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ABSTRACT 

Electrocatalytic CO2 reduction (ECR) coupled with organic oxidation is a promising strategy to produce 
high value-added chemicals and improve energy efficiency. However, achieving the efficient redox coupling 
reaction is sti l l chal lenging due to the lack of suitable electrocatalysts. Herein, we designed two bifunctional 
polyimides-linked covalent organic frameworks (PI-COFs) through assembling phthalocyanine (Pc) and 
porphyrin (Por) by non-toxic hydrothermal methods in pure water to realize the above catalytic reactions. 
Due to the high conductivity and well-defined active sites with different chemical environments, NiPc-NiPor 
COF performs efficient ECR coupled with methanol oxidation reaction (MOR) (Faradaic efficiency of CO 

(FECO 

) = 98.12%, partial current densities of CO (jCO 

) = 6.14 mA cm−2 for ECR, FEHCOOH 

= 93.75%, 
jHCOOH 

= 5.81 mA cm−2 for MOR at low cell voltage (2.1 V) and remarkable long-term stability). 
Furthermore, experimental evidences and density functional theory (DFT) calculations demonstrate that 
the ECR process mainly conducts on NiPc unit with the assistance of NiPor, meanwhile, the MOR prefers 
NiPor conjugating with NiPc. The two units of NiPc-NiPor COF collaboratively promote the coupled 
oxidation-reduction reaction. For the first time, this work achieves the rational design of bifunctional COFs 
for coupled heterogeneous catalysis, which opens a new area for crystalline material catalysts. 

Keywords: hydrothermal synthesis, phthalocyanine-porphyrin COFs, bifunctional electrocatalysts, 
electrocatalytic CO2 reduction, methanol oxidation reaction 
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the anode side, thus causing a great waste of energy 
[9 ,10 ]. In most of the reported researches, the con- 
ventional method to treat anode reaction has been 
coupled with the water oxidation reaction (oxygen 
evolution reaction, OER) by using a carbon or plat- 
inum rod as the anode [11 ,12 ]. Unfortunately, this 
OER process wi l l cause overpotential and also needs 
a high energy input due to slow kinetics and unfa- 
vorable thermodynamics of H2 O oxidation reaction, 
thus leading to lower energy efficiency for the overall 
catalytic reaction. Besides, the O2 produced is rela- 
tively less value-added compared to many industrial 
chemicals [13 ,14 ]. Therefore, there is an urgent need 
to develop an oxidation reaction with high energy ef- 
ficiency to replace the OER process. 

The application of the anodic oxidation process 
to the organic molecules oxidative synthesis, such 
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NTRODUCTION 

he massive consumption of fossi l fuels al l over the
orld has led to excessive CO2 emissions into the at-
osphere, which has caused serious environmental

ssues and energy crises [1 –3 ]. Electrochemical CO2 
eduction (ECR) by renewable electric energy of-
ers a promising strategy to convert CO2 into useful
nergy substances, such as CO, CH3 OH, HCOOH,
H4 and C2 H4 et al. , which wi l l simultaneously re-
uce CO2 and produce useful energy fuels [4 –8 ]. In
ecent years, multifarious ECR catalysts have been
eveloped for CO2 reduction, and high efficiencies
ave also been achieved, which showed great future
rospects for practical uses. However, most studies
nly focused on the ECR half reaction at the cath-
de when evaluating catalytic performance, while

eglecting the relevant oxidation half reaction on 
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s methanol oxidation reaction (MOR) to produce
COOH, can effectively improve energy efficiency
ue to low theoretical overpotential and also be in
ine with the demand of green chemistry [15 –17 ].
owever, it remains a challenge to enable these two
lectrocatalytic reactions to cooperate effectively.
he main barrier in this field is the lack of highly
ctive multifunctional electrocatalysts to fulfill these
wo processes. Theoretically, the electrocatalysts for
CR coupled with MOR should satisfy the following
equirements: (1) highly active and accessible cat-
lytic sites for reduction or oxidation reaction [18 ];
2) affinity and adsorption activation for substrates
uch as CO2 or methanol [19 ]; (3) preferable elec-
ron and proton transfer ability [20 ]; (4) high stabil-
ty during the electrochemical measurements [21 ].
ntil now, many researches have explored the activ-
ty of a single functional homogeneous catalyst (such
s metal complex) for ECR or MOR separately, while
he problems of recycling and stability are sti l l dif-
cult to solve [22 ,23 ]. The construction of bifunc-
ional heterogeneous catalysts can effectively solve
he above problems which is used for ECR coupled
ith MOR, yet this has rarely been studied. Among
hem, the well-defined model with precise structure
s particularly important for studying the structure-
unction relationship and mechanism of bifunctional
eterogeneous catalysts. 
Covalent organic frameworks (COFs) with ex-

ellent structural designability and high stabilities
re promising platforms for catalytic reactions [24 –
7 ]. Some building blocks of COFs possess ap-
ropriate coordination sites, thus making them ca-
able of introducing metal active sites for typical
atalysis [28 ,29 ]. Up to the present, COFs-based
atalysts have been successfully applied for ECR,
ER and oxygen reduction reaction (ORR), et al. ,
hich i l lustrates the great potential for electrocatal-
sis [30 ,31 ]. However, the precise introduction of
ultiple active sites with different chemical environ-
ents into COFs is sti l l in its infancy, much less their
pplication in electrocatalysis. Recently, metalloph-
halocyanine (MPc) and metalloporphyrin (MPor)
ased-COFs have been studied for catalytic reac-
ions [32 ,33 ]. Nevertheless, most of these works
nly focused on studying the catalytic performance
f a single functional component, while the inte-
ration of MPc and MPor together into crystalline
OFs for bifunctional catalysts was sti l l unexplored.
esides, as one of the most important classes of
rystalline COFs, Pc-based COFs possess excellent
onductivity, mechanical performance and redox-
ctive properties [34 ,35 ]. However, the traditional
ynthesis of Pc-based COFs based on solvother-
al methods wi l l inevitably use toxic organic sol-
ents and catalysts [36 –40 ]. Therefore, it is nec-
Page 2 of 11
essary to develop green and efficient methods to 
synthesize crystalline Pc-based COFs (Scheme 1 ). 
Unterlass et al. demonstrated that highly crystalline 
all-aromatic polyimides can be synthesized by hy- 
drothermal polymerization using only H2 O as sol- 
vent [41 ]. Besides, the alcohol-assisted hydrother- 
mal synthesis which was developed by Lotsch et al. 
also confirmed imide-linkage can be obtained with- 
out a toxic solvent [42 ]. On the basis of the above
research results, we successfully get a series of crys- 
talline Pc-based COFs. It is noted that our report 
is the first synthesis of highly crystalline Pc-based 
COFs by hydrothermal synthesis in pure water with- 
out using catalyst and toxic solvents, which con- 
forms to green synthesis chemistry. According to the 
above H2 O-phase synthesis method, we rationally 
prepared crystalline NiPc-2HPor COF by condens- 
ing a phthalic acid group of NiPc and aromatic amine 
group of 2HPor through hydrothermal methods 
(Scheme 1 ), and further synthesized NiPc-NiPor 
COF by post-synthesis coordination reaction. The 
polyimides-linked COFs (PI-COFs) which were 
formed showed high chemical stability and activity 
for electrocatalysis MOR coupled with ECR. The 
porous NiPc-NiPor COF structure not only plays 
the role of metal site supports, but also possesses 
high conductivity and regularity. Besides, the Ni in 
the pockets of MPc and MPor with different chem- 
ical environments can act as synergy active sites, 
thus greatly enhancing ECR coupling MOR catalytic 
performance. 

Above all, the synthesized NiPc-MPor COFs 
combining the features of crystallinity and conduc- 
tivity, also have multiple active sites with different 
chemical environments for ECR and MOR. Among 
them, the NiPc-NiPor COF shows excellent activity 
for cathodic ECR (FECO 

= 98.12%, jCO 

= 6.14 mA 

cm−2 ) coupled with anodic MOR to HCOOH 

(FEHCOOH 

= 93.75%, jHCOOH 

= 5.81 mA cm−2 ) 
in a H-cell at low cell voltage (2.1 V) and exhibits 
remarkable long-term stability, which is compara- 
ble to most reported ECR-MOR coupled catalysts. 
The in-situ Fourier transform infrared spectroscopy 
(FT-IR) was used to identify the key intermediates 
for both ECR and MOR. Furthermore, the density 
functional theory (DFT) calculations demonstrate 
that the ECR process mainly performs on NiPc unit 
with the assistance of NiPor, meanwhile, the MOR 

process shows a preference for NiPor and conju- 
gates with NiPc. The synergistic catalytic effect of 
NiPc and NiPor combined contributes to such high 
catalytic activity. This is the first report of bifunc- 
tional MPc-MPor-based COFs for electrocatalytic 
cathodic ECR coupled with anodic MOR simultane- 
ously, which is also of great significance in the field of 
bifunctional electrocatalysts. 
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Scheme 1. Schematic representation of design and synthesis of Pc-based COFs. This work and previous works. (Mesitylene 
(Mes), 1,2-dichloroethane (DCE), Boron trifluoride etherate (BTE), N, N-Dimethylacetamide (DMA), Triethylamine (TEA), N- 
methylpyrrolidone (NMP), 1-butanol (BuOH), Isoquinoline (IQL), 1,2-dichlorobenzene (DCB), Sulfuric acid (H2 SO4 ), 1,4-Dioxane 
(Dox)). 
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ESULTS AND DISCUSSION 

ynthesis and structure of NiPc-MPor 
OF 
s shown in Scheme 1 and Fig. 1 , a [4 + 4] conden-
ation reaction is applied to synthesize NiPc-2HPor
OF. Specifically, NiPc-2HPor COF was synthe-
ized by condensation between 2,3,9,10,16,17,23,24-
Page 3 of 11
octacarboxyphthalocyanine nickel (NiPc) and 
5,10,15,20-tetrakis(para-aminophenyl) porphyrin 
(2HPor) via hydrothermal methods (Fig. 1 a). The 
crystal structure of NiPc-2HPor COF was char- 
acterized by powder X-ray diffraction (PXRD) 
measurements combined with structural simulation. 
The AA and AB stacking structural model was 
constructed based on reticular chemistry, while the 
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Figure 1. Schematic representation of metallophthalocyanine-porphyrin COFs by polyimide linkage. (a) Schematic of the synthesis and structure of NiPc- 
2HPor COF through the condensation of NiPc and 2HPor. (b) Simulated and experiment PXRD patterns of NiPc-2HPor COF. (c) N2 adsorption isotherm 
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(f) Side view of AA slipped stacking mode for NiPc-2HPor COF. 
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esults showed that the theoretical PXRD patterns
f AA and AB model had some deviations from
he experimental curves (Fig. 1 b). Interestingly,
e found that the theoretical PXRD pattern of AA
lipped stacking with Pm (6) space group model
tted well with the experimental one (for details,
ee the structural modeling section). Therefore, we
hen conducted Pawley refinement based on AA
lipped stacking against the experimental PXRD
attern, which provided unit cell parameters of
 = b = 25.7859 Å, c = 3.4637 Å, α = γ = 90°,

= 120°. The refinement of PXRD diffraction
atterns fitted well with the experimental results,
ith residuals of Rp = 2.81% and Rwp = 3.63%,
hus confirming the accuracy of the simulated struc-
ure. The peaks at 5.27° and 10.54° are assigned
o the (110) and (220) planes, respectively. The
orosity of NiPc-2HPor COF was then determined
y N2 adsorption isotherms at 77 K, and the results
howed that the pore size distributed at 1.45 nm,
hich was consistent with the theoretical aperture
Page 4 of 11
(Fig. 1 c–f). The BET surface area of NiPc-2HPor 
COF was calculated to be 258.608 m2 g−1 . Based on 
the NiPc-2HPor COF, we f urther sy nthesized NiPc- 
NiPor COF by post-synthesis coordination reaction 
(Scheme S2). The synthesized NiPc-NiPor COF 
also shows high crystallinity as confirmed by the 
PXRD pattern (Fig. 2 a). The comparison of PXRD 

patterns of NiPc-2HPor COF and NiPc-NiPor COF 
with 2HPor and NiPc show no precursor monomers 
exist, suggesting the completeness of the poly- 
merization reaction ( Fig. S1). Fourier transform 

infrared (FT-IR) was then conducted to charac- 
terize the chemical structure which confirmed the 
imide formation reaction in NiPc-2HPor COF and 
NiPc-NiPor COF. As shown in Fig. 2 b, the obvious 
peaks at 1762 and 1707 cm−1 correspond to asym- 
metric and symmetric vibrations of C = O of the 
five-membered imide rings and the peaks at 1368 
and 1324 cm−1 belong to the stretching vibration of 
the C-N-C bond of polyimide [43 ]. Furthermore, 
the peaks corresponding to the carboxylic acid of the 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad226#supplementary-data
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recursor NiPc at 1696 cm−1 and the amide bond
f the NiPor at 1674 cm−1 are not observed, which
ndicates full imidization yielding the desired PI-
OFs (Fig. 2 b). The thermostability of COFs was
tudied by thermogravimetric analysis (TGA) under
2 and O2 atmosphere ( Figs S2–S5), which showed
o obvious change up to ∼300o C under both nitro-
en and oxygen atmospheres. X-ray photoelectron
pectroscopy (XPS) was conducted to confirm all
he element states over COFs ( Figs S6–S10), which
howed C, N, O and Ni coexisting in NiPc-2HPor
OF and NiPc-NiPor COF. Furthermore, the anal-
sis results show the divalent state of the central Ni
n COFs. We then performed high-resolution XPS
nd their deconvolution for C1s, N1s and O1s. In
he high-resolution N1s spectrum of NiPc-2HPor
OF ( Fig. S10a), the binding energy peaks at 398.8,
99.2, 399.8 and 400.5 eV corresponding to iminic
, C = N, pyrrolic N and C-N, respectively. As a
esult, the disappearance of the pyrrolic N peak in
Page 5 of 11
NiPc-NiPor COF ( Fig. S10d and Table S1) shows 
the successful post-metalation of Ni [44 ]. 

All above results i l lustrate the successful con- 
densation of NiPc and 2HPor and the formation of 
PI-COFs. We then performed the CO2 adsorption- 
desorption test of these COFs. As shown in Fig. 2 c,
NiPc-NiPor COF have a strong CO2 adsorption 
capacity of about 31.19 cm3 g−1 in 273 K, which 
is higher than the NiPc-2HPor COF, and thus is 
more beneficial for the ECR reaction. The crystal 
morphology of these COFs was observed by trans- 
mission electron microscopy (TEM) and scanning 
electron microscopy (SEM). The TEM shows that 
NiPc-NiPor/2HPor COF displays a lamellar shape 
crystal with a size of ∼50–100 nm (Fig. 2 d and
Fig. S11). The SEM images of COFs further confirm 

the microcrystal morphology ( Figs S12 and S13). 
Furthermore, the high-resolution TEM (HRTEM) 
of NiPc-NiPor COF displays clear lattice fringes 
of (001) crystal face with a distance of 0.343 nm,
which fits well with the theoretical layer distance 
(0.346 nm), further confirming the precise nature of 
the simulated crystal structure (Figs 1 f and 2 e). En-
ergy dispersive X-ray spectroscopy (EDX) mapping 
reveals the uniform distribution of the Ni, C, N and 
O element of NiPc-NiPor COF, which i l lustrates the
homogeneity of these materials (Fig. 2 f). 

Electrocatalytic ECR coupling MOR 

performance 

Based on the above analysis and characterization of 
the structure and features of NiPc-NiPor COFs, it 
can be concluded that the MPc and MPor monomers 
in crystalline COFs form the well-defined, isolated, 
and atomically uniformly multiple single-metal ac- 
tive sites with different chemical environments, 
which is favorable for catalytic reaction. The elec- 
tronic conductivity of NiPc-2HPor COF and NiPc- 
NiPor COF were performed by current (I)-voltage 
(V) measurements and electrochemical impedance 
spectrum (EIS) ( Figs S14 and S15). We then cal- 
culated the conductivity values of all tested COFs 
from I-V test results by using a double probe sys-
tem. As a result, the NiPc-NiPor COF exhibits 
higher specific conductivity values (7.28E-8 S m−1 ) 
than NiPc-2HPor COF (2.5E-8 S m−1 ). It can 
be concluded that the NiPc-NiPor COF possesses 
a superior electron transfer rate, which is due to 
their highly conjugated π -electron structure. Ac- 
cordingly, NiPc-NiPor COF wi l l be a more promis-
ing platform for electrocatalysis. Bearing the above 
ideas in mind, we then studied the ECR coupling 
MOR performances of NiPc-MPor COFs. The sep- 
arated electrocatalysis tests were first conducted in a 
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ommon H-cell reactor with a three-electrode stan-
ard system and the coupling reaction was then
erformed in the two-electrode system by electro-
hemical workstation. CO and HCOOH were de-
ected as main the products for ECR and MOR with
 minor by-product H2 , which were quantified by
as chromatography (GC) and ion chromatography
IC) by external standard methods ( Figs S16–S18),
espectively. 
First, we studied the NiPc and NiPor monomers

s catalysts for MOR by conducting a linear sweep
oltammetry (LSV) test on a three-electrode system
n 1 M KOH electrolyte w ith or w ithout methanol
ubstrates, respectively. Interestingly, both NiPc and
iPor show effective enhanced current density for
OR in methanol electrolyte (Fig. 3 a). Besides, Ni-
or monomers exhibit maximum current density
hen applied in a methanol electrolyte, suggesting
hat the NiPor may be a more effective active site
or MOR. The LSV performance for ECR of NiPc
nd NiPor monomers also shows that NiPc has a
igher current density than NiPor in CO2 (Fig. 3 b),
Page 6 of 11
indicating that NiPc may play a key role in ECR. 
Based on the above results, it is reasonable to assume 
that integrating NiPc and NiPor monomers wi l l be 
greatly beneficial to the ECR coupled with MOR 

performance. 
Based on the above consideration, we then con- 

ducted the LSV test for NiPc-MPor COFs (Fig. 3 ). 
The results show that both NiPc-2HPor COF and 
NiPc-NiPor COF represent higher current density 
in methanol electrolyte compared with pure KOH 

electrolyte along with the increase in applied voltage 
(Fig. 3 c and Fig. S19). Further, NiPc-NiPor COF 
shows more enhanced current intensity compared 
to NiPc-2HPor COF, which also indicates that the 
NiPor in the COF might play a key role in contribut- 
ing to the activity of MOR. Besides, the Tafel slope 
of NiPc-NiPor COF at the anode in 1 M KOH with
1 M methanol is 123.84 mV dec−1 , much lower than 
that in the pure KOH electrolyte (318.55 mV dec−1 ), 
suggesting that it has more favorable reaction kinet- 
ics for MOR ( Fig. S20). We then tested the ECR 

performance for NiPc-MPor COFs as a cathode 
in Ar and CO2 saturated solution. Both the NiPc- 
NiPor COF and NiPc-2HPor COF obtain enhanced 
current density in the existence of CO2 compared 
to Ar environment, which suggests that the ECR is 
priority to HER process. Furthermore, the current 
density of NiPc-NiPor COF is almost same as that of 
NiPc-2HPor COF in a CO2 environment (Fig. 3 d), 
which further i l lustrates that the NiPc (rather 
than NiPor) in COFs mainly contribute to ECR 

activity. 
Encouraged by the above performance, we then 

explored, separately, the Faradaic efficiency (FE) 
and partial current density (j) of these samples 
for ECR or MOR on a three-electrode system in 
greater detail. We first discovered the NiPc and Ni- 
Por monomers under wide potentials ranging from 

−0.5 V to −1.1 V vs. RHE for cathode ECR and 
1.4 V to 1.7 V vs. RHE for anode MOR and cal-
culated the corresponding FE values ( Figs S21 and 
S22). The results show that, for MOR, both the 
NiPc and NiPor monomers own effective FEHCOOH 

and the detailed comparison suggests that the Ni- 
Por monomer has superior selectivity to NiPc. At the 
same time, based on the ECR performance as shown 
in Fig. S22, we can also conclude that the NiPc shows 
more superior selectivity for ECR. We then studied 
the NiPc-2HPor COF and NiPc-NiPor COF as cata- 
lysts for ECR and MOR tests, separately (Fig. 3 e and 
f). Compared with NiPc-2HPor COF, NiPc-NiPor 
COF exhibits superior MOR catalytic activity and 
selectiv ity w ith maximal FEHCOOH 

of up to 92.63% 

with a jHCOOH 

of 15.84 mA cm−2 at 1.55 V vs. RHE. 
On the other hand, the NiPc-NiPor COF also shows 
the better activity than NiPc-2HPor COF on ECR, 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad226#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad226#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad226#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad226#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad226#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad226#supplementary-data
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ith maximal FECO 

of up to 96.57% and a partial cur-
ent density (jCO 

) of −4.39 mA cm−2 at −0.8 V vs.
HE. 
Based on the above results, ECR and MOR cou-

ling reaction performances were carried out by us-
ng a two-electrode H-cell, in which the NiPc-MPor
OFs act as both cathode and anode active catalyst.
pecifically, the anode part with 1 mg cm−2 NiPc-
Por COFs active layer was applied in 1 M KOH
lectrolyte containing 1 M methanol, and the cath-
de with the same active material was applied in
.5 M KHCO3 electrolyte (denoted as NiPc-MPor
OFs || NiPc-MPor COFs). The LSV patterns for
he paired MOR (1 M methanol) || ECR show that
he NiPc-NiPor COF electrode only needs a cell volt-
ge of 1.5 V to obtain a current density of 1.0 mA
m−2 , which is much lower than the paired OER
| ECR without methanol (Fig. 4 a). We then tested
he FE of two COFs under cell voltage ranging from
.8 V to 2.4 V. When paired the MOR and ECR,
he FECO 

of NiPc-NiPor COF exhibited higher than
Page 7 of 11
90% in a potential range from 2.0 to 2.2 V and the
maximum FECO 

can reach up to 98.12% with a par- 
tial current density (jCO 

) of ∼6.14 mA cm−2 at 2.1 V
(Fig. 4 b, and Figs S23 and S25). Meanwhile, NiPc- 
2HPor COF shows a little less FECO 

than the NiPc- 
NiPor COF for ECR, which can be concluded that 
the NiPc unit mainly contributed to ECR activity. 
On the other hand, NiPc-2HPor COF also shows 
much lower FEHCOOH 

than NiPc-NiPor COF for 
MOR, which i l lustrates that the NiPor may play a
key role for MOR. Besides, the corresponding an- 
odic MOR produced HCOOH with FE over 75% 

at all applied voltages and toward a maximum value 
of 93.75% with a partial current density (jHCOOH 

) 
of ∼5.81 mA cm−2 at 2.1 V (Fig. 4 b and Fig. S24).
The detailed structure-functional relationships wi l l 
be discussed wi l l in the following part. To further
detect the liquid product of NiPc-NiPor COF dur- 
ing MOR process in MOR || ECR cell, the reac-
tion mixture was analyzed by 1 H-NMR ( Fig. S26). 
The CH3 OH oxidation products, that is, HCOOH 

is obviously found in 8.27 ppm. For ECR, the 1 H- 
NMR of reaction mixture shows no liquid products 
( Fig. S27), a nd no othe r except for CO a nd H2 is de-
tected from GC and IC, which means CO and H2 
are the only products of ECR. To verify the source
of carbon atoms in HCOOH, we carried out iso- 
tope labeling. The MOR test was carried out in 1 M
KOH electrolyte containing 13 C labeled CH3 OH, 
the 13 C-NMR showed an evident peak of H13 COOH 

as shown in Fig. 4 c. The isotope labeling experiments 
were also performed to ascertain the carbon sources 
of ECR products, i.e. CO, 13 CO ( m/z = 29) was
finally detected by gas chromatograph-mass spec- 
trometer (GC-MS) (Fig. 4 d). These results confirm 

that the produced HCOOH and CO originated from 

the reactant CH3 OH and CO2 , respectively, instead 
of decomposition of the catalyst. The durability of a 
catalyst is also one of the most important factors in
further practice application. Therefore, we then eval- 
uated the stability of NiPc-NiPor COF in the electro- 
chemical conditions by chronoamperometric testing 
(Fig. 4 e). After long-time evaluation, no obvious de- 
cay in FE and current density was detected during 
8.5 h (the FE of CO and HCOOH was analyzed 
every 0.5 h). Furthermore, the crystalline structure 
was preserved from the PXRD patterns of NiPc- 
NiPor COF after being immersed in 1 M KOH aque- 
ous solution and 0.5 M KHCO3 aqueous solution 
for 48 h, respectively ( Fig. S28). More importantly, 
the PXRD patterns show that NiPc-NiPor COF sti l l
maintains crystallinity after the electrocatalytic reac- 
tion ( Fig. S29). It is noticed that the PXRD peak in-
tensity after electrocatalytic tests on anode showed 
reduced. This phenomenon maybe caused by the in- 
trinsic instability of this COF under the combination 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad226#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad226#supplementary-data
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https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad226#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad226#supplementary-data
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f strong base and electric field conditions, the elec-
rochemical corrosion by electrolysis, and mechani-
al force by stirring. All the above results confirm that
hese COFs are highly stable catalysts. 

nvestigating structure-functional 
elationships 
e then performed the in-situ FT-IR investigation of

he catalytic process to study the key intermediates
or ECR and MOR. For the MOR process (Fig. 5 a),
n increasing positive band centers at ∼1647 cm−1 

hich corresponds to the C = O of *COOH and is
learly observed in applied cell potential of 1.55 V
s. the RHE. Meanwhi le, a smal l positive band cen-
ers at 1565, 1409, 1340 and 1241 cm−1 , which cor-
esponds to the asymmetry and symmetry stretch of
-O and OH vibrations for *COOH also observed
45 ]. Besides, the increasing peak at 1029 cm−1 sug-
ests that *CHO species exist [46 ]. The above re-
ults show that the *COOH and *CHO are the key
ntermediates for CH3 OH oxidation to HCOOH. In
ddition, the bands at 2941 and 2839 cm−1 in the
Page 8 of 11
spectra are ascribed to surface CH3 OH species. As 
for the ECR process (Fig. 5 b), the *COOH is also
observed as a key intermediate for CO2 reduction to 
CO, whose peaks appear at 170 0–120 0 cm−1 [47 ]. 

Guided by the in-situ FT-IR analysis and conclu- 
sions, we further investigated the ECR and MOR cat- 
alytic processes in detail based on DFT theoretical 
calculations (Fig. 5 c). For the ECR process, the elec- 
tron transfer to the adsorbed CO2 was then com- 
bined with a H proton to generate *COOH which 
is calculated to be the rate determining step (RDS) 
on NiPc-NiPor COF. Interestingly, the Gibbs free en- 
ergy on NiPc for the RDS step is 0.99 eV, which is ob-
viously smaller than the process on NiPor (Fig. 5 d). 
Therefore, based on the minimum energy principle, 
the ECR process is more likely to occur on the NiPc
part. As for the MOR process, the RDS is determined
to be the oxidation process of *CH3 OH to *CH2 OH. 
It is noted that the energy barrier for *CH3 OH to 
*CH2 OH on NiPor and NiPc have a small differ- 
ence, this indicated that the MOR catalytic process 
can occur in both NiPor and NiPc. From the calcu- 
lation results, we also found that the free energy for 
*CH3 OH to *CH2 OH process on NiPor is 0.34 eV, 
which is slightly weaker compared to NiPc (0.38 eV) 
(Fig. 5 e). Thus, we can conclude that the main active 
site for MOR contributed to the NiPor part and si- 
multaneously conjugated with NiPc, these synergis- 
tic effects caused significant catalytic activity during 
the MOR reaction. 

CONCLUSION 

In conclusion, we rationally designed and synthe- 
sized two stable PI phthalocyanine-porphyrin bi- 
functional COFs in pure water by a hydrothermal 
method for electrocatalytic cathodic CO2 reduction 
coupled with anodic CH3 OH oxidation. The dual Ni 
sites in NiPc-NiPor COF in different chemical envi- 
ronments are mainly devoted to different electrocat- 
alytic reactions (i.e. MOR and ECR). Interestingly, 
NiPc-NiPor COF behaves as the superior FE and j for 
both MOR and ECR. In detail, the NiPc-NiPor COF 
shows FECO 

= 98.12% (jCO 

= 6.14 mA cm−2 ) for 
ECR and FEHCOOH 

= 93.75% (jHCOOH 

= 5.81 mA 

cm−2 ) for MOR. According to exhaustive electro- 
chemical measurement and comparison results, we 
demonstrate that the NiPc unit mainly contributes 
to the ECR with the assistance of NiPor, meanwhile 
NiPor is mainly for the MOR process and conjugates 
with NiPc. These ingenious synergistic effects cause 
significant catalytic activity for ECR coupled MOR 

reaction. More importantly, an in-depth mechanis- 
tic study based on in-situ FT-IR and DFT simu- 
lation also confirmed the above conclusions. Our 
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ork provides a new insight into the design and
evelopment of dual functional COFs-based cata-
ysts for various catalytic reactions. 

ETHODS 

ynthesis of PI-linked 

etallophthalocyanine-metalloporphyrin 

OFs 
ynthesis of NiPc-2HPor COF: A Pyrex tube mea-
uring 10 ×200 mm (o.d × length) was charged with
iPc (23.1 mg), 2HPor (16.8 mg), H2 O (2.5 mL).
fter sonication for about 60 minutes, the tube was
hen flash frozen at 77 K (liquid N2 bath) and de-
assed by three freeze-pump-thaw cycles, and re-
l led by N2 (9 9.9 9 9%) to 1 bar then flame sealed.
hen, warmed to room temperature, the mixture was
eated at 230°C and left undisturbed for 48 h. A
lack precipitate was isolated by filtration in a Buch-
er funnel and was washed with THF and acetone
nti l the filtrate was colorless. The wet sample was
ransferred to a Soxhlet extractor and washed with
HF for 24 hours. Finally, the product was evacuated
t 120°C under dynamic vacuum overnight to yield
he activated sample ( ∼21 mg, 57% yield). 
Synthesis of NiPc-NiPor COF: The NiPc-

iPor COF was synthesized by post synthesis
ethod. In detail, NiPc-2HPor COF (15 mg) and
i(OAc)2 ·2H2 O (50 mg) were added to the ethanol
20 mL). After being purified by N2 , the mixture
as heated and refluxed for 12 h at N2 atmosphere.
ollowing that, the solutions were cooled down
o room temperature and filtered. The filter cake
as washed thoroughly with water and ethanol to
emove free metal ions. The final filter cake was
ried at 120°C under dynamic vacuum overnight to
et NiPc-NiPor COF ( ∼14 mg, 82% yield). 

lectrochemical measurements 
lectrocatalytic ECR coupling MOR experiments:
ll electrochemical tests were applied in an air-
ight H-cell (Tianjin Aida Hengsheng Technology,
hina) which separated the cathodic and anodic
hambers by using Nafion 117 membrane. The stan-
ard two-electrode system, i.e. catalyst-modified car-
on fiber papers both as working anode and cath-
de electrode, and the ECR coupling MOR tests on
he electrochemical workstation (Bio-Logic VSP)
nd the CO2 saturated 0.5 M KHCO3 and 1 M
H3 OH in 1 M KOH were used as electrolyte. The
otential range of 1.8 to 2.4 V (cell voltage, step
ize = 0.1 V) was applied during the ECR cou-
ling MOR test and calculated the Faradaic effi-
iency and current density. The yield of CO and H2 
Page 9 of 11
was quantified by gas chromatography (GC-7920, 
CEAulight, China). The HCOOH yield was quan- 
tified by ion chromatography (Ion Chromatogra- 
phy System, Themorpher, China). The working elec- 
trode was similar to the preparation of ECR. The po-
larization curve results were obtained by perform- 
ing linear sweep voltammetry (LSV) mode with a 
scan rate of 5 mV s−1 . Potentials were measured 
against an A g/A gCl reference electrode and the re-
sults were converted to those against a reversible 
hydrogen electrode (RHE) based on the RHE cal- 
ibration. Electrochemical impedance spectroscopy 
(EIS) measurement was performed on the electro- 
chemical analyzer in a frequency range from 100 kHz 
to 100 mHz by applying an AC voltage with 10 mV. 
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