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Machine translation (MT) is a technique that leverages computers to translate human languages automatically. Nowadays, neural
machine translation (NMT) which models direct mapping between source and target languages with deep neural networks has
achieved a big breakthrough in translation performance and become the de facto paradigm of MT. This article makes a review of
NMT framework, discusses the challenges in NMT, introduces some exciting recent progresses and finally looks forward to some

potential future research trends.
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1 Introduction

The concept of machine translation (MT) was formally pro-
posed in 1949 by Weaver [1] who believed it is possible to
use modern computers to automatically translate human lan-
guages. From then on, machine translation has become one
of the most challenging task in the area of natural language
processing and artificial intelligence. Many researchers of
several generations dedicated themselves to realize the dream
of machine translation.

From the viewpoint of methodology, approaches to MT
mainly fall into two categories: rule-based method and data-
driven approach. Rule-based methods were dominant and
preferable before 2000s. In this kind of methods, bilingual
linguistic experts are responsible to design specific rules for
source language analysis, source-to-target language transfor-
mation and target language generation. Since it is very sub-
jective and labor intensive, rule-based systems are difficult to
be scalable and they are fragile when rules cannot cover the
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unseen language phenomena.

In contrast, the data-driven approach aims at teaching com-
puters to learn how to translate from lots of human-translated
parallel sentence pairs (parallel corpus). The study of data-
driven approach has experienced three periods. In the mid-
dle of 1980s, ref. [2] proposed example-based MT which
translates a sentence by retrieving the similar examples in the
human-translated sentence pairs.

From early 1990s, statistical machine translation (SMT)
has been proposed and word or phrase level translation rules
can be automatically learned from parallel corpora using
probabilistic models [3-5]. Thanks to the availability of more
and more parallel corpora, sophisticated probabilistic models
such as noisy channel model and log-linear model achieve
better and better translation performance. Many companies
(e.g., Google, Microsoft and Baidu) have developed online
SMT systems which much benefit the users. However, due to
complicated integration of multiple manually designed com-
ponents such as translation model, language model and re-
ordering model, SMT cannot make full use of large-scale par-
allel corpora and translation quality is far from satisfactory.
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No breakthrough has been achieved more than 10 years
until the introduction of deep learning into MT. Since 2014,
neural machine translation (NMT) based on deep neural net-
works has quickly developed [6-9]. In 2016, through ex-
tensive experiments on various language pairs, refs. [10, 11]
demonstrated that NMT has made a big breakthrough and ob-
tained remarkable improvements compared to SMT, and even
approached human-level translation quality [12]. This article
attempts to give a review of NMT framework, discusses some
challenging research tasks in NMT, introduces some exciting
progresses and forecasts several future research topics.

The remainder of this article is organized as follows.
Sect. 2 first introduces the background and state-of-the-art
paradigm of NMT. In Sect. 3 we discuss the key challeng-
ing research tasks in NMT. From Sect. 4 to Sect. 7, the recent
progresses are presented concerning each challenge. Sect. 8
discusses the current state of NMT compared to expert trans-
lators and finally looks forward to some potential research
trends in the future.

2 Neural machine translation

2.1 Encoder-decoder framework

Neural machine translation is an end-to-end model following
an encoder-decoder framework that usually includes two neu-
ral networks for encoder and decoder respectively [6-9]. As
shown in Figure 1, the encoder network first maps each input
token of the source-language sentence into a low-dimensional
real-valued vector (aka word embedding) and then encodes
the sequence of vectors into distributed semantic representa-
tions, from which the decoder network generates the target-
language sentence token by token ! from left to right.

From the probabilistic perspective, NMT models the con-
ditional probability of the target-language sentence y =

Yo,* -+, Yist -,y given the source-language sentence x =
Xg,+*,Xj,--+,x; as a product of token-level translation
probabilities.

1
POIx,0) = [ | POilx. y<i. ), M
i=0

where y.; = yo,- -
been generated so far. xg, yo and x;, y; are often special sym-
bols <s> and </s> indicating the start and end of a sentence
respectively.

,¥i—1 is the partial translation which has

The token-level translation probability can be defined as
follows:

1) Currently, subword is the most popular translation token for NMT [13].
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Figure 1  (Color online) Encoder-decoder framework for neural machine
translation. The encoder encodes the input sequence xoxxpx3x4X5 into dis-
tributed semantic representations based on which the decoder produces an
output sequence Yoy1y2y3y4.

exp(g(x»y<i9yi’ 6))
P(yilx’y<i’ 0) =

%yev exp(gx, y<in ' 9))’ @)

in which V denotes the vocabulary of the target language and
g(+) is a non-linear function that calculates a real-valued score
for the prediction y; conditioned on the input x, the partial
translation y.; and the model parameters 6. The non-linear
function g(+) is realized through the encoder and decoder net-
works. The input sentence x is abstracted into hidden seman-
tic representations k through multiple encoder layers. y; is
summarized into the target-side history context representa-
tion z with decoder network which further combines A and z
using an attention mechanism to predict the score of y;.

The network parameters 6 can be optimized to maxi-
mize the log-likelihood over the bilingual training data D =

{(x, ytm)M

M
6 = argmax,. Z logP(y™|x™, 6%).

m=1

3)

These years have witnessed the fast development of the
encoder-decoder networks from recurrent neural network
[6, 7], to convolutional neural network [8] and then to self-
attention based neural network Transformer [9]. At present,
Transformer is the state-of-the-art in terms of both quality
and efficiency.

2.2 Transformer

In Transformer?, the encoder includes N identical layers and
each layer is composed of two sub-layers: the self-attention
sub-layer followed by the feed-forward sub-layer, as shown

2) Model and codes can be found at https://github.com/tensorflow/tensor2tensor.
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in the left part of Figure 2. The self-attention sub-layer cal-
culates the output representation of a token by attending to
all the neighbors in the same layer, computing the correla-
tion score between this token and all the neighbors, and fi-
nally linearly combining all the representations of the neigh-
bors and itself. The output of the N-th encoder layer is the
source-side semantic representation . The decoder as shown
in the right part in Figure 2 also consists of N identical layers.
Each layer has three sub-layers. The first one is the masked
self-attention mechanism that summarizes the partial predic-
tion history. The second one is the encoder-decoder attention
sub-layer determining the dynamic source-side contexts for
current prediction and the third one is the feed-forward sub-
layer. Residual connection and layer normalization are per-
formed for each sub-layer in both of the encoder and decoder.

It is easy to notice that the attention mechanism is the
key component. There are three kinds of attention mecha-
nisms, including encoder self-attention, decoder masked self-
attention and encoder-decoder attention. They can be formal-
ized into the same formula.

. gK*
Attention(q, K, V) = softmax(—)V, 4)
Vay
Output
probabilities

Add&Norm

Add&Norm (LSS
Multi-head xN
inter-attention
Nx
Add&Norm Add&Norm
Multi-head intra- Mask multi-head
attention intra-attention
— .
Position Position
encoding & ; encoding
Input Output
embedding embedding
Inputs Outputs

(shifted right)

Figure 2  (Color online) The Transformer architecture in which attention
mechanism is the core in both of the encoder and decoder networks. shift
right means that the prediction of the previous time-step will shift right as
the input context to predict next output token.

where ¢, K and V stand for a query, the key list and the value
list respectively. dj is the dimension of the key.

For the encoder self-attention, the queries, keys and values
are from the same layer. For example, considering we cal-
culate the output of the first layer in the encoder at the j-th
position, let x; be the sum vector of input token embedding
and the positional embedding. The query is vector x;. The
keys and values are the same and both are the embedding ma-
trix x = [xg - - - x;]. Then, multi-head attention is proposed to
calculate attentions in different subspaces.

MultiHead(g, K, V) = Concat;(head; )Wy,

. ) . 5
head; = Attention(qW’Q, KWy, VW),

in which WiQ,, Wi., Wi, and W, denote projection parameter
matrices .

Using eq. (5) followed by residential connection, layer
normalization and a feed-forward network, we can get the
representation of the second layer. After N layers, we obtain
the input contexts C = [hg,--- , hy].

The decoder masked self-attention is similar to that of en-
coder except that the query at the i-th position can only attend
to positions before i, since the predictions after i-th position
are not available in the auto-regressive left-to-right unidirec-
tional inference.

T
q\g e ©

k

z; = Attention(q;, K<;, V<;) = softmax(

The encoder-decoder attention mechanism is to calculate
the source-side dynamic context which is responsible to pre-
dict the current target-language token. The query is the output
of the masked self-attention sub-layer z;. The keys and values
are the same encoder contexts C. The residential connection,
layer normalization and feed-forward sub-layer are then ap-
plied to yield the output of a whole layer. After N such layers,
we obtain the final hidden state z;. Softmax function is then
employed to predict the output y;, as shown in the upper right
part of Figure 2.

3 Key challenging research tasks

Although Transformer has significantly advanced the devel-
opment of neural machine translation, many challenges still
remain to be addressed. Obviously, designing better NMT
framework must be the most important challenge. However,
since the innovation of Transformer, almost no more effective
NMT architecture has been proposed. Ref. [14] presented an
alternative encoder-decoder framework RNMT+ which com-
bines the merits of RNN-based and Transformer-based mod-
els to perform translation. Refs. [15, 16] investigated how
to design much deeper Transformer model and ref. [17] pre-
sented a Reformer model enabling rich interaction between
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encoder and decoder. Ref. [18] attempted to replace self-
attention with dynamic convolutions. Ref. [19] proposed the
evolved Transformer using neural architecture search. Ref.
[20] aimed to improve Transformer from the perspective of
multi-particle dynamic system. Note that these models do
not introduce big change on the NMT architecture. Pursuing
to design novel and more effective NMT framework will be
a long way to go. In this section, we analyze and discuss the
key challenges® facing NMT from its formulation.

From the introduction in Sect. 2.1, NMT is formally de-
fined as a sequence-to-sequence prediction task in which four
assumptions are hidden in default. First, the input is a sen-
tence rather than paragraphs and documents. Second, the
output sequence is generated in a left-to-right autoregressive
manner. Third, the NMT model is optimized over the bilin-
gual training data which should include large-scale parallel
sentences in order to learn good network parameters. Fourth,
the processing objects of NMT are the pure texts (tokens,
words and sentences) instead of speech and videos. Accord-
ingly, four key challenges can be summarized as follows.

(1) Document neural machine translation. In NMT formu-
lation, sentence is the basic input for modeling. However,
some words in the sentence are ambiguous and the sense can
only be disambiguated with the context of surrounding sen-
tences or paragraphs. And when translating a document, we
need to guarantee the same terms in different sentences lead
to the same translation while performing translation sentence
by sentence independently cannot achieve this goal. More-
over, many discourse phenomena such as coreference, omis-
sions and coherence, cannot be handled in the absence of
document-level information. Obviously, it is a big challenge
how to take full advantage of contexts beyond sentences in
neural machine translation.

(2) Non-autoregressive decoding and bidirectional infer-
ence. Left-to-right decoding token by token follows an au-
toregressive style which seems natural and is in line with hu-
man reading and writing. It is also easy for training and in-
ference. However, it has several drawbacks. On one hand,
the decoding efficiency is quite limited since the i-th transla-
tion token can be predicted only after all the previous i — 1
predictions have been generated. On the other hand, predict-
ing the i-th token can only access the previous history pre-
dictions while cannot utilize the future context information
in autoregressive manner, leading to inferior translation qual-
ity. Thus, it is a challenge how to break the autoregressive
inference constraint. Non-autoregressive decoding and bidi-
rectional inference are two solutions from the perspectives of
efficiency and quality respectively.

(3) Low-resource translation. There are thousands of hu-

3) Refs. [21-23] have also discussed various challenges.
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man languages in the world and abundant bitexts are only
available in a handful of language pairs such as English-
German, English-French and English-Chinese. Even in the
resource-rich language pair, the parallel data are unbalanced
since most of the bitexts mainly exist in several domains (e.g.,
news and patents). That is to say, the lack of parallel training
corpus is very common in most languages and domains. It is
well-known that neural network parameters can be well opti-
mized on highly repeated events (frequent word/phrase trans-
lation pairs in the training data for NMT) and the standard
NMT model will be poorly learned on low-resource language
pairs. As a result, how to make full use of the parallel data
in other languages (pivot-based translation and multilingual
translation) and how to take full advantage of non-parallel
data (semi-supervised translation and unsupervised transla-
tion) are two challenges facing NMT.

(4) Multimodal neural machine translation. Intuitively, hu-
man language is not only about texts and understanding the
meaning of a language may need the help of other modali-
ties such as speech, image and videos. Concerning the well-
known example that determines the meaning of the word
bank when translating the sentence “he went to the bank”, it
will be correctly translated if we are given an image in which
a man is approaching a river. Furthermore, in many scenar-
ios, we are required to translate a speech or a video. For ex-
ample, simultaneous speech translation is more and more de-
manding in various conferences or international live events.
Therefore, how to perform multimodal translation under the
encoder-decoder architecture is a big challenge of NMT. How
to make full use of different modalities in multimodal trans-
lation and how to balance the quality and latency in simulta-
neous speech translation are two specific challenges.

In the following sections, we briefly introduce the recent
progress for each challenge.

4 Document-level neural machine translation

As we discussed in Sect. 3 that performing translation sen-
tence by sentence independently would introduce several
risks. An ambiguous word may not be correctly translated
without the necessary information in the surrounding con-
textual sentences. A same term in different sentences in the
same document may result in inconsistent translations. Fur-
thermore, many discourse phenomena, such as coreference,
omissions and cross-sentence relations, cannot be well han-
dled. In a word, sentence-level translation will harm the co-
herence and cohesion of the translated documents if we ig-
nore the discourse connections and relations between sen-
tences.
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In general, document-level machine translation (docMT)
aims at exploiting the useful document-level information
(multiple sentences around the current sentence or the whole
document) to improve the translation quality of the current
sentence as well as the coherence and cohesion of the trans-
lated document. docMT has already been extensively stud-
ied in the era of statistical machine translation (SMT), in
which most researchers mainly propose explicit models to
address some specific discourse phenomena, such as lexi-
cal cohesion and consistency [26-28], coherence [29] and
coreference [30]. Due to complicate integration of multiple
components in SMT, these methods modeling discourse phe-
nomenon do not lead to promising improvements.

The NMT model dealing with semantics and translation in
the distributed vector space facilitates the use of wider and
deep document-level information under the encoder-decoder
framework. It does not need to explicitly model specific dis-
course phenomenon as that in SMT. According to the types of
used document information, document-level neural machine
translation (docNMT) can roughly fall into three categories:
dynamic translation memory [31,32], surrounding sentences
[24,25,33-37] and the whole document [38—40].

Ref. [32] presented a dynamic cache-like memory to
maintain the hidden representations of previously translated
words. The memory contains a fixed number of cells and
each cell is a triple (c;, s;, y;) where y, is the prediction at the #-
th step, ¢, is the source-side context representation calculated
by the attention model and s, is the corresponding decoder
state. During inference, when predicting the i-th prediction
for a test sentence, c; is first obtained through attention model
and the probability p(c/|c;) is computed based on their simi-

Target translation
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larity. Then memory context representation m; is calculated
by linearly combining all the values s, with p(¢/c;). This
cache-like memory can encourage the words in similar con-
texts to share similar translations so that cohesion can be en-
hanced to some extent.

The biggest difference between the use of whole document
and surrounding sentences lies in the number of sentences
employed as the context. This article mainly introduces the
methods exploiting surrounding sentences for docNMT. Rel-
evant experiments further show that subsequent sentences on
the right contribute little to the translation quality of the cur-
rent sentence. Thus, most of the recent work aim at fully
exploring the previous sentences to enhance docNMT. These
methods can be divided into two categories. One just uti-
lizes the previous source-side sentences [24,33,34,41]. The
other uses the previous source sentences as well as their target
translations [25, 36].

If only previous source-side sentences are leveraged, the
previous sentences can be concatenated with the current sen-
tence as the input to the NMT model [41] or could be encoded
into a summarized source-side context with a hierarchical
neural network [34]. Ref. [24] presented a cascaded atten-
tion model to make full use of the previous source sentences.
As shown in Figure 3(a) [24, 25], previous sentence is first
encoded as the document-level context representation. When
encoding the current sentence, each word will attend to the
document-level context and obtain a context-enhanced source
representation. During the calculation of cross-language at-
tention in the decoder, the current source sentences together
with the document-level context are both leveraged to pre-
dict the target word. The probability of translation sentence

Second-pass translation  Second-pass translation

\{%{A\,{’A/
“\ I 30> 4{\\

4

Previous sentences Current sentence

Figure 3

Previous sentences Current sentence

(Color online) Illustration of two docNMT models. The left part shows the cascaded attention model proposed by ref. [24] in which the previous

source sentences are first leveraged to enhance the representation of current source sentence and then used again in the decoder. The right part illustrates the
two-pass docNMT model proposed by ref. [25] in which sentence-level NMT first generates preliminary translation for each sentence and then the first-pass
translations together with the source-side sentences are employed to generate the final translation results.
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given the current sentence and the previous context sentences
is formulated as follows:

1

P(ylx, doc,; 6) = | | PGily<is ¥, doc,; 0), @)
i=0

where doc, denotes the source-side document-level context,

namely previous sentences.

If both of previous source sentences and their transla-
tions are employed, two-pass decoding is more suitable for
the docNMT model [25]. As illustrated in Figure 3(b), the
sentence-level NMT model can generate preliminary trans-
lations for each sentence in the first-pass decoding. Then,
the second-pass model will produce final translations with the
help of source sentences and their preliminary translation re-
sults. The probability of the target sentence in the second
pass can be written by

I
P(ylx, docy,doc,; 0) = | | POily<i,x, docy,docy;6),  (8)
i=0
in which doc, denotes the first-pass translations of doc,.
Since most methods for docNMT are designed to boost the
overall translation quality (e.g., BLEU score), it still remains
a big problem whether these methods indeed well handle the
discourse phenomena. To address this issue, ref. [42] con-
ducted an empirical investigation of the docNMT model on
the performance of processing various discourse phenomena,
such as coreference, cohesion and coherence. Their find-
ings indicate that multi-encoder model exploring only the
source-side previous sentences performs poorly in handling
the discourse phenomena while exploiting both source sen-
tences and target translations leads to the best performance.
Accordingly, ref. [43,44] recently focused on designing bet-
ter document-level NMT to improve on specific discourse
phenomena such as deixis, ellipsis and lexical cohesion for
English-Russian translation.

S Non-autoregressive decoding and bidirec-
tional inference

Most NMT models follow the autoregressive generation style
which produces output word by word from left to right. Just
as Sect. 3 discussed, this paradigm has to wait for i — 1 time
steps before starting to predict the i-th target word. Further-
more, left-to-right autoregressive decoding cannot exploit the
target-side future context (future predictions after i-th word).
Recently, many research work attempt to break this decod-
ing paradigm. Non-autoregressive Transformer (NAT) [45] is
proposed to remarkably lower down the latency by emitting
all of the target words at the same time and bidirectional infer-
ence [46,47] is introduced to improve the translation quality
by making full use of both history and future contexts.

October (2020) Vol. 63 No. 10 2033

5.1 Non-autoregressive decoding

Non-autoregressive Transformer (NAT) aims at producing an
entire target output in parallel. Different from the autore-
gressive Transformer model (AT) which terminates decod-
ing when emitting an end-of-sentence token (/s), NAT has
to know how many target words should be generated before
parallel decoding. Accordingly, NAT calculates the condi-
tional probability of a translation y given the source sentence
x as follows:

!
Puat(ylx; 6) = Po(llx;0) - | | PGilx; 0). ©)
i=0

To determine the output length, ref. [45] proposed to use
the fertility model which predicts the number of target words
that should be translated for each source word. We can per-
form word alignment on the bilingual training data to obtain
the gold fertilities for each sentence pair. Then, the fertility
model can be trained together with the translation model. For
each source word x;, suppose the predicted fertility is ®(x;).
The output length will be 1 = 3.7 O(x;).

Another issue remains that AT let the previous generated
output y;,_; be the input at the next time step to predict the
i-th target word but NAT has no such input in the decoder
network. Ref. [45] found that translation quality is particu-
larly poor if omitting the decoder input in NAT. To address
this, they resort to the fertility model again and copy each
source word as many times as its fertility ®(x;) into the de-
coder input. The empirical experiments show that NAT can
dramatically boost the decoding efficiency by 15x speedup
compared to AT. However, NAT severely suffers from accu-
racy degradation.

The low translation quality may be due to at least two crit-
ical issues of NAT. First, there is no dependency between tar-
get words although word dependency is ubiquitous in natu-
ral language generation. Second, the decoder inputs are the
copied source words which lie in different semantic space
with target words. Recently, to address the shortcomings of
the original NAT model, several methods are proposed to im-
prove the translation quality of NAT while maintaining its
efficiency [48-53].

Ref. [49] proposed a semi-autoregressive Transformer
model (SAT) to combine the merits of both AT and NAT. SAT
keeps the autoregressive property in global but performs NAT
in local. Just as shown in Figure 4, SAT generates K succes-
sive target words at each time step in parallel. If K = 1, SAT
will be exactly AT. It will become NAT if K = I. By choos-
ing an appropriate K, dependency relation between fragments
is well modeled and the translation quality can be much im-
proved with some loss of efficiency.
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A Yo —> Vi —> Y2 —> Y

Y1 H Y2 Vs -ﬁ —> Vi1 Y
4 Yo Y1 Y2 o Yi
Yo yi 2 v

Figure 4 (Color online) Illustration of autoregressive NMT model and various non-autoregressive NMT models. AT denotes the conventional autoregressive
NMT paradigm in which the i-th prediction can fully utilize the partial translation of i — 1 words. NAT indicates the non-autoregreesive NMT model that
generates all the target words simultaneously. SAT is a variant of NAT which produces an ngram each time. NAT-EDI denotes the non-autoregressive NMT
model with enhanced decoder input which is generated by retrieving the phrase table.

To mimic the decoder input in the AT model, ref. [50] in-
troduced a simple but effective method that employs a phrase
table which is the core component in SMT to convert source
words into target words. Specifically, they first greedily seg-
ment the source sentence into phrases with maximum match
algorithm. Suppose the longest phrase in the phrase table
contains K words. Xxo.x—; is a phrase if it matches an entry
in the phrase table. Otherwise they iteratively check x¢.x_»,
x0.x—3 and so on. If xy., is a phrase, then they start to check
Xp1:n+k- After segmentation, each source phrase is mapped
into target translations which are concatenated together as the
new decoder input, as shown in Figure 4. Due to proper
modeling of the decoder input with a highly efficient strat-
egy, translation quality is substantially improved while the
decoding speed is even faster than baseline NAT.

5.2 Bidirectional inference

From the viewpoint of improving translation quality, au-
toregressive model can be enhanced by exploring the fu-
ture context on the right. In addition to predicting and es-
timating the future contexts with various models [54-56], re-
searchers find that left-to-right (L2R) and right-to-left (R2L)
autoregressive models can generate complementary transla-
tions [46, 47,57, 58]. For example, in Chinese-to-English
translation, experiments show that L2R can generate better
prefix while R2L is good at producing suffix. Intuitively, it is
a promising direction to combine the merits of bidirectional
inferences and fully exploit both history and future contexts
on the target side.

To this end, many researchers resort to exploring bidirec-
tional decoding to take advantages of both L2R and R2L

inferences. These methods are mainly fall into four cate-
gories: (1) enhancing agreement between L2R and R2L pre-
dictions [57, 59]; (2) reranking with bidirectional decoding
[57,60,61]; (3) asynchronous bidirectional decoding [46, 62]
and (4) synchronous bidirectional decoding [47,63,64].

Ideally, L2R decoding should generate the same transla-
tion as R2L decoding. Under this reasonable assumption,
refs. [57,59] introduced agreement constraint or regulariza-
tion between L2R and R2L predictions during training. Then,
L2R inference can be improved.

The reranking algorithm is widely used in machine trans-
lation, and the R2L. model can provide an estimation score for
the quality of L2R translation from another parameter space
[57,60,61]. Specifically, L2R first generates a n-best list of
translations. The R2L model is then leveraged to force de-
code each translation leading to a new score. Finally, the best
translation is selected according to the new scores.

Refs. [46, 62] proposed an asynchronous bidirectional de-
coding model (ASBD) which first obtains the R2L outputs
and optimizes the L2R inference model based on both of the
source input and the R2L outputs. Specifically, ref. [46] first
trained a R2L. model with the bilingual training data. Then,
the optimized R2L decoder translates the source input of each
sentence pair and produces the outputs (hidden states) which
serve as the additional context for L2R prediction when op-
timizing the L2R inference model. Due to explicit use of
right-side future contexts, the ASBD model significantly im-
proves the translation quality. But these approaches still suf-
fer from two issues. On one hand, they have to train two sep-
arate NMT models for L2R and R2L inferences respectively.
And the two-pass decoding strategy makes the latency much
increased. On the other hand, the two models cannot interact
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with each other during inference, which limits the potential
of performance improvement.

Ref. [47] proposed a synchronous bidirectional decod-
ing model (SBD) that produces outputs using both L2R and
R2L decoding simultaneously and interactively. Specifically,
a new synchronous attention model is proposed to conduct
interaction between L2R and R2L inferences. The top part
in Figure 5 gives a simple illustration of the proposed syn-
chronous bidirectional inference model. The dotted arrows
on the target side is the core of the SBD model. L2R and
R2L inferences interact with each other in an implicit way
illustrated by the dotted arrows. All the arrows indicate the
information passing flow. Solid arrows show the conventional
history context dependence while dotted arrows introduce the
future context dependence on the other inference direction.
For example, besides the past predictions (yf)z’, ylf’), L2R in-
ference can also utilize the future contexts (y(r)zl, y{zz) gener-
ated by the R2L inference when predicting ylzzr. The condi-

tional probability of the translation can be written as follows:

Plylx) = Mo POiVo - Fict %, Yo+ Vic1),  if L2R,
5 PGS0 it Yo Fion),  if R2L.

(10)

To accommodate L2R and R2L inferences at the same
time, they introduced a novel beam search algorithm. As
shown in the bottom right of Figure 5, at each timestep during
decoding, each half beam maintains the hypotheses from L2R
and R2L decoding respectively and each hypothesis is gener-
ated by leveraging already predicted outputs from both direc-
tions. At last, the final translation is chosen from L2R and

Xy X| o
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R2L results according to their translation probability. Thanks
to appropriate rich interaction, the SBD model substantially
boosts the translation quality while the decoding speed is only
10% slowed down.

Ref. [63] further noticed that L2R and R2L are not nec-
essary to produce the entire translation sentence. They let
L2R generate the left half translation and make R2L produce
the right half, and then two halves are concatenated to form
the final translation. Using proper training algorithms, they
demonstrated through extensive experiments that both trans-
lation quality and decoding efficiency can be significantly im-
proved compared to the baseline Transformer model.

6 Low-resource translation

Most NMT models assume that enough bilingual training
data are available, which is the rare case in real life. For
a low-resource language pair, a natural question may arise
that what kind of knowledge can be transferred to build a rel-
atively good NMT system. This section will discuss three
kinds of methods. One attempts to share translation knowl-
edge from other resource-rich language pairs, in which pivot
translation and multilingual translation are the two key tech-
niques. Pivot translation assumes that for the low-resource
pair A and B, there is a language C that has rich bitexts with
A and B, respectively [65,66]. This section mainly discusses
the technique of multilingual translation in the first category.
The second kind of methods resort to semi-supervised ap-
proach which takes full advantages of limited bilingual train-
ing data and abundant monolingual data. The last one lever-
ages unsupervised algorithm that requires monolingual data

2r
Roa

2l 2l 2l
—> Vi3 Xo

(r2l) T

Standard beam search (size=4)

|

~ L2R

~ L2R

~ L2R

- L2R

T=2

<pad>
T=0

T=1 T=2

Figure 5 (Color online) Illustration of the synchronous bidirectional inference model. The top demonstrates how the bidirectional contexts can be leveraged
during inference. The bottom compares the beam search algorithm between the conventional NMT and the synchronous bidirectional NMT.
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only.

6.1 Multilingual neural machine translation

Let us first have a quick recap about the NMT model based
on encoder-decoder framework. The encoder is responsible
for mapping the source language sentence into distributed se-
mantic representations. The decoder is to convert the source-
side distributed semantic representations into target language
sentence. Apparently, the encoder and the decoder (exclud-
ing the cross-language attention component) are just single-
language dependent. Intuitively, the same source language
in different translation systems (e.g., Chinese-to-English,
Chinese-to-Hindi) can share the same encoder and the same
target language can share the same decoder (e.g., Chinese-
to-English and Hindi-to-English). Multilingual neural ma-
chine translation is a framework that aims at building a uni-
fied NMT model capable of translating multiple languages
through parameter sharing and knowledge transferring.

Ref. [67] is the first to design a multi-task learning method
which shares the same encoder for one-to-many translation
(one source language to multiple target languages). Ref.
[68] proposed to share the decoder for many-to-one transla-
tion (many source languages to one target language). Refs.
[69, 70] proposed to share attention mechanism for many-
to-many translation (many source languages to many target
languages). Despite performance improved for low-resource
languages, these methods are required to design a specific en-
coder or decoder for each language, hinders their scalability
in dealing with many languages.

Ref. [71] goes a step further and let all source languages
share the same encoder and all the target languages share
the same decoder. They have successfully trained a sin-
gle encoder-decoder NMT model for multilingual translation.
The biggest issue is that the decoder is unaware of which tar-
get language should be translated to at the test phase. To this
end, ref. [71] introduced a simple strategy and added a spe-
cial token indicating target language (e.g, 2en and 2zh) at the
beginning of the source sentence. By doing this, low-resource
languages have the biggest chance to share translation knowl-
edge from other resource-rich languages. It also enables zero-
shot translation as long as the two languages are employed as
source and target in the multilingual NMT model. In addi-
tion, this unified multilingual NMT is very scalable and could
translate all the languages in one model ideally. However,
experiments find that the output is sometimes mixed of mul-
tiple languages even using a translation direction indicator.
Furthermore, this paradigm enforces different source/target
languages to share the same semantic space, without con-
sidering the structural divergency among different languages.
The consequence is that the single model based multilingual

NMT yields inferior translation performance compared to in-
dividually trained bilingual counterparts. Most of recent re-
search work mainly focus on designing better models to well
balance the language-independent parameter sharing and the
language-sensitive module design.

Ref. [72] augmented the attention mechanism in decoder
with language-specific signals. Ref. [73] proposed to use
language-sensitive positions and language-dependent hidden
presentations for one-to-many translation. Ref. [74] designed
an algorithm to generate language-specific parameters. Ref.
[75] designed a language clustering method and forced lan-
guages in the same cluster to share the parameters in the same
semantic space. Ref. [76] attempted to generate two lan-
guages simultaneously and interactively by sharing encoder
parameters. Ref. [77] proposed a compact and language-
sensitive multilingual translation model which attempts to
share most of the parameters while maintaining the language
discrimination.

As shown in Figure 6, ref. [77] designed four novel mod-
ules in the Transformer framework compared with single-
model based multilingual NMT. First, they introduced a rep-
resentor to replace both encoder and decoder by sharing
weight parameters of the self-attention block, feed-forward
and normalization blocks (middle part in Figure 6). It
makes the multilingual NMT model as compact as possible
and maximizes the knowledge sharing among different lan-
guages. The objective function over L language pairs be-
comes

L M

LO) = ), D 10gPO{" ™ Orep, Our), (11)

=1 m=1

where 6, and 6, denote parameters of representor and at-
tention mechanism respectively.

However, the representor further reduces the ability to dis-
criminate different languages. To address this, they intro-
duced three language-sensitive modules.

(1) Language-sensitive embedding (bottom part in Fig-
ure 6): they compared four categories of embedding sharing
patterns, namely language-based pattern (different languages
have separate input embeddings), direction-based patter (lan-
guages in source side and target side have different input
embeddings), representor-based pattern (shared input embed-
dings for all languages) and three-way weight tying pattern
proposed by ref. [78], in which the output embedding of the
target side is also shared besides representor-based sharing.

(2) Language-sensitive attention (middle part in Figure 6):
this mechanism allows the model to select the cross-lingual
attention parameters according to specific translation tasks
dynamically.

(3) Language-sensitive discriminator (top part in Figure 6):
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Figure 6  (Color online) Illustration of a compact and language-sensitive multilingual NMT model. The compactness is ensured by sharing parameters
between encoder and decoder, denoted as representor. Language-sensitive capacity is realized by three components: language-sensitive embedding (bottom),
language-sensitive cross-attention (middle) and language discriminator (top).

source monolingual data D, = {x(’*)}lL*: .
gual data D, = {y(ly)}lLV:1 or both.

y

for this module, they employed a neural model fgs on the top or target monolin-
layer of reprensentor h; "

wop> and this model outputs a language
judgment score Ppayg.

Monolingual data play a very important role in SMT where
the target-side monolingual corpus is leveraged to train a lan-
guage model (LM) to measure the fluency of the translation
candidates during decoding [4,5,79]. Using monolingual data
as a language model in NMT is not trivial since it needs to
modify the architecture of the NMT model. Refs. [80, 81]
integrated NMT with LM by combining hidden states of both
models, making the model much complicated.

Plang = SOftInaX(VVdis X fdis(hzgg) + bgs).

(12)

Combining the above four ideas together, they showed
through extensive experiments that the new method signifi-
cantly improves multilingual NMT on one-to-many, many-
to-many and zero-shot scenarios, outperforming bilingual
counterparts in most cases. It indicates that low-resource lan-
guage translation can greatly benefit from this kind of multi-
lingual NMT, and so do zero-resource language translations.

As for leveraging the target-side monolingual data, back-
translation (BT) proposed by ref. [82] may be one of the best
solutions up to now. BT is easy and simple to use since it is
model agnostic to the NMT framework [83, 84]. It only re-

6.2 Semi-supervised neural machine translation i i :
quires to train a target-to-source translation system to trans-

Semi-supervised neural machine translation is a paradigm
which aims at building a good NMT system with limited
bilingual training data © = {x,y™}M = plus massive

late the target-side monolingual sentences back into source
language. The source translation and its corresponding tar-
get sentence are paired as pseudo bitexts which combined to-
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gether with original bilingual training data to train the source-
to-target NMT system. It has been proven to be particularly
useful in low-resource translation [85]. Ref. [84] conducted a
deep analysis to understand BT and investigate various meth-
ods for synthetic source sentence generation. Ref. [86] pro-
posed to measure the confidence level of synthetic bilingual
sentences so as to filter the noise.

In order to utilize the source-side monolingual data, ref.
[87] proposed two methods: forward translation and multi-
task learning. Forward translation is similar to BT, and the
multi-task learning method performs source-to-target trans-
lation task and source sentence reordering task by sharing the
same encoder.

Many researchers resort to use both side monolingual data
in NMT at the same time [88-91]. We summarize two meth-
ods in Figure 7: the auto-encoder based semi-supervised
learning method [88] and the dual learning method [89]. For
a source-side monolingual sentence x, ref. [88] employed
source-to-target translation as encoder to generate latent vari-
able y and leverage target-to-source translation as decoder to
reconstruct the input leading to x’. They optimize the param-
eters by maximizing the reconstruction probability as shown
in Figure 7(a). The target-side monolingual data are used in a
symmetric way. Figure 7(b) shows the objective function for
the dual learning method. Ref. [89] treated source-to-target
translation as the primal task and target-to-source translation
as the dual task. Agent A sends through the primal task a
translation of the source monolingual sentence to the agent
B. B is responsible to estimate the quality of the translation
with a language model and the dual task. The rewards includ-
ing the similarity between the input x and reconstructed one
x’, and two language model scores LM(y), LM(x’), are em-
ployed to optimize the network parameters of both source-
to-target and target-to-source NMT models. Similarly, the
target-side monolingual data are used in a symmetric way in
dual learning.

Ref. [90] introduced an iterative back-translation algo-
rithm to exploit both source and target monolingual data with

Source-to-target

Jm: ZyP(Y|X;952t)P(x’|y§ Bt2s)

x' = t2s(y) y = s2t()

weng = BLEUx,x) + LM(y) + LM(x)
G /

Target-to-source

Figure 7  (Color online) Illustration of two methods exploring monolin-
gual data. If the parameters are trained to maximize the objective function
of (a), it is the auto-encoder based method. If using reward as (b) shows,
it is the dual learning method. Note that this figure only demonstrates the
usage of source-side monolingual data for simplicity. The use of target-side
monolingual data is symmetric.

an EM optimization method. Ref. [91] proposed a mirror-
generative NMT model, that explores the monolingual data
by unifying the source-to-target NMT model, the target-
to-source NMT model, and two language models. They
showed better performance can be achieved compared to
back-translation, iterative back-translation and dual learning.

6.3 Unsupervised neural machine translation

Unsupervised neural machine translation addresses a very
challenging scenario in which we are required to build a
NMT model using only massive source-side monolingual
data D, = {x® }i"zl and target-side monolingual data O, =
{y(l)<)}2;]_

Unsupervised machine translation can date back to the
era of SMT, in which decipherment approach is employed
to learn word translations from monolingual data [92-94] or
bilingual phrase pairs can be extracted and their probabilities
can be estimated from monolingual data [95,96].

Since ref. [97] found that word embeddings from two
languages can be mapped using some seed translation pairs,
bilingual word embedding learning or bilingual lexicon in-
duction has attracted more and more attention [98-103].
Refs. [101, 102] applied linear embedding mapping and ad-
versarial training to learn word pair matching in the distri-
bution level and achieve promising accuracy for similar lan-
guages.

Bilingual lexicon induction greatly motivates the study of
unsupervised NMT on sentence level. And two techniques of
denoising auto-encoder and back-translation make it possible
for unsupervised NMT. The key idea is to find a common la-
tent space between the two languages. Refs. [104, 105] both
optimized dual tasks of source-to-target and target-to-source
translation. Ref. [104] employed shared encoder to force
two languages into a same semantic space, and two language-
dependent decoders. In contrast, ref. [105] ensured the two
languages share the same encoder and decoder, relying on
an identifier to indicate specific language similar to single-
model based multilingual NMT [71]. The architecture and
training objective functions are illustrated in Figure 8.

The top in Figure 8 shows the use of denoising auto-
encoder. The encoder encodes a noisy version of the input
x into hidden representation zy,. which is used to reconstruct
the input with the decoder. The distance (auto-encoder loss
Lauo) between the reconstruction x” and the input x should
be as small as possible. To guarantee source and target lan-
guages share the same semantic space, an adversarial loss
L4y 1s introduced to fool the language identifier.

The bottom in Figure 8 illustrates the use of back-
translation. A target sentence y is first back-translated into x*
using an old target-to-source NMT model (the one optimized
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Figure 8 (Color online) Architecture of the unsupervised NMT model. The top shows denosing auto-encoder that aims at reconstructing the same language
input. The bottom demonstrates back-translation which attempts to reconstruct the input in the other language using back-translation (target-to-source) and for-
ward translation (source-to-target). The auto-encoder loss Ly, the translation loss Lirans and the language adversarial loss L,qy are used together to optimize

the dual NMT models.

in previous iteration, and the initial model is the word-by-
word translation model based on bilingual word induction).
Then, the noisy version of the translation x* is encoded into
Zsre Which is then translated back into target sentence y’. The
new NMT model (encoder and decoder) is optimized to min-
imize the translation loss L.ns Which is the distance between
the translation y’ and the original target input y. Similarly,
an adversarial loss is employed in the encoder module. This
process iterates until convergence of the algorithm. Finally,
the encoder and decoder can be applied to perform dual trans-
lation tasks.

Ref.
and decoder while making others language-specific could im-
prove the performance of unsupervised NMT. Ref. [107]
further combined the NMT and SMT to improve the unsu-
pervised translation quality. Most recently, refs. [108—110]
resorted to pre-training techniques to enhance the unsuper-

[106] argued that sharing some layers of encoder

vised NMT model. For example, ref. [108] proposed a cross-
lingual language model pre-training method under BERT
framework [111]. Then, two pre-trained cross-lingual lan-
guage models are employed as the encoder and decoder re-
spectively to perform translation.

7 Multimodal neural machine translation

We know that humans communicate with each other in a
multimodal environment in which we see, hear, smell and
so on. Naturally, it is ideal to perform machine translation
with the help of texts, speeches and images. Unfortunately,
video corpora containing parallel texts, speech and images for
machine translation are not publicly available currently. Re-

4) http://iwslt.org/doku.php?id=evaluation
5) https://www.statmt.org/wmt16/multimodal-task.html
6) https://github.com/multi30k/dataset

cently, IWSLT-2020% organized the first evaluation on vedio
translation in which annotated video data are only available
for validation and test sets.

Translation for paired image-text, offline speech-to-text
translation and simultaneous translation have become in-
creasingly popular in recent years.

7.1 Image-text translation

Given an image and its text description as source language,
the task of image-text translation aims at translating the de-
scription in source language into the target language, where
the translation process can be supported by information from
the paired image. It is a task requiring the integration of nat-
ural language processing and computer vision. WMT> orga-
nized the first evaluation task on image-text translation (they
call it multimodal translation) in 2016 and also released the
widely-used dataset Multi30K consisting of about 30K im-
ages each of which has an English description and transla-
tions in German, French and Czech®. Several effective mod-
els have been proposed since then. These methods mainly
differ in the usage of the image information and we mainly
discuss four of them in this section.

Ref. [112] proposed to encode the image into one dis-
tributed vector representation or a sequence of vector repre-
sentations using convolutional neural networks. Then, they
padded the vector representations together with the sentence
as the final input for the NMT model which does not need to
be modified for adaptation. The core idea is that they did not
distinguish images from texts in the model design.

Ref. [113] presented a doubly-attentive decoder for the
image-text translation task. The major difference from ref.
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[112] is that they design textual encoder and visual encoder
respectively, and employ two separate attention models to
balance the contribution of text and image during prediction
at each time-step.

Ref. [114] introduced a multi-task learning framework to
perform image-text translation. They believe that one can
imagine the image given the source language sentence. Based
on this assumption, they use one encoder and two decoders in
a multi-task learning framework. The encoder first encodes
the source sentence into distributed semantic representations.
One decoder generates the target language sentence from the
source-side representations. The other decoder is required to
reconstruct the given image. It is easy to see that the images
are only employed in the training stage but are not required
during testing. From this perspective, the multi-task learning
framework can be applicable in more practical scenarios.

Ref. [115] further proposed a latent variable model for
image-text translation. Different from previous methods, they
designed a generative model in which a latent variable is
in charge of generating the source and target language sen-
tences, and the image as well.

Figure 9 illustrates the comparison between the doubly-
attentive model and the image imagination model. Suppose
the paired training data are D = {(x"™, y, IM™)}}*_ where
IM denotes image. The objective function of the doubly-
attentive model can be formulated as follows:

M
L) = Z logP(y™|x™, IM™; 9). (13)

m=1

In contrast, the image imagination model has the follow-
ing objective function which includes two parts, one for text
translation and the other for image imagination.

M
0= (1ogP(y<m>|x<'">; 6) + logP(IM™[x"; 9)). (14)

m=1

All the above methods are proven to significantly improve
the translation quality. But it remains a natural question that

(a) Target sentence

Text decoder

Text encoder
Image encoder

Source sentence

Figure 9
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when and how does the image help the text translation. Ref.
[116] conducted a detailed error analysis when translating
both visual and non-visual terms. They find that almost all
kinds of translation errors (not only the terms having strong
visual connections) have decreased after using image as the
additional context.

Alternatively, ref. [117] attempted to answer when the vi-
sual information is needed in the image-text translation. They
designed an input degradation method to mask crucial infor-
mation in the source sentence (e.g., masking color words or
entities) in order to see whether the paired image would make
up the missing information during translation. They find that
visual information of the image can be helpful when it is com-
plementary rather than redundant to the text modality.

7.2 Offline speech-to-text translation

Speech-to-text translation abbreviated as speech translation
(ST) is a task that automatically converts the speech in the
source language (e.g., English) into the text in the target lan-
guage (e.g., Chinese). Offline speech translation indicates
that the complete speech (e.g., a sentence or a fragment in
a time interval) is given before we begin translating. Typ-
ically, ST is accomplished with two cascaded components.
Source language speech is first transcribed into the source
language text using an automatic speech recognition (ASR)
system. Then, the transcription is translated into target lan-
guage text with a neural machine translation system. It is still
the mainstream approach to ST in real applications. In this
kind of paradigm, ASR and NMT are not coupled and can be
optimized independently.

Nevertheless, the pipeline method has two disadvantages.
On one hand, the errors propagate through the pipeline and
the ASR errors are difficult to make up during translation.
On the other hand, the efficiency is limited due to the two-
phase process. Ref. [118] believed in early years that
end-to-end speech translation is possible with the develop-
ment of memory, computational capacity and representation

Target sentence

Text decoder
Image decoder

Translation

Encoder

Source sentence

(Color online) Comparison between the doubly-attentive model and the image imagination model for image-text translation. In doubly attentive

model, the image is encoded as an additional input feature. While in image imagination model, the image is decoded output from the source sentence.



Zhang J J, et al.  Sci China Tech Sci

models. Deep learning based on distributed representations
facilitates the end-to-end modeling for speech translation.
Ref. [119] presented an end-to-end model without using
any source language transcriptions under an encoder-decoder
framework. Different from the pipeline paradigm, the end-
to-end model should be optimized on the training data con-
sisting of instances (source speech, target text). We list some
of the recently used datasets in Table 1 [120—123], including
IWSLT?, Augmented Librispeech®, Fisher and Callhome?,
MuST-C'? and TED-Corpus'?.

It is easy to find from the Table 1 that the training data for
end-to-end ST are much less than that in ASR and MT. Ac-
cordingly, most of recent studies focus on fully utilizing the
data or models of ASR and NMT to boost the performance
of ST. Multi-task learning [124—126], knowledge distillation
[127,128] and pre-training [129, 130] are three main research
directions.

In the multi-task learning framework, the ST model is
jointly trained with the ASR and MT models. Since the ASR
and MT models are optimized on massive training data, the
ST model can be substantially improved through sharing en-
coder with the ASR model and decoder with the MT model.
Ref. [124] showed that great improvements can be achieved
under multi-task learning. While ref. [126] demonstrated that
multi-task learning could also accelerate the convergence in
addition to better translation quality.

In contrast to the multi-task learning framework, the pre-
training method first pre-trains an ASR model or an MT
model, then the encoder of ASR or the decoder of MT can
be utilized to directly initialize the components of the ST
model. Ref. [129] attempted to pre-train ST model with
the ASR data to promote the acoustic model and showed that
pre-training a speech encoder on one language can boost the
translation quality of ST on a different source language. To
further bridge the gap between pre-training and fine-tuning,
ref. [130] only pre-trained the ASR encoder to maximize
connectionist temporal classification (CTC) objective func-

Table 1
Portuguese, Romanian, Russian, Chinese and Japanese, respectively

October (2020) Vol.63 No. 10 2041

tion [131]. Then, they share the projection matrix between
the CTC classification layer for ASR and the word embed-
dings. The text sentence in MT is converted into the same
length as the CTC output sequence of the ASR model. By
doing this, the ASR encoder and the MT encoder will be con-
sistent in length and semantic representations. Therefore, the
pre-trained encoder and attention in the MT model can be
used in ST in addition to the ASR encoder and the MT de-
coder.

Different from the multi-task learning framework and the
pre-training methods which attempt to share network param-
eters among ASR, ST and MT, the knowledge distillation
methods consider the ST model as a student and make it learn
from the teacher (e.g. the MT model). Ref. [128] proposed
the knowledge distillation model as shown in Figure 10.
Given the training data of ST D = {(s",x", y(’”))}fle,
where s denotes the speech segment, x is the transcription
in source language and y is the translation text in target lan-
guage.

The objective function for ST is similar to MT and the only
difference is that the input is speech segment rather than a text
sentence.

Lsr®) == Y logP(y™Is™;0), (15)
(s,y)eD
I |V
logP(yls, 6) = > > I(yi = v)logP(yils, y< 0), (16)
i=0 v=1

where |V| denotes the vocabulary size of the target language
and I(y; = v) is the indication function which indicates
whether the i-th output token y; happens to be the ground
truth.

Given the MT teacher model pre-trained on large-scale
data, it can be used to force decode the pair (x,y) from the
triple (s, x,y) and will obtain a probability distribution for
each target word y;: Q(yilx, y<;; Our). Then, the knowledge
distillation loss can be written as follows:

some datasets used in the end-to-end ST. En, De, Fr, Es, It, NI, Pt, Ro, Ru, Zh and Ja denote English, German, French, Spanish, Italian, Dutch,

Corpus name Source language Target language Hours Sentents
IWSLT [120] En De 273 171,121
Augmented Librispeech En Fr 236 131,395
Fisher and Callhome [121] En Es 160 153,899
MuST-C [122] En De, Es, Fr, It, NI, Pt, Ro, Ru 385-504 4.0M-5.3M
TED-Corpus [123] En De, Fr, Zh, Ja 520 235K-299K

7) http://i13pc106.ira.uka.de/ mmueller/iwslt-corpus.zip

8) https://persyval-platform.univ-grenoble-alpes.fr/DS91/detaildataset
9) https://github.com/joshua-decoder/fisher-callhome-corpus

10) https://mustc.fbk.eu

11) https://drive.google.com/drive/folders/1sFe6Qht4vGD49vs7_gbrNEOsLPOX9VIn?usp=sharing
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Figure 10  (Color online) The illustration of the knowledge distillation
model for ST. The right part is an MT model, which is a teacher. The left
part is the ST model which is the student. The input of the ST model is
raw speech and the input of the MT model is the transcription of the speech.
The distillation loss in the top part makes the student model learn output
probability distributions from the teacher model (mimic the behavior of the
teacher).
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The final ST model can be trained by optimizing both of
the log-likelihood loss Lgt(8) and the knowledge distillation
loss LKD(G)

In order to fully explore the integration of ASR and ST,
ref. [123] further proposed an interactive model in which
ASR and MT perform synchronous decoding. As shown in
Figure 11, the dynamic outputs of each model can be used
as the context to improve the prediction of the other model.
Through interaction, the quality of both models can be sig-
nificantly improved while keeping the efficiency as much as
possible.

12) https://autosimtrans.github.io/shared
13) http://iwslt.org/doku.php?id=simultaneous_translation

7.3 Simultaneous machine translation

Simultaneous machine translation (SimMT) aims at translat-
ing concurrently with the source-language speaker speaking.
It addresses the problem where we need to incrementally pro-
duce the translation while the source-language speech is be-
ing received. This technology is very helpful for live events
and real-time video-call translation. Recently, Baidu and
Facebook organized the first evaluation task on SimMT in
ACL-2020'? and IWSLT-2020'® respectively.

Obviously, the methods of offline speech translation intro-
duced in the Sect. 7.2 cannot be applicable in these scenar-
ios, since the latency must be intolerable if translation begins
after speakers complete their utterance. Thus, balancing be-
tween latency and quality becomes the key challenge for the
SimMT system. If it translates before the necessary infor-
mation arrives, the quality will decrease. However, the delay
will be unnecessary if it waits for too much source-language
contents.

Refs.
neous speech-to-text translation, in which the model is re-
quired to generate the target-language translation from the
incrementally incoming foreign speech. In contrast, more
research work focus on the simultaneous text-to-text trans-

[132, 133] proposed to directly perform simulta-

lation where they assume that the transcriptions are correct
[134-143]. This article mainly introduces the latter methods.
All of the methods address the same strategy (also known as
policy) that when to read an input word from the source lan-
guage and when to write an output word in target language,
namely when to wait and when to translate.

In general, the policies can be categorized into two bins.
One is fixed-latency policies [138, 139], such as wait-k pol-
icy. The other is adaptive policies [135, 136, 140-143].

The wait-k policy proposed by ref. [139] is proven sim-
ple but effective. Just as shown in the middle part of Fig-
ure 12, the wait-k policy starts to translate after reading the
first k source words. Then, it alternates between generating
a target-language word and reading a new source-language
word, until it meets the end of the source sentence. Accord-
ingly, the probability of a target word y; is conditioned on the
history predictions y.; and the prefix of the source sentence
Xoivk: POily<i, X<i+i; 8). The probability of the whole target
sentence becomes

1
POIx;0) = | | POily<is x<ivi: 0). (18)
i=0

In contrast to previous sequence-to-sequence NMT train-
ing paradigm, ref. [139] designed a prefix-to-prefix training
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Figure 11  (Color online) The demonstration of the interactive model for both
of the ASR model can be helpful to predict the Chinese translation at 7 = 2. Li
transcriptions of the ASR model in the future time steps.

ASR and ST. Taking T = 2 as an example, the transcription “everything”
kewise, the translation at time step 7 = 1 is also beneficial to generate the

Source: Xo—> X1 —> X Xy

Sequence-to-sequence
Target: atit until source sentence ends | Yo —> Y -
Source: Xo —> X4 —> X, X,

Prefix-to-prefix (wait-k model)
Target:  wait k words Yo Sy
Source: Xog —> X —> X, X,

Prefix-to-prefix (adaptive model)
Target () 1y —> > @ —P, -

Figure 12
MT model which begins translation after seeing the whole source sentence. The

(Color online) The illustration of three policies for simultaneous machine translation. The top part is the conventional sequence-to-sequence

middle one demonstrates the wait-k policy which waits for k£ words before

translation. The bottom part shows an example of the adaptive policy that predicts an output token at each time step. If the output is a special token (g), it

indicates reading one more source word.

style to best explore the wait-k policy. If Transformer is em-
ployed as the basic architecture, prefix-to-prefix training al-
gorithm only needs a slight modification. The key difference
from Transformer is that prefix-to-prefix model conditions on
the first i + k rather than all source words at each time-step
i. It can be easily accomplished by applying the masked self-
attention during encoding the source sentence. In that case,
each source word is constrained to only attend to its prede-
cessors and the hidden semantic representation of the i + k-th
position will summarize the semantics of the prefix x ;..

However, the wait-k policy is a fixed-latency model and
it is difficult to decide k for different sentences, domains
and languages. Thus, adaptive policy is more appealing.
Early attempts for adaptive policy are based on reinforcement
learning (RL) method. For example, ref. [136] presented a
two-stage model that employs the pre-trained sentence-based
NMT as the base model. On top of the base model, read or

translate actions determine whether to receive a new source
word or output a target word. These actions are trained using
the RL method by fixing the base NMT model.

Differently, ref. [141] proposed an end-to-end simMT
model for adaptive policies. They first add a special delay
token (g) into the target-language vocabulary. As shown in
the bottom part of Figure 12, if the model predicts (&), it
needs to receive a new source word. To train the adaptive
policy model, they design dynamic action oracles with ag-
gressive and conservative bounds as the expert policy for im-
itation learning. Suppose the prefix pair is (s, ¢). Then, the
dynamic action oracle can be defined as follows:

{(&)},
07, 0 (85 8) = S {yjeet ),
(<€), Vg1

if s # x and |s| - |t]| < «,
if t # yand|s| - |t| = 3,

otherwise,
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where « and 8 are hyper-parameters, denoting aggressive and
conservative bounds respectively. |s| — |¢| calculates the dis-
tance between two prefixes. That is to say if the current target
prefix ¢ is no more than o words behind the source prefix s,
we can read a new source word. If ¢ is shorter than s with
more than 8 words, we generate the next target prediction.

8 Discussion and future research tasks

8.1 NMT vs. human

We can see from Sects. 4—7 that great progresses have been
achieved in neural machine translation. Naturally, we may
wonder whether current strong NMT systems could perform
on par with or better than human translators. Exciting news
were reported in 2018 by ref. [12] that they achieved human-
machine parity on Chinese-to-English news translation and
they found no significant difference of human ratings between
their MT outputs and professional human translations. More-
over, the best English-to-Czech system submitted to WMT
2018 by ref. [144] was also found to perform significantly
better than the human-generated reference translations [145].
It is encouraging that NMT can achieve very good transla-
tions in some specific scenarios and it seems that NMT has
achieved the human-level translation quality.

However, we cannot be too optimistic since the MT tech-
nology is far from satisfactory. On one hand, the comparisons
were conducted only on news domain in specific language
pairs where massive parallel corpora are available. In prac-
tice, NMT performs quite poorly in many domains and lan-
guage pairs, especially for the low-resource scenarios such
as Chinese-Hindi translation. On the other hand, the eval-
uation methods on the assessment of human-machine parity
conducted by ref. [12] should be much improved as pointed
out by ref. [146]. According to the comprehensive investiga-
tions conducted by ref. [146], human translations are much
preferred over MT outputs if using better rating techniques,
such as choosing professional translators as raters, evaluat-
ing documents rather than individual sentences and utilizing
original source texts instead of source texts translated from
target language. Current NMT systems still suffer from se-
rious translation errors of mistranslated words or named en-
tities, omissions and wrong word order. Obviously, there is
much room for NMT to improve and we suggest some poten-
tial research directions in the next section.

8.2 Future research tasks

In this section, we discuss some potential research directions
for neural machine translation.
(1) Effective document-level translation and evaluation

It is well known that document translation is important and
the current research results are not so good. It remains un-
clear what is the best scope of the document context needed to
translate a sentence. It is still a question whether it is reason-
able to accomplish document translation by translating the
sentences from first to last. Maybe translation based on sen-
tence group is a worthy research topic which models many-
to-many translation. In addition, document-level evaluation
is as important as the document-level MT methods, and it
serves as a booster of MT technology. Ref. [12] argued that
MT can achieve human parity in Chinese-to-English trans-
lation on specific news tests if evaluating sentence by sen-
tence. However, as we discussed in the previous section that
[146,147] demonstrated a stronger preference for human over
MT when evaluating on document-level rather than sentence-
level. Therefore, how to automatically evaluate the quality of
document translation besides BLEU [148] is an open ques-
tion although some researchers introduce several test sets to
investigate some specific discourse phenomena [149].

(2) Efficient NMT inference

People prefer the model with both high accuracy and ef-
ficiency. Despite of remarkable speedup, the quality degra-
dation caused by non-atuoregressive NMT is intolerable in
most cases. Improving the fertility model, word ordering of
decoder input and dependency of the output will be worthy of
a good study to make NAT close to AT in translation quality.
Synchronous bidirectional decoding deserves deeper investi-
gation due to good modeling of history and future contexts.
Moreover, several researchers start to design decoding algo-
rithm with free order [150-152] and it may be a good way to
study the nature of human language generation.

(3) Making full use of multilinguality and monolingual
data

Low-resource translation is always a hot research topic
since most of natural languages are lack of abundant anno-
tated bilingual data. The potential of multilingual NMT is
not fully explored and some questions remain open. For ex-
ample, how to deal with data unbalance problem which is
very common in multilingual NMT? How to build a good
incremental multilingual NMT model for incoming new lan-
guages? Semi-supervised NMT is more practical in real ap-
plications but the effective back-translation algorithm is very
time consuming. It deserves to design a much efficient semi-
supervised NMT model for easy deployment. Deeply inte-
grating pre-trained method with NMT may lead to promising
improvement in the semi-supervised or unsupervised learn-
ing framework and refs. [153, 154] have already shown some
good improvements. The achievements of unsupervised MT
in similar language pairs (e.g., English-German and English-
French) make us very optimistic. However, ref. [155] showed
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that unsupervised MT performs poorly on distant language
pairs, obtaining no more than 10 BLEU scores in most cases.
Obviously, it is challenging to design better unsupervised MT
models on distant language pairs.

(4) Better exploiting multimodality in NMT

In multimodal neural machine translation, it remains an
open problem when and how to make full use of different
modalities. The image-text translation only translates the im-
age captions and is hard to be widely used in practice. It is a
good research topic to find an appropriate scenario where im-
ages are indispensible during translation. In speech transla-
tion, despite of big improvement, the end-to-end framework
currently cannot perform on par with the cascaded method
in many cases, especially when the training data are limited
[123]. In addition to enlarging the training data, closing the
gap between different semantic spaces of ST, ASR and MT
is worthy of further exploration. As for simultaneous transla-
tion, it is still on the early stage of research and many prac-
tical issues such as repetition and correction in speech are
unexplored. Moreover, combining summarization and trans-
lation may be a good research direction that provides the au-
diences the gist of the speaker’s speech with low latency.

(5) NMT with background modeling

In many cases, machine translation is not about texts,
speeches and images, but is highly related to culture, environ-
ment, history and etc. Accordingly, this kind of background
information should be well captured by a novel model which
guides NMT to generate translations in line with the back-
ground.

(6) Incorporating prior knowledge into NMT

Note that some research topics are not mentioned in this ar-
ticle due to space limit. For example, it is a difficult and prac-
tical issue how to integrate prior knowledge (e.g. alignment,
bilingual lexicon, phrase table and knowledge graphs) into
the NMT framework. Since it is still unclear how to bridge
discrete symbol based knowledge and distributed representa-
tion based NMT, it remains an interesting and important di-
rection to explore although some progress has been achieved
[156-164].

(7) Better domain adaption models

Domain adaptation has been always a hot research topic
and attracts attentions from many researchers [165-172].
Different from methods used in SMT, domain adaptation in
NMT is usually highly related with parameter fine-tuning. It
remains a challenge how to address the problem of unknown
test domain and out-of-domain term translations.

(8) Bridging the gap between training and inference

The inconsistency between training and inference (or eval-
uation) is a critical problem in most sequence generation
tasks in addition to neural machine translation. This problem
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is well addressed in the community of machine translation
[173,174] but it is still worthy of exploring especially on the
efficiency of the methods.

(9) Designing explainable and robust NMT

So far, the NMT model is still a black box and it is very
risky to use it in many scenarios in which we have to know
how and why the translation result is obtained. Ref. [175]
attempted to visualize the contribution of each input to the
output translation. Nevertheless, it will be great to deeply
investigate the explanation of the NMT models or design an
explainable MT architecture. Furthermore, current NMT sys-
tems are easy to attack through perturbing the input. Ref.
[176, 177] presented novel robust NMT models to handle
noisy inputs. However, the real input noise is too difficult to
anticipate and it still remains a big challenge to design robust
NMT models which are immune to real noise.

(10) New NMT architectures

Finally, designing better NMT architectures beyond Trans-
former must be very exciting to explore despite of the diffi-
culty.

This work was supported by the National Natural Science Foundation of
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