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INTRODUCTION
Most computer vision tasks currently
focus on recognizing objects in isola-
tion. For instance, image classification
only needs to identify the main ob-
ject in an image [1], while object de-
tection and image segmentation only
require models to locate objects in im-
ages [2]. However, these tasks are insuf-
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Figure 1. (a) PSG models generate a scene graph to comprehensively describe the input image, with segmentation masks to ground each node (object
or background). Adapted from ref. [4]. (b) Difference between (ii) scene graph generation (SGG) and (iii) panoptic scene graph generation (PSG). (c) PSG
baselines. Adapted from ref. [4]. (d) Diagram of the winning solution (GRNet). (e) Potential downstream tasks of the PSG model.

ficient to achieve a comprehensive and
in-depth understanding of a scene. For
example, in Fig. 1b(i), a model that
only detects people, elephants, fences
and trees would not have an under-
standing of the scene, making it un-
able to provide safety reminders such as
not to feed the elephants. In many real-
world AI applications like smart cities,

autonomous driving and smart manufac-
turing, it is crucial to not only localize
targets in the scene but also reason and
predict their relations. For example, in au-
tonomous driving, it is important to an-
alyze whether pedestrians on the side of
the road are pushing or riding bicycles.
In smart factories, it is necessary to judge
whether operators are working correctly.
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Understanding these relations is vital for
decision-making.

Scene graph generation (SGG) goes
beyond object classification and localiza-
tion by predicting relations between ob-
jects in a scene [3]. However, traditional
scene graph generation has limitations,
including inaccurate object localization
and limited background annotation, due
to limitations in bounding-box annota-
tions (Fig. 1b(ii)) [4]. To overcome
these limitations, a new SGG setting
named the panoptic scene graph gener-
ation (PSG) leverages panoptic segmen-
tation for accurate and comprehensive
localization of objects and backgrounds,
thus improving the field towards a deeper
scene understanding [4]. Formally, as
shown in Fig. 1b, the PSG challenge ex-
pects the developed PSG models to gen-
erate a scene graph with nodes that rep-
resent objects or backgrounds, and edges
representing the relations between them.
PSG models should also accurately seg-
ment objects to identify the correspond-
ing nodes in the scene graph.

Dataset and metrics. The PSG chal-
lenge uses the public PSG dataset [4],
which contains 49K images with 133 ob-
ject/background classes and 56 relation
classes. Each image is annotated with
panoptic segmentation and scene graphs
(see psgdataset.org for dataset details).
Theevaluation protocol for thePSGchal-
lenge consists of two sub-tasks: scene
graph detection (or generation), abbrevi-
ated SGDet, with the metrics Recall@K
and mean Recall@K, and panoptic seg-
mentation with the metric PQ.The main
evaluationmetric is the (mean) recall rate
of the top K triplets that are predicted by
thePSGmodel. For a (Subject, Verb,Ob-
ject) triplet, a successful recall requires
a mask-based IOU over 0.5 for subject
andobject, and correct classificationof all
the elements in (Subject, Verb, Object).
More details are available in the PSG pa-
per [4].

Challenges.We list the following diffi-
culties to be solved by participants.

� Dealing with relation ambiguity. Rela-
tions can have broad meanings that
can apply to various scenarios, such
as ‘crossing’ for ‘airplane crossing sky’,
‘car crossing road’ and ‘person crossing

road’. The model must learn to under-
stand the meaning of ambiguous rela-
tions.

� Distinguishing similar relations. The
model must differentiate between
similar relations, such as ‘running’ and
‘walking’, or ‘parked on’ and ‘driving
on’, based on visual cues in the image.

� Generalizing relations. The model
should be able to generalize relation
concepts, even beyond the training
set, such as detecting ‘person driving a
train’ when trained on ‘person driving
a car’.

� Dealing with partial and imbalanced an-
notations. Relations in the PSG dataset
are often partially labeled, with many
objects, which makes it difficult to an-
notate all relations. Additionally, the
data are also imbalanced, due to the
long-tailed nature of the world.

THE WINNING SOLUTION
The PSG challenge received 100 sub-
missions from teams presenting vari-
ous solutions. These included utilizing
advanced image segmentation methods
and addressing long-tail problems. The
competition also received several inno-
vative approaches, such as scene graph-
specific data augmentation techniques.
After careful evaluation based on perfor-
mance metrics and the novelty and sig-
nificance of the solutions, GRNet [5]
emerged as the winning method. This
section will provide an overview of the
PSG baselines and delve into the work-
ings of GRNet.

Preliminary: the PSG baselines
Before introducing the winning solution
to the PSG challenge, we first introduce
two classic PSG baselines: a two-stage
method and a one-stage method [4].
For the two-stage baseline, as shown in
Fig. 1c(i), in the first stage, a pretrained
panoptic segmentation model, panoptic
feature pyramid networks, is used to
extract features, masks and class predic-
tions from individual objects in an im-
age. Those individual object features are
then fed to a classic scene graph genera-
tor such as iterative message passing [3]

in the second stage. This two-stage ap-
proach allows classic SGG methods to
be adapted to the PSG task with min-
imal modifications. Figure 1c(ii) shows
the diagram of a one-stage method PS-
GTR, which first uses a convolutional
neural network to extract the image fea-
ture, and then a detection-transformer-
like [6] encoder-decoder is used to
learn the triplet representation directly. A
Hungarian matcher [7] is used to com-
pare the predicted triplets with ground
truth triplets. The optimization objective
then maximizes the cost calculated by
the matcher, and the total loss is calcu-
lated using cross-entropy for labels and
DICE/F-1 for segmentation.

Model architecture
The winning team of the PSG task pre-
sented a new method called GRNet [5].
As previous research [4] has shown
that one-stage models currently outper-
form two-stagemodels, thewinning team
conjectured that the advantage mainly
comes from the direct supervision sig-
nals from the image feature map, which
is beneficial for capturing relations. How-
ever, the winning team also found that
one-stage models cannot usually achieve
good segmentation performance. Based
on this observation, the winning solu-
tion aims to find a trade-off between the
two paradigms by reviving the two-stage
paradigmandequipping itwith the ability
toobtain global context like theone-stage
paradigm.

Specifically, as shown in Fig. 1d, the
winning team first adopts an off-the-shelf
panoptic segmentation method like
Mask2Former [8], which generates
masks for each object. The intermediate
feature map of a specific object from
the segmentor and its corresponding
mask are fused as the object-level feature.
Instead of handling pairwise objects
individually as the classic one-stage
paradigm does (shown in Fig. 1c(i)), the
winning team proposes building a global
contextmodule by utilizing a transformer
that processes each object-level content
with the feature map that contains global
information.Note that a class embedding
is also added to indicate the category
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of the object. With the cross-attention
mechanism in the transformer encoder,
the output object feature (see Fig. 1d)
gathers more global information from
other objects. Finally, for each object-
level feature, a global average pooling
is performed to generate new object
embeddings that have been further con-
textually enriched. A relation-wise binary
classification task is performed to deter-
mine the existence of relations between
object pairs for each relation category.

Relation classification
The winning team also introduces
some special considerations for the
relation-wise binary classification task.
For example, they note that the PSG
dataset often contains two objects having
more than one relation, such as ‘person
looking at elephant’ and ‘person feeding
elephant’ at the same time (see Fig. 1a).
To address this, the solution proposed
is to transform the relation prediction
from a single-label classification problem
in their initial attempt to a multi-label
classification problem.

Besides, the winning team is also
aware of the fact that the PSG dataset
strives for precision and relevance in its
annotation process by requiring annota-
tors to choose specific and accurate pre-
dictions, such as ‘parking on’ instead of
more general ones like ‘on’. However, it
could be unsuitable for the learning of the
boarder relation like ‘on’, since it in fact
exists along with ‘parking on’. To resolve
the conflict, the winning team proposes a
self-training strategy with self-distilled la-
bels for relation classification anduses the
exponential moving average to dynami-
cally update the labels.

Other designs
When computing the loss for relation-
wise binary classification, each predicted
object must be paired with its corre-
sponding ground truth. The Hungarian
matching algorithm is used for this pur-
pose. However, the algorithm is prone
to instability, particularly during the
early training phase when the network’s
accuracy is low. This can lead to differ-
ent matching outcomes for the same
input, causing inconsistent optimization

directions for the network and making
it harder to train. To address this issue,
commonly referred to as ‘matching jit-
ters’, the winning team utilizes denoising
training, where noisy real results are fed
into the decoder as a shortcut to learn
relative offsets, skipping the matching
step and allowing for direct learning
methods, which effectively overcome the
challenge posed by matching jitters.

AWARD REASONING
The winning solution of the PSG chal-
lenge is GRNet, a newmethod presented
by the winning team. The team aims to
find a balance between the two-stage
paradigm and the one-stage paradigm
by reviving the two-stage paradigm
and equipping it with the ability to
obtain global context like the one-stage
paradigm. GRNet first adopts a panoptic
segmentation method to generate masks
for each object. The intermediate fea-
ture map and mask of a specific object
are then fused to form an object-level
feature. A transformer processes each
object-level feature with the global
feature map, which is further enriched by
the cross-attention mechanism. A global
average pooling is performed to gener-
ate new object embeddings. Finally, a
relation-wise binary classification task is
performed to determine the existence
of a relation between object pairs for
each relation category. The winning
team addresses challenges such as the
utilization of global information for the
two-stage paradigm, the conflict between
relation precision and generalization
by using a multi-label classification and
self-distillation, and the computational
efficiency due to the light-weighted
two-stage paradigm. More importantly,
the winning solution obtains the best
overall scores among all participants.

FUTURE DIRECTIONS
ThePSG task refines the problem formu-
lation of scene graph generation and has
attracted a large number of researchers to
push the development of comprehensive
scene understanding models. There are
still some interesting problems that need

to be addressed in the PSG task, and we
hope that future researchers will focus on
the following issues.
� Hierarchical structure analysis of rela-
tions. Relations can generally be di-
vided into location relations and action
relations. The algorithms may need to
model the hierarchical structure of re-
lations to avoid neglecting a type of re-
lation.

� Relation recognition through visual rea-
soning. Amodelwith additional reason-
ing ability, even a language model, can
be combined with visual reasoning to
recognize relations, which is a field that
has not yet been fully explored in the
field of computer vision.

� Mutual promotion of relation recognition
and image segmentation. With the main
task of relation recognition, we hope
that the future PSGmodel can also im-
prove the image segmentation perfor-
mance. Intuitively, the current recogni-
tion of ‘feeding’ in Fig. 1a might help a
more accurate segmentationof the per-
son’s hand. Similarly, relation recogni-
tion could also be enhanced if more in-
formation is utilized from the accurate
masks.

The PSG task opens up new av-
enues for exciting applications. For
instance, in visual captioning tasks [9],
the comprehensive information from
PSG models can help generate more de-
scriptive captions and prepare for a good
visual grounding dataset (Fig. 1e(ii)).
In visual reasoning tasks like visual
question answering [10], the relation
information fromPSGmodels can signif-
icantly improve the accuracy of answers
(Fig. 1e(iii)). Furthermore, by incorpo-
rating PSG models into text-to-image
generation techniques like DALLE-2, we
can generate images thatmore accurately
reflect the relations described in the text
prompt (Fig. 1e(iv)). This can lead to a
closed loop where the generated images
could be used to further enrich the PSG
dataset.

Wewould like to invite thewider com-
munity to explore and imagine the many
other applications that can benefit from a
model with a good understanding of re-
lations. Beyondvisual reasoning, caption-
ing and scene graph-to-image tasks, there
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are surely a wealth of other applications
waiting to be discovered.
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