductor. As there is no charge in
the insulator, the electric field is constant in the insulator.

Va ¼ V i þ ws ¼ Eidi þ ws: ð7Þ
From Eqs. (6) and (7), we can get a quadratic equation of the

depletion layer width WDn.

qND

2es
W2

Dn þ
qNDdi

ei
WDn þ Va þ

qqpiezoWpiezodi

ei
þ qqpiezoW

2
piezo

2es
¼ 0:

ð8Þ
Solving Eq. (8) we can get the depletion layer width

WDn ¼ � esdi

ei
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The capacitance of MIS is equivalent to the total capacitance of
the two capacitances of the insulator and semiconductor con-
nected in series. The insulator is a planar plate capacitor, which
is a constant. In the depletion region, the capacitance is closely
related to the depletion layer width. Classical theory gives the
expression of the capacitance

C ¼ 1
1
Cs
þ 1

Ci

; ð10Þ

where Cs is the semiconductor capacitance, Ci is the insulator
capacitance and C is the total capacitance of the MIS.

The capacitances of insulator and semiconductor can be
obtained by [37]

Ci ¼ ei
di

Cs ¼ es
WDn

: ð11Þ

Additionally, when the strain is applied at the piezoelectric
semiconductor, the piezoelectric charge is [15]

Pz ¼ e33s33 ¼ qqpiezoWpiezo; ð12Þ
where the e33 and s33 are the piezoelectric constant of material and
the applied strain, respectively. The Pz is the strain induced piezo-
electric polarization.

By substituting Eqs. (9), (11) and (12) to Eq. (10), the Eq. (10) is
rewritten by

1
C2 ¼ di

ei

� �2

� 2
es

V
qND

þ e33s33di

qeiND
þ e33s33Wpiezo

2qesND

� �
: ð13Þ



Fig. 2. (Color online) (a) Schematic of a piezotronic ZnO nanowire MIS. (b) Piezoelectric charges and donor charges distribution, electric field distribution, and potential
distribution.
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Moreover, the difference of 1
C2 with and without strain (D 1

C2) can
be given by

D
1

C2 ¼ � e33s33
qesND

2di

ei
þWpiezo

es

� �
: ð14Þ

Solving Eqs. (13) and (14), we can obtain the piezoelectric
charges distribution width

Wpiezo ¼ � qe2sND

e33

d1=C2

ds33
þ 2esdi

ei

 !
: ð15Þ

Therefore, we can use the capacitance to estimate the piezoelec-
tric charges distribution width. Previous works [37] have described
that estimating semiconductor natural parameter by measuring C-
V characteristic is a general method. In Ref. [38], it was also shown
an experimental setup to measure electronic properties of piezo-
tronic devices in different strains. By combining the traditional
experimental method and piezotronic theory, we propose a MIS
model to estimate piezoelectric charges distribution width. In this
device structure, we only need to measure the total capacitance of
MIS structure by the traditional experimental method in different
strains. Finally, we can calculate and estimate the piezoelectric
charges distribution width by the curves (D 1

C2–s33). Piezotronic
and piezo-phototronic devices have promising potential applica-
tions in next-generation flexible electronics, self-powered and
wearable systems [39]. In these devices, strain-induced piezoelec-
tric charges at a contact, junction, or interface can effectively mod-
ulate and control the carrier recombination, generation, and
transport properties [15,40]. Therefore, the estimation method of
piezoelectric charges distribution width can be further applied
for piezotronic and piezo-phototronic devices due to the analogical
modulation mechanism.

For a simple case, Cs and Ci are constants, for example, Ci ¼ ei=di

and Cs ¼ es=WDn, the total capacitance changes with the semicon-
ductor capacitance. To qualitatively analyze the device, the nega-
tive piezocharges are generated at the interface for a tensile
strain. Cs decreases whileWDn increases. Obviously, the MIS capac-
itance C will become smaller. For the compressive strain, C
becomes larger. Capacitance is influenced not only by the sign of
the strain but also by the magnitude of the strain. This is the oper-
ation mechanism of the piezotronic MIS structure.
3. Numerical simulation of piezotronic MIS

The analytical solutions of piezotronic MIS give a qualitative
understanding of the C-V characteristics. Here we numerically
solve the equations and present a model for a better understanding
of the working mechanism of the piezotronic MIS structure. The
model consists of a c-axis n type ZnO nanowire attached to an insu-
lator. According to fundamental theory of piezotronics, the electri-
cal contact between the nanowire and the metal is set to be ideal
Ohmic contact, so the boundary condition of electric potential
and carrier concentration is Dirichlet condition. To be practical,
the doping profile is described as Gaussian distribution. The gen-
eral recombination process using traps in the forbidden band gap
of the semiconductor is called Shockley-Read-Hall recombination.

In the simulation, the ZnO nanowire is n type, the length and
radius are 80 and 10 nm. The background doping concentration
is NDn ¼ 1� 1015 cm�3, the maximum donor doping concentration
is NDn;max ¼ 1� 1017 cm�3. The piezoelectric constant is

e33 ¼1:22C=m2. The intrinsic carrier density is ni ¼1�106 cm�3,
the electrons and holes mobility is ln = lp = 180 cm2/(V s), the car-
rier lifetime is sn = sp = 0.1 ls. The relative dielectric constants of
semiconductor are kr? ¼ 7:77 and krk ¼ 8:91. The relative dielectric

constants of insulator is kri ¼ 4. The thickness of insulator di = 2 nm.
The control constant ch = 4.66 nm, temperature T = 300 K. The
nanowire is along the c-axis, and the piezocharges distribution is
supposed to be box profile at each end of the nanowire. The width
of piezocharges is Wpiezo = 0.25 nm in the model. The voltage is
applied to the metal, and semiconductor is grounded.

Fig. 3a illustrates current-voltage characteristics of piezotronic
devices. The positive strain (tensile strain) inducing negative
piezoelectric charges can raise the barrier height of interface and
the current subsequently decreases. By contrast, the positive
piezoelectric charges at interface lowers the barrier height of inter-
face, therefore current increases. As shown in Fig. 3b, the relative
current density is a function of strain at a fixed voltage. For the
strain range from �0.1% to 1%, the current varies slowly in the
region of positive strains (tensile strains), however increases
rapidly in the region of negative strains (compressive strains).
Fig. 3c shows the capacitance C as a function of applied voltage.
When the strain varies from �0.08% to 0.08%, the results suit per-
fectly with the analytical solution we presented. In the model, for
the tensile strain, the negative piezoelectric charges are generated
at the semiconductor surface, capacitance becomes smaller. For the
compressive strain, the positive piezoelectric charges are gener-
ated at the semiconductor surface, capacitance becomes larger.
Moreover, Fig. 3d demonstrates the theoretical Gauge Factor varies
slowly at positive strain values and changes abruptly at larger neg-
ative strains in the region from �4% to 1%. This shows that the sen-
sitivity of the piezotronic devices can reach over 103 in an
accessibly experimental strain range.



Fig. 3. (Color online) The electric characteristics of an ideal piezotronic device with piezoelectric charges. (a) The current-voltage curves at different strains from �1% to 1%.
(b) Relative current density as a function of strain at different fixed voltages from 0.48 to 0.5 V. (c) Calculated capacitance C as a function of applied voltage at different strains
from �0.08% to 0.08%. (d) Gauge Factor as a function of strain from �4% to 1%.
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Fig. 4a, b shows the charge density Q and capacitance C as a
function of applied strain. Fig. 5a shows the charge density Q as
a function of surface potential ws at different strains. For negative
ws the charge density grows very fast as the surface potential
increases, which is corresponding to the accumulation region.
Based on these curves we calculate the C-V curves, Fig. 5b shows
the charge density Q as a function of applied voltage. The strain
varies from �0.08% to 0.08% the result suits perfectly with the ana-
lytical solution we presented. In the model, for the tensile strain,
the negative piezoelectric charges are generated at the semicon-
ductor surface, capacitance becomes smaller. Fig. 5c and d show
Fig. 4. (Color online) Charge (a) and capacitance (b) with different voltag
electrons and holes concentration in the ZnO nanowire at a fixed
voltage. In the case of negative strain (or compressive strain), pos-
itive charges are accumulated at the surface which will attract
electrons and repel holes. Once a positive strain (or tensile) is
applied, the result will be opposite. At thermal equilibrium the car-
rier concentration is an exponential function of surface potential,
so the charge density changes more intensively with the voltage
as the electron concentration is higher.

In addition, we give the results of C-V curves and carrier concen-
tration distribution at different doping concentrations. The back-
ground doping concentration NDn is set to 1 � 1015 cm�3. The
es across the MIS as the applied strain varies from �0.08% to 0.08%.



Fig. 5. (Color online) The electric characteristic of piezotronic MIS structure under different strains. (a) Calculated surface potential ws and charge Q . (b) Calculated charge Q
and voltage Va . Distribution of electrons (c) and distribution of holes (d) at a fixed voltage of 0.1 V across the MIS for the applied strain varying from �0.08% to 0.08%.

J. Zheng et al. / Science Bulletin 65 (2020) 161–168 165
maximum donor concentration varies from 5 � 1016 to
1 � 1018 cm�3, as shown in Fig. 6. As it can be seen from Eq. (12),
WDn get thinner as ND varies from 5 � 1016 to 1 � 1018 cm�3, thus
the capacitance becomes larger. The curves shown in Fig. 6b illus-
trate that donor concentration has a major influence on the C-V
characteristics. The electrons and holes concentration distributions
are also given in Fig. 6c and d.

Fig. 7a demonstrates D 1
C2 as a function of applied strain at differ-

ent piezoelectric charge distribution widths. The jD 1
C2 j increases

with the raising strain. This shows that the strains have obvious
influence on the total capacitance. In addition, the jD 1

C2 j has more
obvious varieties in a greater Wpiezo at the same strain from the
enlargement part. Fig. 7b and c show D 1

C2 as a function of Wpiezo

at tensile and compressive strains, respectively. The result is con-

sistent with Fig. 7a. Fig. 7d illustrates d1=C2

ds33
as a function of strain

and it is a constant. Moreover, the d1=C2

ds33
has different values in dif-

ferent Wpiezo. Therefore, we can calculate piezoelectric charges dis-
tribution width by measuring total capacitance of devices. Previous
works [15] show performance and the physical control mechanism
of piezotronic devices. Meanwhile, the authors firstly proposed
Wpiezo and investigated the importance of Wpiezo on performance
of piezotronic devices. However, how to estimate Wpiezo is still a
challenging task. In this study, we propose a method by analyzing
C-V characteristic of MIS structure and combining the traditional
measurement method and piezotronic theory to estimate Wpiezo.
Meanwhile, the method is general and mature in estimating semi-
conductor intrinsic parameters [37]. Thus, analyzing C-V charac-
teristic of MIS structure to estimate the value of Wpiezo is a
feasible approach in the experiment.

Optoelectronic devices consisting of metal-insulator-ZnO nano-
wire have been investigated in several previous papers [41,42]. In
addition, ZnO thin film-based MIS structure have also been fully
investigated for electronic devices [43–45]. Besides, the thin insu-
lator layer usually exists between metal and semiconductor in one
end and the other end is only comprised of metal and semiconduc-
tor. Importantly, recent research [46] has demonstrated ZnO thin
film grown along c-axial in the experiment. Therefore, the devices
can also be built by metal-insulator-ZnO thin film along c-axial.
Like above researches, we adopt a typical MIS structure consisting
of metal-insulator-piezoelectric semiconductor as analytic model
in our study. Hence, we can use it to calculate the piezoelectric
charges distribution width.

Moreover, in order to efficiently examine semiconductor intrin-
sic properties of the MIS structure, we adopt a novel approach
based on neural network models. For simplicity, we train and test
our neural network model based on the Q-V curves in Fig. 5b. We
treat these curves as linear functions and find the correlation
between the linear part and the strain value. The intercept of each
linear part is calculated and then used as input value to our neural
network while strain value is used as the target value to train it.
The process to obtain our neural network model is demonstrated
in Fig. 8a. Our neural network is a simple doubly layered feed-
forward neural network using identity activation linear function
with one input unit, one hidden layer consisting of three hidden



Fig. 6. (Color online) The electric characteristic of piezotronic MIS structure at different doping concentrations. (a) Calculated piezotronic MIS Q � ws curves and (b) C-V
curves at different maximum donor doping concentrations (c) holes and (d) electrons distribution at an applied forward voltage of 0.2 V at different maximum donor doping
concentrations.
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units, and one output unit to accommodate the continuous prop-
erty of the strain value [51]. We train our neural network using
back-propagation with mean squared error as loss function [47].
A validation dataset, consisting of 100 data points, is generated
through the calculated linear relation between intercept and strain
value. We use this validation dataset as inputs to the trained neural
network to produce corresponding predictions and test the accu-
racy and validity of our model. As shown in Fig. 8b, our model
starts to exhibit 100% prediction accuracy at around iteration 50
with learning rate of 0.01 on our validation dataset. With this
result, we are confident to say that neural network has promising
potential application for examining intrinsic characteristics of
semiconductors with sufficient efficiency and accuracy.

Among conventional methods of analyzing the simulation
results, the most commonly used ones are still based on curve fit-
ting to approximate the result [48]. These methods, such as the
least-squares method, usually utilize implicit functions (including
both independent and dependent variables) to express their target
variables [48]. Because of the existence of both independent and
dependent variables, complexity of analyzing the simulation result
increases and errors can also be introduced [48]. Additionally, non-
linear fitting algorithms, such as quasi-Newton method, have also
been proposed to extract intrinsic properties of the simulation
result. However, these methods do not guarantee an accurate
result at convergence if the initial value is not carefully chosen
[49]. On the other hand, neural networks do not need to learn with
pre-defined target variable expressions and is capable of learning
any functions [51]. Although learning in neural networks relies
on the optimization of a non-convex function in this task, the local
minimums are actually very close to the global minimumwhen the
neural networks is fully connected (each unit in each layer con-
nects to all units in the next layer) [47]. As a result, even an arbi-
trary initial value can lead to an accurate result in very few
training iterations (only about 40–50 iterations). Moreover, since
there are often extensive experimental data, neural networks can
utilize these data and do not require using experts’ knowledge by
directly classifying based on simulation result [50].
4. Conclusion

We present a numerical model of a piezotronic MIS for analyz-
ing the effect of the piezocharges on its C-V characteristics. Analyt-
ical solutions are given in this work to introduce the mechanism of
the piezotronic MIS. Numerical simulation is also presented to
demonstrate a better understanding of the model. We find that
the total capacitance becomes smaller when negative piezocharges
generated at the interface and becomes larger when positive piezo-
charges are generated. This work can be utilized as guidance for
future device design and implementation.
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Fig. 7. (Color online) Relation of capacitance and piezoelectric charges distribution width. (a) Calculated D 1
C2 as a function of strain at different piezoelectric charges

distribution width. (b, c) D 1
C2 as a relation of piezoelectric charges distribution width at tensile and compressive strain, respectively. (d) d 1

C2 =ds33 as a function of strain at
different piezoelectric charges distribution width.

Fig. 8. (Color online) (a) Procedure of our experiment consists of training process and inference process after obtaining trained neural network. (b) Accuracy on validation set
as a function of number of training process iteration. The presented result is achieved using 100 iterations and 0.01 learning rate.
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