中原油田小井眼固井技术

张东海*

张东海. 中原油田小井眼固井技术. 天然气工业,1997; 17(4): 36~39

摘 要 如何提高小井眼固井质量是困扰钻井行业多年的老问题。中原油田针对小井眼井段易漏失、井深、井下温度高、钻井液密度高、地层存在多套压力层系等特点,从小井眼钻进阶段,通过使用双心 BDC 钻头、调整钻井液性能、水泥浆设计、先期堵漏等各种工艺措施,为小井眼固井提供了良好的先期条件。同时,在注水泥施工中,采取优选注替排量、选择合适的隔离液、加旋流扶正器使套管串居中等手段,以提高水泥浆顶替效率,并进一步推广应用压稳高压油气层的四大技术及 G101 高强度低密度水泥浆体系,小井眼固井技术满足了固井质量要求,并取得良好的效果。

主题词 中原油田 小井眼 固井 钻井液 堵漏

小井眼钻井始于 50 年代,美国、加拿大、英国等国相继钻成了一定数量的小井眼油气井,至 90 年代发展到高峰。小井眼钻井技术在我国起步较晚,直至目前,还处于初步探索阶段,且大多数小井眼都处于深部地层,即由于井下复杂而不得不封固上部地层,在下部钻小井眼,这种用大钻机钻小井眼的施工往往是不经济的;同时,也带来许多不利因素,如钻进速度慢,出现井下事故难以处理,固井质量难于保证,采油、采气、修井作业困难等。

中原油田小井眼大多处于 E_{s2} 、 E_{s3} 硬地层, 主要是因为上部地层漏失严重或缩径、井塌, 无法继续钻进, 不得不悬挂 \oslash 178 mm 尾管, 再用 \oslash 152.4 mm 钻头钻进小井眼, 完钻后下 \oslash 127 mm 油层套管完井。中原油田小井眼固井有以下难点: ①环形间隙小, 仅为常规井眼的 1/3~ 1/2, 钻井液循环排量、注水泥顶替排量低, 固井时难以达到紊流顶替。 ②裸眼井段存在多个压力系统, 注水泥时易发生漏失。 ③小井眼环空压耗与常规井相反, 有关资料表明, 约90%的压耗消耗在环空中; 环空压耗的增大, 井底附加压力随着增大, 更易引起井漏。 ④井深、井下温度高。 最深为 5 603 m, 井下最高温度达 175 $\mathbb C$ 。 ⑤钻井液密度高, 文东、文南等区块钻井液密度达 1.80 g/cm^3 以上。

提高小井眼固井质量的先期措施

小井眼较常规井眼不同的特点,对固井施工提出了更高的要求,从开始钻小井眼就必须为提高固井质量做好前期工作。

(1)推广应用双心BDC钻头^[1]。双心BDC钻头的结构外形是侧翼采用不对称分布,领眼部分先钻出小井眼,然后靠单边侧翼划眼扩出大井眼,钻出的井眼超出标明尺寸12.7~25.4 mm。双心BDC钻头的这种"扩径"作用,解决了软塑性地层带来的缩径问题;同时,可使油层套管顺利下入,套管与井眼的环空间隙增大,增加了水泥环的厚度;双心BDC钻头与普通钻头井眼直径对比见表1。

表 1 并径与固井质量对比

Table 1. Comparison between hole diameters
and Well cementing qualities

		٠.	•	
井号	钻头类型	钻头直径 (mm)	井眼直径 (mm)	固井质量
文 13-196 文 72-419		149. 2 149. 2	165.85 162.74	良合格
胡83	双心 \$28—248	149. 2	162.74	一 优
文13-84	牙轮 PDC	152.4	161.37	合格
濮深 14	牙轮 PDC	152.4	159.28	合格
濮深 7	牙轮 PDC	152.4	160.24	合格
胡 41	牙轮 PDC	152.4	161.05	合格

^{*} 张东海, 1967 年生, 工程师; 1988 年毕业于中国地质大学探矿系钻探工程专业, 现从事钻井技术工作。地址: (457001) 河南省濮阳市。电话: (0393) 4827552。

(2)钻井液性能调整。钻完进尺,进一步改善钻井液的流动性、润滑性;重点是适当降低粘切,保证漏斗粘度在 50~60 s,初切为 0,终切小于 1.5 Pa;其主要目的,一是防止高温增稠;二是降低环空压耗,因套管外径较钻具大,环空间隙更小,循环压耗更

高。为防粘卡, 在钻井液中加入一定量的润滑剂, 或混入 10% 左右的原油, 室内摩阻系数($K_{\rm f}$) 小于 0.15/45 min。几口小井眼井完钻后, 钻井液性能调整情况见表 2。

(3) 采取先期堵漏工艺, 防止下套管或固井时井

表 2	几口小井眼井钻井液性能调整情况
10 4	76日3718以7161717以14689亚1876

Table 2. Adjustment of drilling fluid performances for the wells with slim-hole

井 号	完钻井深 (m)	调整前后	密度	漏斗粘度	失水	泥饼	浮筒切力	pH 值	含砂量	摩阻系数
		炯楚	(g/cm^3)	(s)	(mL)	(mm)	(Pa)		(%)	(1/ 45 min)
文 79—419	3 930	前	1.93	80	1.5	0. 5	0. 5/ 1. 0	10	0. 3	0.215
又 /9-419	3 930	后	1.95	57	1.2	0. 5	0/0.5	11	0. 3	0.134
胡 83	4 550. 5	前	1.89	108	2.5	0. 5	1.0/35	10	0. 3	0. 157
O		后	1.89	67	2.5	0. 3	0/1.0	9. 5	0. 3	0.120
3生 7 20	3 581.91	前	1.52	110	3	0. 5	1/2.5	9	0. 3	0. 110
濮 7—29		后	1.49	80	4	0. 5	0/1.5	9	0. 3	不粘
文 13-196	3 680	前	1.80	60	5	0. 5	0/1.5	10	0. 3	0. 135
		后	1.78	54	4	0. 5	0/0	10	0. 3	不粘
新文 195	4 060	前	2.03	80	3	0. 5	0/1.0	11	0. 3	0. 157
		4 000	后	2.03	55	3	0. 5	0/0.5	10	0. 3

漏。钻进中曾发生过漏失的井, 完钻后必须做地层破裂压力试验。若地层抗破裂能力达不到要求, 首先在钻井液中加入随钻堵漏剂, 封闭微小裂隙; 对于发生过大漏失的井, 须进行 DSR 堵漏, 封堵后蹩压静置 36~48 h, 然后分段下钻通井, 并重做破裂压力试验, 检查堵漏效果。若达不到要求, 继续堵漏, 直至达到固井作业要求为止。

- (4)下套管前认真通井划眼,短程起下钻,测油气上窜速度。通井时在遇阻井段反复上下划眼,把井眼搞畅通;下钻到底后,以高出钻进排量 5%~10%的排量充分洗井或用携砂剂配成稠浆,循环一周彻底清砂。然后短程起下钻测油气上窜速度,根据油气上窜速度调整钻井液密度。最后调整好钻井液性能,在四号罐钻井液内加入 1000 kg 玻璃微珠,往井内打入 30 m³的钻井液以封闭裸眼。
- (5) 按流变学进行水泥浆紊流设计。通过添加外加剂, 改善流态, 保证其良好的流动性; 同时加入降失水剂, 防止水泥浆失水过大形成厚泥饼, 在小环空发生蹩泵现象, 一般把滤失量控制在 50~100 mL范围内。

小井眼固井技术

- 1. 提高顶替效率的途径 [2, 3]
- (1)确定合理的注替排量,提高顶替效率。由于 小井眼尺寸的限制,替泥浆排量不可能大幅度地提

高; 但在泵压允许值范围内, 替泥浆排量一般达到 12 L/s, 其环空返速在 1.5 m/s 以上。如文 72-419 井, 替泥浆排量为 12.23 L/s, 环空返速达 2.10 m/s; 胡 83 井钻 进排量为 15 L/s, 钻井 液密度 1.89 g/cm³, 替泥浆排量 12.9 L/s, 环空返速 1.59 m/s。

- (2)提高套管居中度。采用旋流扶正器,不仅可提高套管居中度,而且使环空液体由直流变为旋流,从而减少了水泥浆窜槽,一般裸眼封固段每根套管加1只扶正器。
- (3)隔离液优选。根据中原油田多年的固井经验,不漏失的井采用 SNC 隔离液,即清水 $1 \text{ m}^3 + \text{SNC}$ 水溶液 $1.5 \text{ m}^3 + \text{ 低密度水泥浆 } 1 \text{ m}^3$;这种复合隔离液的最大优点是流动性好,易实现紊流顶替。

对于易漏失的井, 采用 DJK -I 或 SR301 解卡剂油基隔离液, 这种隔离液失水几乎为零, 对堵漏剂的堵漏效果破坏很小, 一般用量 $2~3~{\rm m}^3$ 。

2. 采取综合压稳措施, 防止水泥浆失重^[2]

存在高压油气层的小井眼,采用达到压稳条件的四大措施,防止了水泥浆因"失重"所造成的气窜。

- (1)使用钛铁矿粉(FT) 加重水泥浆, 其加量为 $35\% \sim 40\%$, 可以使水泥浆密度达到2. $10\sim 2.20$ g/ cm³。
- (2) 井口加回压候凝。井口加回压大小的主要 依据是失重段长度。

 $p = 0.009 \ 8L(\ Y_{i} - 1.0) + p \ \text{M}$

式中: Yik 为钻井液密度;

p 时 为压力附加量;

L 为失重段长。

一般是碰压后先加二分之一, 半小时后再加二分之一。

(3) 采用两凝水泥浆体系。设计水泥浆稠化时间时, 使油气活跃层的水泥浆首先凝固, 而上部的水泥浆仍能保持一定的液柱压力而防止油气水上窜。

一般情况下,缓凝段水泥浆的稠化时间比催凝段长 100 min 左右; CaCl₂ 作为催凝段的催凝剂,加量为 $2\% \sim 4\%$; 水泥浆双凝界面选在高压油气层顶以上 $50\sim 100 \text{ m}$ 。

(4) 推广应用防气窜膨胀剂。在水泥中干混 QJ-625 或 $ZG-III膨胀剂,可以补偿因水泥浆失重 而降低的压力。膨胀剂对水泥浆性能和水泥石强度 无不利影响,加量 <math>0.4\%\sim0.5\%$ 。高压油气小井眼 固井情况见表 3。

表 3 高压油气小井眼固井情况

Table 3. Well-cementing conditions of slim-hole oil-gas wells with high pressure

井号	井眼尺寸	套管尺寸/下深	隔离液类型 数量×密度 (m³×g/cm³)	水泥浆体系	水泥浆 平均密度 (g/cm³)	排量	扶正器尺 寸×数量	回压
文79-419	152. 4	127/ 3 924. 76	SR 301 × 2 × 1.80	两凝水泥浆体系	2. 05	12. 23	152× 80	7. 0
胡83	152. 4	127/ 4 545. 28	SR 301 × 3 × 1.50	两凝水泥浆体系	1. 96	12. 90	152× 60	10.0
濮7—29	152. 4	127/ 3 550	(CM C× 5+ T 50× 1) × 1.40	高强度低密度水泥浆	1. 56	13. 00	152× 40	4. 0
侧文 133-1	120. 65	101. 6/3 128	配浆水× 0.2× 1.0	高强度低密度水泥浆	1. 59	5. 00	120× 30	0

3. 易漏失井中推广应用 G101 高强度低密度水 泥浆体系

该水泥浆体系选用空心浮珠作减轻剂,可使水泥浆密度降至 $1.45 \sim 1.08 \text{ g/cm}^3$ 。同时加入 G101 系列外加剂, G101A 为液体的高分子化合物,可降低

水泥浆滤失量, 阻碍和减缓了浮珠与水泥的离析, 并降低水的渗透速度, 使水泥浆保持稳定性和均匀性。 G101B 为早强剂, 可提高水泥石的早期强度。另外, 根据不同井况加入适量的调凝剂, 调节出所需的稠化时间。该体系的室内实验数据见表 4。

表 4 高强度低密度水泥浆室内实验

Table 4. Laboratory experiments of cement slurry with high strength and low density

水泥浆 密 度	漂珠加量	外加剂及其加量(%)		量(%)	滤失量 (mL)	稠化时间 (min)	抗压强度 (MPa)		
(g/cm ³)	(%)	G 101 A	G101B	调凝剂	7 M Pa× 30 min 80~ 90 ℃	60~ 90℃ 30~ 50 MPa	80~ 100°C 21 MPa, 24 h		
1.35	35	16~ 18	2. 1	适量	150	100~ 300	≥14		
1.20	60	30	3. 5	适量	200	100~ 300	≥10		
1.08	100	50~ 60	6. 0	适量	300	100~ 300	≥(8~ 10)		

表 5 P7-29、侧 W133-12 的水泥浆实验数据 Table 5. Cement slurry experiment data of

P7-29 and Side W133-12

井 号	水泥品种	密度	外力	n剂及其加	滤失量	24 h		
			G101A	G101B	G64	漂珠	(mL/ ℃)	抗压强度 (MPa)
P7 —29	J H G	1. 56	18	2. 5	0	30	224/90	19. 3
侧 W 133 —12	J H D	1. 59	20	3	1. 5	33	78/80	25. 4

该体系具有以下特点: ①水灰比小, 水泥石渗透率低; ②浮珠与水泥间的致密性好; ③密度降低幅度大, 滤失量低, 早强, 稠化时间易调节。通过两口井的应用(见表 4, 5), 充分证实了高强度低密度水泥浆体系的优越性, 解决了小井眼低压易漏失井的固井问题。

结 束 语

(1)中原油田小井眼固井技术为以后小井眼施工提供了许多宝贵的经验。针对不同井况,如高压

延迟凝固水泥浆的研究与应用

张林森*

(中国石油天然气总公司勘探开发科学研究院廊坊分院)

张林森. 延迟凝固水泥浆的研究与应用. 天然气工业, 1997; 17(4): 39~42

摘要 延迟凝固固井工艺的技术关键之一是延迟凝固水泥浆体系。为保证延迟凝固固井工艺的顺利实施,研究了延迟凝固水泥浆的配方体系、室内实验评价方法并应用于油气田现场。在原有油井水泥实验规范的基础上,系统地研究了延迟凝固水泥浆与现场作业相适应的筛分法、沉降法及模拟套管插入等评价方法,自行设计了延迟凝固固井工艺的模拟下套管试验台架。所研究的水泥浆配方体系具有:可流动时间长、沉降轻微、塑性粘度和屈服值小及凝固后具有较高的抗压强度等特性。现场应用结果表明:室内实验方法和水泥浆配方设计合理,满足了现场施工工艺要求,使用延迟凝固固井工艺可修复腐蚀套管和节约钻井成本,并为小间隙固井提供了一条新途径。

主题词 钻井 下套管 固井 缓凝水泥 研究 应用

采用延迟凝固固井工艺成功的关键是研究与其相应的实验方法和水泥浆配方。水泥浆应具备: 足够长的可流动时间和较高稳定性, 以满足工艺复杂、施工时间长的要求; 塑性粘度和屈服值小, 以利于套管的顺利插入; 凝固后具有较高的抗压强度, 保证后期作业的安全实施; 室内实验方法, 应与现场施工工艺相匹配. 以检验水泥浆配方体系的可行性。

1993年和1994年,我们在长庆油田应用延迟凝固水泥浆固井施工作业两井次,均获成功。

室内研究

1. 实验方法的研究

(1)水泥浆的配制、密度、失水、抗压强度和自由水的测定方法符合 API 油井水泥实验规范; 凝结时间测定符合国家标准 GB10236—88。

(2)水泥粒度测定: 用标准筛筛取粒度分布, 粒子群粒度的分布常用筛分法来测定, 其平均当量直径为:

$$d_{p} = \sum_{i=1}^{n} (x i / d_{i})$$

式中: d_n 为某颗粒直径, $d_n = \left(d_i d_{i+1}\right)^{1/2}$, μ_m ;

 x_n 为直径为 d_n 的颗粒质量分率。

使用筛分法对嘉华 G 级油井水泥(HSR) 粒度测定,平均粒径为 $50.8~\mu m$ 。

油气井、易漏长封固段井、多套压力层系井,分别提出了施工对策,结合小间隙的特点,总结了许多可以推广的先进经验。

- (2) 小井眼因环空间隙小、流动阻力大、循环排量小, 单靠某种技术难以很好地提高固井质量, 必须采取综合措施, 齐头并进, 才能取得很好的效果。如双心 BDC 钻头的应用、固井前井眼准备及钻井液性能调整、水泥浆体系及添加剂的优选等, 都为小井眼固井提供了质量保证。
- (3) 小井眼固井技术需进一步研究探讨, 如水力式巴拉斯扩孔器的研制、添加剂品种的开发及优选、

水泥浆体系的完善等都需要加强, 为小井眼大规模 勘探开发提供充分的技术准备。

参考文献

- 1 张东海. 特殊钻井的钻头选择及应用. 断块油气田, 1996; 3(2)
- 2 张东海. 文东复杂断块调整井固井技术. 断块油气田; 1994; 1(1)
- 3 宁国玉.复杂断块油气井提高封固质量工艺研究.见:中原油田钻井技术论文集,北京:石油工业出版社,1995

il 审稿人 高级工程师 郑开华 收稿日期 1997-01-18 编辑 钟水清

^{*} 张林森, 工程师, 1963 年生; 1982 年毕业于西北大学化工工程专业; 现主要从事完井流体、开发和应用工作。 地址: (065007)河北省廊坊市万庄 44 号信箱。电话: (0316)6012801 转 3305。

Hubei. Tel: (0716) 8431129.

Xia Hongquan(Southwest Petroleum Institute), Hong Qingyu, Sun Liangtian, Tan Dehui, Liu Hongqi: NERVE NETWORK PROCESSING AND STEREOGRAPHIC DISPLAY OF 3-D GEOLOGIC DATA, NGI 17 (4), 1997: 26~ 30

ABSTRACT: On meticulously describing oil-gas reservoirs, it is necessary to analyse and process 3-D tetravarible (X, Y, H, Z) geologic data by traditional methods such as azimuth near point range weighting model, trend regression model, Kriging model etc. On the basis of modern nerve network datum processing techniques, an available BP nerve network 3-D estimation model, i. e. the high resolution appraisal of unknown well reservoir parameters can be done by the known data in research areas, is proposed out. The visual graphic display of the model estimated values can be accomplished by stereo isogram visibility technique and the variation laws of 3-D geological characteristic parameters in vertical and lateral directions can be fully delineated. It is proved that the model is available to high resolution appraisal of stratigraphic pressure data in Majiagou formation of S gas field.

Subject Headings: Nerve network, Geological data, 3-D model, Stereography, Graphic display, stratigraphic pressure, Ordovician system.

Xia Hongquan, lecturer doctor, graduated in Petroleum Geology of Southwest Petroleum Institute in 1988 and received Master's degree in 1991; now he is engaged in teaching and researching on logging data interpretation for oil-gas reservoir description. Add: (637001) Nanchong, Sichuan. Tel: (0817) 2224433-3427.

Xiong Youming (Southwest Petroleum Institute), Yang Xianmin, Meng Yingfeng: COALBED CORE FLOWING EXPERIMENT TECHNIQUE, NGI 17(4), 1997: 31~ 35

ABSTRACT: Coalbed core flowing experiment is an important means of assessing the sensitivity of stress, gas flowing velocity, salt-water flowing velocity, acidizing fluid, alkali fluid and the damage of the various working fluids to coalbed. On the basis of summarizing the cases of coalbed core flowing experiment, the ways of doing the experiment, including the preparation before making the experiment, coalbed permeability measurement, coalbed core sensitivity assessment, the assessment method of the damage of various working fluids to coalbed core etc. are comprehensively described. The 3 procedures of effectively developing coal seam gas, i. e. precisely assessing coalbed productivity; pretecting coalbed in the course of drilling and well completion; adopting various stimulating measures by coalbed characteristics are proposed out.

Subject Headings: Coal-formed gas, Flow property, Permeability determination, Reservoir, Pollution, Influence, Factor, Analyse, Laboratory experiment.

Xiong Youming, associate professor, graduated from China Petroleum University with Master's degree in 1987; he has published over 30 papers; now he is a member of SPE, USA. Add: (637001) Nanchong, Sichuan. Tel: (0817) 2234411-2813.

Zhang Donghai (Zhongyuan Petroleum Exploration Bureau): SLIM HOLE CEMENTING TECHNIQUE IN ZHONGYUAN OIL FIELD, NGI 17(4), 1997: 36~39

ABSTRACT: How to improve the quality of slim hole cementing is a difficult problem of perplexing well drilling. Aimed at the characteristics of easy leakage, deep well, high temperature in downhole, multiple series of strata with various pressures etc. of the slim hole in Zhongyuan Oil Field, the favourable conditions are provided for slim hole cementing by using the various technology such as two-core BDC bit, adjusting drilling fluid performance, slurry design, etc. In the operation of cementing, the means of optimizing injection-substitute flow rate, selecting suitable spacer, centring casing string with cyclone centralizer etc. are applied to improve slurry displacement rate. The 4 techniques for the kill-job of high pressure oil-gas bed and G 101 slurry system with high inten

sity and low density are further spreaded.

Subject Headings: Zhongyuan oil field, Slim hole, Well cementing, Drilling fluid, Loss circulation control.

Zhang Donghai, engineer, graduated from drilling engineering department of Geology University in 1988; now he is engaged in drilling technology. Add: (457001) Puyang, Henan. Tel: (0393) 4827552.

Zhang Linsen (Langfang Branch of the Exploration and Development Science Institute, CNPC): STUDY AND APPLICATION OF DELAYED SOLIDIFICATION SLURRY TECHNIQUE, NGI 17(4), 1997: 39~ 42

ABSTRACT: Delayed solidification cementing slurry system is one of the technical keys of delayed solidification cementing technology. In order to pledge smoothly implementing the technology, a formulation system and lab experiment assessment methods of delayed solidification well cementing slurry are studied and applied to oilgas fields. On the basis of the native oil well cement experiments, sieve method, settling method, simulating casing insert method etc. are studied and the simulation device for casing test is designed. The formulation system is of the characteristics of long mobile time, light settling, small plastic viscosity and yield value, higher compression strength etc. On the spot applied result shows the experiment method and formulation design can meet requirement; corrosion casing pipe can be repaired and the cost of well drilling can be decreased.

Subject Headings: Drilling, Cassing running, Well cementing, Retarded cement, Research, Application.

Zhang Linsen, engineer, graduated from chemical engineering department of Northwest University in 1982; now he is engaged in well completion fluid development and application. Add: (065007) P. O. Box 44, Wanzhuang, Langfang, Hebei. Tel: (0316) 6012801-3305.

Guo Xiaoyang (Southwest Petroleum Institute), Liu Chongjian, Mao Siping: RESEARCH ON NON-NEWTONIAN LIQUID RHEOLOGICAL MODE, NGI 17(4), 1997:43~49

ABSTRACT: A three parameter polynomial power-law mode (i. e. L —M mode) with static shearing stress is proposed out after analysing and assessing several rheological modes commonly used at home and abroad. Starting from researching the constitutive equation of the mode, the rheological parameters and the calculation formula of the relevant hydraulic parameters are derived. The adoptive scope and accuracy of each rheological modes are contrasted and analysed by plenty of experiment and calculation data of mud and slurry.

Subject Headings: Non-newtonian liquid, Rheological mode, Shear stress, Shear rate, Research.

Ma Zhaoyi (Motorized Transportation Department of Sichuan Petroleum Administration), Zou Kaijian: A DISCUSSION ON THE UTILIZATION POTENTIAL AND RENOVATION OF THE MAIN PETROLEUM EXPLORATION AND DEVELOPMENT EQUIPMENT, NGI 17(4), 1997: 49~ 52

ABSTRACT: The factors of history and work quantity adjustment have made the quantum and capability of some equipment of Sichuan Petroleum Administration be surplus. Unreasonable equipment structure, some equipment with out of date technology, not having established the equipment management new concept with benefit as the key have restricted the equipment investment return and service efficiency. So, the countermeasures and suggestions in the following 6 aspects, such as: ①enhancing the equipment management; ②optimizing the disposition of equipment resources; ③developing the equipment; ④building up equipment specialization company; ⑤stablishing equipment market; ⑥further opening up technical labour force market at home and abroad etc., to dig equipment utilization potential and enhance equipment investment return are proposed out.

Subject Headings: Petroleum industry, Equipment, Utilization, Equipment renewal, Management.

Ma Zhaoyi, Senior engineer, graduated from mining machinery department of Southwest Petroleum Institute in 1968; She is long engaged in motorized equipment management. Add: (610051) NO. 3, Sec. 1, Fuqing Rd., Chengdu, Sichuan. Tel: (028) 3324911—211746.