植物学报 Chinese Bulletin of Botany 2023, **58** (2): 241–247, www.chinbullbotany.com doi: 10.11983/CBB22173

特邀综述。

饲草种质资源研究现状、存在问题与发展建议

林克剑1+*, 刘志鹏2+, 罗栋2, 武自念1

¹中国农业科学院草原研究所,农业农村部牧草资源与利用重点实验室,呼和浩特 010010 ²兰州大学草地农业科技学院,草种创新与草地农业生态系统全国重点实验室,兰州 730020

摘要 饲草种质资源是国家基础性和战略性资源,事关草种业振兴全局,是现代农牧业发展和生态保护修复的基础。该文综述了全球饲草种质资源的种类、分布、特征以及保存状况,分析了目前存在的问题并提出建议,旨在更好地保护和利用我国饲草种质资源。

关键词 饲草, 种质资源, 现状, 问题, 建议

林克剑, 刘志鹏, 罗栋, 武自念 (2023). 饲草种质资源研究现状、存在问题与发展建议. 植物学报 58, 241-247.

饲草种质资源是全球生物多样性的重要组成部 分, 也是草类植物育种和草种业发展的物质基础, 属 于国家战略性资源(陈志宏等, 2018)。加强饲草种质 资源的保护和利用, 对缓解饲料资源短缺、确保粮食 及畜产品稳定供给、促进草牧业绿色发展、满足生态 修复和加快农业结构调整等均具有十分重要的作用 (金京波等, 2021)。中央文件曾多次明确提出:要加强 农业种质资源的保护和利用,对育种基础性研究及重 点育种项目给予长期稳定的支持。饲草种质资源与农 作物种质资源同样重要, 在我国粮食安全、畜产品供 给稳定和生态环境良好等方面不可或缺(草种研究动 态报告(2022), https://www.163.com/dy/article/H48T4-GTS05268MTU.html)。近年来, 国家科技部、农业农 村部、国家林业和草原局及草牧业重要发展省区等相 继布局并加大了对草类植物种质资源研究的力度。相 关科研人员需抓住现有机遇, 在国家相关政策支持 下, 加快推进饲草种质资源的发掘与利用, 助力我国 尽快从草种质资源大国到草种业强国转变。

本文综述了全球饲草种质资源的种类、分布和特征,及全球饲草种质资源的保存状况,分析了目前存在的问题,并提出合理建议,旨在更好地保护和利用我国饲草种质资源。

1 世界与中国饲草资源的种类、分布及 特征

1.1 饲草种类

饲草(forage, grass)又称牧草,但与牧草在定义上仍有区别。牧草指供饲养牲畜使用的草或其它草本植物,以禾本科、豆科及其它草本植物为主,还包含可供饲用的半灌木、灌木以及小乔木(Hanson and Ellis,2020)。饲草是茎叶可作为食草动物饲料的草本植物,多指牧草中栽培型为主的饲用植物,也包括农作物秸秆(如全株玉米(Zea mays)以及饲用高粱(Sorghum bicolor))(任继周,2015;张亮等,2018)。虽然目前全球的饲草种类尚无明确的数据记录,但据报道全球豆科和禾本科植物分别超过2000种和10000种,这些草本植物均是全球饲草的重要来源(Gepts et al.,2005; Trytsman et al.,2020)。在全球多种多样的生态环境中,分布着高度丰富且特性各异的饲草资源。

由于草原自然条件复杂多样,在我国形成了丰富的饲草遗传资源。目前,饲用植物已涵盖5门246科1545属,共计6704种(南志标等,2016;刘志鹏等,2021)。其中,豆科和禾本科的种类最丰富,优良饲草种类最多,利用价值最高,占比分别约为28%以及

收稿日期: 2022-07-29; 接受日期: 2023-03-13

基金项目:中央级公益性科研院所基本科研业务费专项(No.Y2023PT02)、内蒙古自治区"科技兴蒙"行动重点专项(No.2020-科技兴蒙-草种业技术创新中心-1)和内蒙古自治区科技重大专项(No.2021ZD0031)

[†] 共同第一作者

^{*} 通讯作者。E-mail: linkejian@caas.cn

20%。在1 231种豆科饲草中, 优等和良等饲草各有90和234种; 在1 127种禾本科饲草中, 优等和良等饲草各有157和404种(陈志宏等, 2018)。此外,《中国饲用植物》一书共收录了104科、657属、3 680种饲用植物,包括禾本科、豆科、莎草科、菊科和藜科等(陈默君和贾慎修, 2002)。

1.2 起源与分布

世界饲草种植总面积为4.5×109 hm2,约占陆地面积 的24%, 是全球最大和最重要的自然生态系统之一 (黄艳娥, 2014)。美国学者J.R. Harlan将饲草的起源 划分为4个中心: (1) 欧洲中心, 以耐寒的旱生禾草为 主,如黑麦草(Lolium perenne)和燕麦(Avena sativa); (2) 地中海盆地和近东中心(冬霜地带), 代表性 饲草有羽扇豆(Lupinus micranthus)和野豌豆(Vicia sepium)等一年生豆科饲草以及紫花苜蓿(Medicago sativa)和草木樨(Melilotus officinalis)等多年生或越 年生饲草; (3) 非洲萨瓦纳中心(热带干草原), 以高大 禾草为主, 有大黍(Panicum maximum)以及象草(Pennisetum purpureum)等; (4) 热带美洲中心, 以热带 豆科饲草为主,包括落花生(Arachis hypogaea)、菜 豆属(Phaseolus spp.)以及饲用玉米等(刘铁梅和张 英俊, 2012)。世界饲草分布总体上以野生原种产地为 轴心向周围辐射, 遍布非洲、大洋洲、欧亚和美洲大 陆。

我国是饲草资源大国,拥有草原面积约4×108 hm², 占我国陆地总面积的41.7%, 是耕地的3.2倍, 养活近1亿人口(徐柱等, 2000; 刘杨等, 2015)。我国 饲草以本土野生种质为本源,引入了世界4个中心的 多种优质饲草, 如紫花苜蓿(谢华玲等, 2021)和饲用 玉米, 经过人们的长期驯化, 形成了我国特色饲草种 质。目前, 我国饲草种质资源主要分布于新疆、内蒙 古、西藏、甘肃、山西、陕西和整个西南地区(杨青 川和王堃, 2002; 徐丽君等, 2017)。一些优良栽培饲 草遍布北方温带、青藏高原高寒和南方次生饲草地区 (师文贵等, 2005)。此外, 依据气候-植被和植被-饲草 关系, 我国饲草分布区域可分为6个系统区, 分别为 冷湿饲草、温湿饲草、暖湿饲草、草原饲草、荒漠饲 草和寒旱饲草气候系统区(周道玮等, 2020)。其中,冷 湿饲草气候系统区生态适应的饲草作物起源于寒冷 区, 多为C3植物, 生长最适温度为20-25°C, 以多花 黑麦草(L. multiflorum)和沙打旺(Astragalus adsurgens)等冷季饲草为主。温湿饲草气候系统区多开垦为农田,多数暖季以及冷季饲草作物可在此区种植,如饲用玉米。暖湿饲草气候系统区生态适应的饲草作物起源于热带地区,以C4植物为主,生长最适温度为25-30°C,主要有柳枝稷(Panicum virgatum)和狗牙根(Cynodon dactylon)等。荒漠饲草、草原饲草和寒旱饲草气候系统区的降水量均小于320 mm,因此水分为这3个气候系统区饲草生长的制约因子。这些区域自然生态适应的饲草有羊草(Leymus chinensis)、羊茅(Festuca ovina)、花苜蓿(M. ruthenica)和沙打旺等。科学的饲草区划分为草地改良、人工草地建设及饲草作物引种奠定了基础。

1.3 特征

饲草种质资源研究以广泛搜集、精细鉴定、妥善保存、深入研究、积极创新和充分利用为主要内容(Hand et al., 2012)。国外畜牧业发达国家,如美国、俄罗斯、澳大利亚和新西兰,均十分重视牧草种质资源的搜集、保存及利用研究。多年来,在国家科技基础平台建设等项目的支持下,我国饲草种质资源在保护体系构建、收集保存、鉴定评价、种质创新和共享利用等方面取得了显著成效(南志标等, 2022)。

在Web of Science核心文库(https://www.webofscience.com/wos/alldb/basic-search)搜索 "Topic" 包含 "Forage/herbage/grasses germplasm" 的文 章, 共查阅到1990-2021年饲草种质相关文献3 523 篇。文章数量排名前五的国家分别是美国(1527)、中 国(346)、印度(299)、澳大利亚(262)和巴西(205)(图 1)。2005年以前, 我国在饲草种质资源研究领域发表 文章很少, 几近空白, 但2013年以后, 我国年度发文 量快速增长,一举超过澳大利亚、印度和巴西,与美 国持平。由此可见, 虽然我国饲草种质资源的基础研 究起步较晚, 但发展非常迅速。根据研究内容, 全球 饲草种质资源的主要研究趋势可归为3类。(1) 饲草种 质资源普查、收集和保护, 发文量占查阅文献量的 24.75%。随着全球饲草种质普查、收集和保护力度 的加大, 饲草种质资源库的广泛建立及饲草种质信息 的全面共享, 收集和鉴定饲草种质资源数量不断增 加, 为饲草种质创新和育种奠定了基础。(2) 饲草种 质资源评价,发文量占查阅文献量的40.33%。饲草种

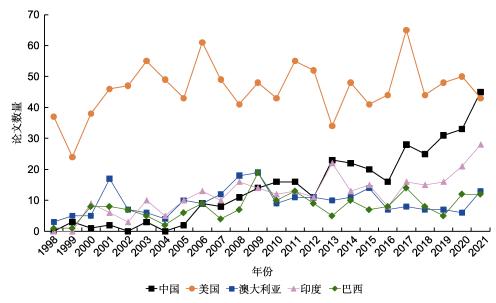


图1 1990-2021年中国、美国、澳大利亚、印度和巴西科学家发表的饲草种质文章数量比较

Figure 1 Comparison of the number of papers on forage germplasm published in China, the United States of America, Australia, India, and Brazil from 1990 to 2021

质遗传背景复杂,结合表型、核型及遗传对饲草种质 资源进行多样性分析, 找出它们的起源、进化和群体 遗传结构特征是目前的研究热点。(3) 筛选和培育育 种新材料,发文量占查阅文献量的34.92%。饲草种质 资源常含有农作物本身未有的多种优良农艺性状(如 抗逆、抗病虫、抗毒害、高产和优质)。评价和深入 挖掘、筛选控制优良性状的基因,结合传统和分子育 种技术, 培育高产多抗的育种新材料是目前的研究 重点。

世界与中国种质资源库 2

2.1 世界种质资源库

世界各国均十分重视种质资源的收集和保存, 自 1958年美国建立了第一个现代化的设施保存库后, 世界多个国家相继建立了本国的植物种质资源保存 体系。根据联合国粮农组织(Food and Agriculture Organization, FAO)报告, 目前全世界有1 750个种 质库, 保存各类种质资源共计740多万份, 其中种子 约占90%, 低温库保存580万份以上。南澳大利亚研 究与发展研究所(The South Australian Research and Development Institute, SARDI)的澳大利亚牧草 基因库(Australian Pastures Genebank, APG)整合

了澳大利亚三叶草和苜蓿等8个不同牧草基因库, 保 存了来自178个国家的2 619种84 800份不同温带和 热带牧草遗传资源, 是目前世界上保存饲草种质资源 数量最多的专业牧草基因库(https://www.genesyspgr.org/a)。美国国家种质资源中心(national plant germplasm system, NPGS)保存着约7万份饲草种质 资源, 其中苜蓿属、三叶草属(Trifolium)、披碱草属 (Elymus)和黑麦草属(Lolium)等主要饲草种质材料超 过1.5万份(https://npgsweb.ars-grin.gov) (陈志宏等, 2018)。新西兰牧草基因库保存约3万份饲草遗传资 源,以三叶草和黑麦草为主(李晨,2021)。俄罗斯瓦维 洛夫植物研究所搜集并保存了以禾本科和豆科为主 的400余种约2.9万份饲草种质资源, 其中包括苜蓿 属5种3 402份, 百脉根属(Lotus) 55种7 000余份和红 豆草属(Onobrychis) 53种2 000余份(Loskutov, 2020)。 英国皇家植物园——邱园(The Royal Botanic Gardens, Kew)收集并保存了700万份植物标本,囊括了 地球上近98%的属, 其中35万份是模式标本, 收集了 约5万种植物,约占已知植物的1/8,其中饲用植物87 科 414 属 1 023 种 26 687 份 (https://www.rbge.org. uk/)。国际家畜研究所(International Livestock Research Institute, ILRI)收藏饲草遗传资源1.9万份, 其 中大部分是从非洲各地采集的野生草遗传资源,一部

分是与世界各国资源机构交换来的种质资源材料 (http://genebank.ilri.org) (李晨, 2021)。日本国立农业生物资源研究所保存日本牧草和饲料作物资源1.2 万份(李晨, 2021) (表1)。

2.2 中国饲草种质资源库

我国于20世纪50年代开始饲草种质资源的收集与保 存工作。1997年建成的"全国畜牧总站畜禽牧草遗传 资源保存利用中心"是全国牧草保种体系的中心库 (陈志宏等, 2018); 2021年3月, 该中心库经过整合, 形成1个中心库、2个备份库、1个离体库和11个资源 圃的草种质资源保存利用体系, 11个技术协作组的草 种质资源保护工作协作体系; 到2021年底, 统一编目 和入库保存草种质资源6.20万余份(对十三届全国人 大四次会议7953号建议的答复摘要, https://www.moa.gov.cn/xw/bmdt/202108/t20210830_6375179. htm. 2021-08-30.), 保存数量位列世界第3 (表1)。其 中,全国畜牧总站草资源中心库入库保存草种质资源 4.3万余份,中国农业科学院草原研究所的国家种质 牧草中期库保存草种质资源2.0万余份;中国热带农 业科学院热带作物品种资源研究所热带基因库保存 热带草遗传材料1.0万余份。内蒙古蒙草生态环境(集 团)股份有限公司收集保存乡土草种质7 167份。

中国农业科学院草原研究所国家种质牧草中期 库建于1989年,是国家农作物种质资源保存体系的 重要组成部分,且是我国建立最早、科研人员配备最 全、学科体系最完善、附属设施最完备和实力最雄厚 的草种质资源保存专业库,对我国饲草种质资源保存及相关研究起着举足轻重的作用,决定着我国未来饲草种质保存的研究方向。2019年4月,农业农村部批复了中国农业科学院草原研究所国家牧草种质资源中期库建设项目的可行性研究报告,该项目的实施,进一步完善了国家牧草种质资源中期库的各项基础配套设施,目前保存牧草种质资源达20万份以上(其中常规库(2-4°C) 10万份,低温库(-18°C) 10万份),最大限度地对我国珍稀、濒危、特有资源及优良牧草和农作物野生近缘种进行了安全保存,并积极引进国外优异资源,扩大保存资源的物种多样性,从而使饲草基因库保存能力得到明显提升。逐步形成重点收集、重点保存、系统评价并积极创新的研究体系,可满足今后20年全国饲草育种、基础研究、产业化发展与国际竞争力提升等方面的重大需求。

3 存在问题

据统计,全球有21%的植物物种濒临灭绝(张家伟,2016),我国动植物受威胁程度高于世界5个百分点。 天然草地是饲草种质资源的重要载体,全球气候变化导致天然草地退化、沙化和盐碱化,使饲草资源分布区缩小、种群衰退、种类结构变化、毒害草分布面积扩大和珍稀濒危资源种类减少,进而影响饲草种质资源的多样性。草原过度放牧、城镇化、开矿和开垦等人类活动改变了饲草种质资源的特征和分布。我国是饲草资源大国,但与国外相比在种质资源数量、质量

表1 世界草遗传资源主要保存机构及主要特点

Table 1 The institutions of forage germplasm conservation in the world and their characteristics

	<u> </u>	•		
国家/地区	保存机构	保存数量(万份)	主要特色	网址
澳大利亚	牧草基因库	8.48	一年生和多年生苜蓿, 三叶草等	https://www.genesys-pgr.org/a
美国	国家种质资源中心	7.00	苜蓿属、三叶草属、披碱草属和黑麦草属	https://npgsweb.ars-grin.gov
中国	全国草种质资源保存利用体系	6.20	饲草和饲料作物	/
新西兰	新西兰牧草遗传资源中心	3.00	三叶草属和黑麦草属	1
俄罗斯	瓦维洛夫植物研究所		以豆科(苜蓿属、三叶草属、百脉根属、草 木樨属和红豆草属等)和禾本科为主	<u>'</u>
英国	皇家植物园——邱园	2.67	饲草和饲料作物	https://www.rbge.org.uk/
国际组织	国际家畜研究所资源中心	1.90	非洲热带饲草种质资源	http://genebank.ilri.org
日本	国立农业生物资源研究所	1.20	饲草和饲料作物	/

各可查询数据库的饲草种质资源数据截至2022年8月1日,无可查询数据库的饲草种质资源数据来源于参考文献。

The forage germplasm resources data of each database can be queried as of August 1st, 2022, and the forage germplasm resources data without database query are derived from references.

和保存方式上存在差距,保存的资源以国内种质为 主, 且鉴定评价不够精准, 技术创新效果不显著, 有 限的种质资源无法支撑我国社会发展的需要。

3.1 饲草种质资源本底不清,草种质资源保存代 表性不足

20世纪80年代我国完成了第1次草原普查,目前距离 最近的1次全国性饲草遗传资源普查已有30年,新 种、新入侵种及珍稀濒危资源本底不清。此外, 我国 饲草种质资源保存以禾本科和豆科为主, 其它科较 少,有些重要饲草的保存代表性不足。分析国家牧草 种质中期库保存的资源, 发现分类上容易识别和容易 到达地域的草种收集份数多, 分类上较难鉴定和难以 到达区域的草种收集少,造成收集及保护草的种类和 来源地域高度重复,存在同质化保存,份数多而遗传 背景相对狭窄。

3.2 饲草种质资源背景信息缺乏, 共享利用效率低

虽然我国在保护饲草种质资源方面取得了显著成效, 但还存在种质资源保护力度不够和利用不充分等问 题。受早期技术和设备限制,草种质资源的来源、地 域分布、经纬度、海拔和生境等背景信息不全。目前 暂无集数据汇通、种业服务和科技服务于一体的国家 草种资源大数据信息平台,且饲草种质资源技术支 撑体系、标准体系和种质资源信息共享平台缺乏,致 使共享利用效率低, 难以支撑草遗传资源相关产业 的发展。

3.3 饲草种质资源精准鉴定缺乏, 优异基因资源 发掘利用滞后

长期以来, 由于资金和相关人才不足, 饲草资源精准 鉴定基地和规模化基因发掘平台缺乏, 饲草种质资源 研究仅停留在收集阶段, 其评价主要集中于植物学特 征、生态生物学特性和主要农艺性状方面。据统计, 我 国仅有30%的库存饲草资源开展了农艺性状评价, 16%的资源开展了部分抗性鉴定评价,不足2%的资 源开展了遗传评价, 且饲草资源评价不够系统深入, 资源遗传背景不清。从分子水平上深入研究重点优良 饲草优异遗传特性,及利用现代生物技术和转基因技 术有目的地创制新种质的研究工作更少。

饲草资源发掘利用策略与建议

上述问题严重影响了我国饲草业的高质量发展, 必须 尽快补足短板。建议从以下3个方面着手,不断夯实 我国饲草业发展的基础,推进饲草业健康发展。

4.1 加快启动规模大且覆盖面广的饲草种质资源 普查

饲草种质资源是筛选和培育优良草类新品种的基本 材料和基因源(Williams et al., 2007)。亟须启动规模 大且覆盖面广的全国饲草种质资源本底普查, 查清我 国重点属种分布区域、地理位置和生境条件(云锦凤, 2015)。珍稀濒危饲用植物也是优异的饲草基因资源, 定期做好濒危饲草种质资源生长和分布情况的调查

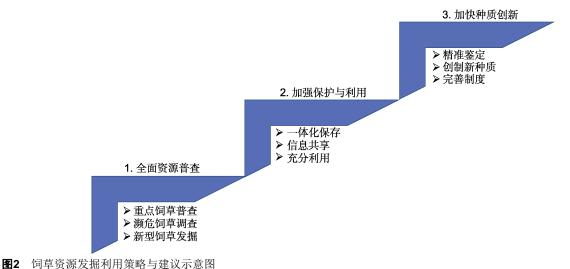


Figure 2 Schematic diagram of strategies and suggestions for the exploration and utilization of forage resources

及抢救保护工作也极为重要。此外,在资源普查过程中,发掘新的饲草资源,做好身份认证和信息记录,可丰富和补充我国饲草种质资源库(图2)。

4.2 加强饲草种质资源保护与利用

Priyanka等(2021)认为,在保护方面需协调多方力量,不断加大草种质资源收集与保存力度,构建饲草种质资源库、资源圃及原生境保护为一体的完整保存体系。随着全球饲草种质资源库的广泛建立,优化饲草资源信息管理系统,提升共享利用水平,制定科学统一的饲草种质资源评价体系不可或缺(Smith et al., 2021)。此外,需加强优良草种特别是优质乡土草种选育、扩繁、贮藏和推广利用,不断提高草种的自给率,以满足国家战略需求(如饲料粮供应、优良饲草选育和生态环境修复)(图2)。

4.3 精准鉴定和创制饲草新种质

利用表型和基因型关联分析等方法,开展重要草种的精准鉴定,深度分析优质草种的遗传多样性、生物量和抗性等重要特性(王浩等,2020)。搭建饲草育种研发平台,布局饲草育种实验室,推动科研单位、政府部门和饲草种子企业建立"产学研"深度合作,利用基因编辑和合成生物学等手段,研发创制具有高产、优质、抗病虫和抗逆等特性的突破性草种。此外,我国尚缺少饲草种子认证体系,健全饲草新种研发、生产和销售等各环节相关管理制度,完善饲草新种审定体系,以加速推动国产饲草品种进入国际市场(图2)。

参考文献

- **陈默君, 贾慎修** (2002). 中国饲用植物. 北京: 中国农业出版社. pp. 634-635.
- **陈志宏,李新一,洪军** (2018). 我国草种质资源的保护现状、存在问题及建议. 草业科学 **35**, 186–191.
- **黄艳娥** (2014). 草原生态系统的特点与现状. 养殖技术顾问 (1), 201.
- **金京波,王台,程佑发,王雷,张景昱,景海春,种康** (2021). 我国牧草育种现状与展望. 中国科学院院刊 **36**,660-665.
- **李晨** (2021). 打造一个现代化的国家牧草种质库. 中国科学报. 2021-12-14.
- **刘铁梅, 张英俊** (2012). 饲草生产. 北京: 科学出版社. pp. 17–18.

- **刘杨,张永亮,王子富,王殿江,白莫德格,苑秀莲,陈杰** (2015). 中国牧草种质资源遗传多样性研究进展. 内蒙古民族大学学报(自然科学版) **30**, 136–139.
- 刘志鹏,周强,刘文献,张吉宇,谢文刚,方龙发,王彦荣,南志标 (2021). 中国牧草育种中的若干科学问题. 草业学报 **30**(12), 184–193.
- 南志标,王锁民,王彦荣,傅华,李春杰,段廷玉 (2016). 我国北方草地6种乡土植物抗逆机理与应用. 科学通报 **61**, 239–249.
- 南志标, 王彦荣, 贺金生, 胡小文, 刘志鹏, 李春杰, 聂斌, 夏超 (2022). 我国草种业的成就、挑战与展望. 草业学报 **31**(6), 1–10.
- **任继周** (2015). 几个专业词汇的界定,浅析及其相关说明. 草业学报 **24**(6), 1-4.
- **师文贵,李志勇,李鸿雁,李临杭,宁布** (2005). 牧草种质资源描述规范及数据标准化进展. 中国草地 **27**(4), 69–73.
- 王浩,张迎超,于晓东,刘忠岩,王冰,周春雨,王志锋 (2020). 苜蓿种质资源鉴定与评价的内容与方法. 江西畜牧兽医杂志 (1), 32-36.
- **谢华玲,杨艳萍,董瑜,王台** (2021). 苜蓿国际发展态势分析. 植物学报 **56**,740-750.
- 徐丽君,徐大伟,逢焕成,辛晓平,金东艳,唐雪娟,郭明英 (2017). 中国苜蓿属植物适宜性区划. 草业科学 **34**, 2347— 2358.
- **徐柱,王照兰,肖海俊** (2000). 中国牧草种质资源研究利用 及牧草种子生产. 中国草地 (1),73-76.
- **杨青川, 王堃** (2002). 牧草的生产与利用. 北京: 化学工业出版社. pp. 38–59.
- **云锦凤** (2015). 抓住机遇, 更新理念, 加快草品种育种进程. 草原与草业 **27**, 1-2.
- **张家伟** (2016). 全球约21%植物物种濒临灭绝. 绿色视野 **6**, 70
- **张亮,张红香,周道玮** (2018). 中国与国外饲草育种研究现状分析. 土壤与作物 **7**, 324–330.
- 周道玮, 王婷, 王智颖, 李强, 黄迎新 (2020). 中国草地农业 气候分区及其饲草栽培适宜性. 地理科学 **40**, 1731–1741.
- Gepts P, Beavis WD, Brummer EC, Shoemaker RC, Stalker HT, Weeden NE, Young ND (2005). Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137, 1228– 1235.
- Hand ML, Cogan NOI, Forster JW (2012). Molecular characterisation and interpretation of genetic diversity within globally distributed germplasm collections of tall fes-

- cue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis Huds.). Theor Appl Genet 124, 1127-1137.
- Hanson J, Ellis RH (2020). Progress and challenges in ex situ conservation of forage germplasm: grasses, herbaceous legumes and fodder trees. Plants 9, 446.
- Loskutov IG (2020). Vavilov Institute (VIR): historical aspects of international cooperation for plant genetic resources. Genet Resour Crop Evol 67, 2237-2253.
- Priyanka V, Kumar R, Dhaliwal I, Kaushik P (2021). Germplasm conservation: instrumental in agricultural biodiversity—a review. Sustainability 13, 6743.
- Smith RW, Harris CA, Cox K, McClements D, Clark SG, Hossain Z, Humphries AW (2021). A history of Australian pasture genetic resource collections. Crop Pasture Sci 72, 591-612.
- Trytsman M, Müller FL, van Wyk AE (2020). Diversity of grasses (Poaceae) in southern Africa, with emphasis on the conservation of pasture genetic resources. Genet Resour Crop Evol 67, 875-894.
- Williams WM, Easton HS, Jones CS (2007). Future options and targets for pasture plant breeding in New Zealand. New Zealand J Agric Res 50, 223-248.

The Current Status, Problems and Suggestions for the Research on Forage Germplasm Resources

Kejian Lin^{1†*}, Zhipeng Liu^{2†}, Dong Luo², Zinian Wu¹

¹Key Laboratory of Forage Resources and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; 2State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China

Abstract Forage germplasm resources are national strategic and basic resources, which concern the overall revitalization of the forage seed industry, the basic support for the development of modern agriculture and animal husbandry, and ecological protection and restoration. This paper gives a review on the types, distribution, characteristics, and preservation of global forage germplasm resources. It also analyzes the existing problems, and makes suggestions in order to better protect and utilize forage germplasm resources in China.

Key words forage, germplasm resources, current status, problem, suggestions

Lin KJ, Liu ZP, Luo D, Wu ZN (2023). The current status, problems and suggestions for the research on forage germplasm resources. Chin Bull Bot 58, 241-247.

(责任编辑: 孙冬花)

These authors contributed equally to this paper

^{*} Author for correspondence. E-mail: linkejian@caas.cn