基于 Protoolkit 的圆柱螺旋齿轮的精确 三维参数化建模

肖 扬, 金凡尧, 郑 严, 张婷婷, 王 易

(西南石油大学机电工程学院,四川 成都 610500)

摘 要:在 CAD/CAM/CAE 中,机械产品的三维建模是基础,其精确程度和质量决定着设计、分析、制造等后续过程的质量。文中讨论了圆柱齿轮中的一类圆柱螺旋齿轮的齿廓曲面的精确表达,在三维造型软件 Pro/Engineer 中的生成方法以及在 Pro/Engineer 与 C 语言的接口 Protoolkit 中,圆柱螺旋齿轮上的形状结构特征在 Pro/Engineer 中的表达、操作、处理函数的功能和应用开发方法。并以此为例设计了一个圆柱螺旋齿轮的三维参数化设计系统。

关键词:圆柱螺旋齿轮;渐开螺旋面;三维参数化设计;特征; Pro/Engineer 二次开发

中图分类号: TH 132.422 **DOI:** 10.11996/JG.j.2095-302X.2017020180 文献标识码: A 文章编号: 2095-302X(2017)02-0180-05

Precise 3D Parametric Modeling for Cylindrical Helical Gear Based on Protoolkit

XIAO Yang, JIN Fanyao, ZHENG Yan, ZHANG Tingting, WANG Yi (School of Mechatronic Engineering, Southwest Petroleum University, Chengdu Sichuan 610500, China)

Abstract: In CAD/CAM/CAE, the three-dimensional modeling of mechanical products is the key foundation, its precision and quality determine the quality of the other follow-up design, analysis, manufacturing and other processes. In this paper discussed are the cylindrical gear in a helical gear tooth profile surface, accurate expression, generation method in the three-dimensional CAD software Pro/Engineer and in Pro/Engineer to C language interface Protoolkit, form and structure characteristics of helical gear expression in Pro/Engineer, operation, treatment function and application development methods. And taking this as an example, a 3D parametric design system of cylindrical helical gear is designed.

Keywords: cylindrical helical gear; involute helicoid; 3D parametric design; features; 2nd development for Pro/Engineer

圆柱渐开线齿轮是机器上最广泛应用的零件之一,用于传递运动和动力,大量应用于机床、飞机、车辆、船舶等工业领域。齿轮传动具有精度高、传动效率高、加工工艺性好、传动平稳、振动小、输出转速恒定等优点。作为一种最基础

的机械零件之一,其设计、分析和制造质量直接 影响机器的质量。三维建模是零件设计、分析和 仿真、制造的基础。相比直齿圆柱齿轮,圆柱螺 旋齿轮的传动更平稳,承载能力更强,因此往往 用于传动精度要求高的高速重载场合。圆柱螺旋

收稿日期: 2016-07-05; 定稿日期: 2016-10-19

基金项目: 浙江大学CAD&CG国家重点实验室开放项目(A1518)

第一作者: 肖 扬(1964-),男,四川通江人,教授,硕士。主要研究方向为计算机辅助设计、工程及计算机图学。E-mail: xiaoyang@swpu.edu.cn

齿轮的齿廓曲面是渐开螺旋面,由此生成了圆柱螺旋齿轮。

圆柱渐开线齿轮是一种形状较复杂的三维实 体,整个实体由渐开曲面、一系列的圆柱面和过 渡曲面等结构组成。在 CAD/CAM/CAE 中, 三维 建模是基础。建模的模型质量和精度决定了后续 过程的质量和效果。其造型精度的高低将直接影 响到后续的有限元分析、仿真结果以及采用三维 建模制造齿轮时的制造精度等等, 因此精确建模 非常重要。齿轮三维造型的关键是生成符合要求 的渐开线曲面齿廓。对于直齿轮来讲, 其是渐开 柱面; 而对于圆柱螺旋齿轮来讲, 齿廓曲面是渐 开螺旋面,对渐开螺旋面的建模在圆柱螺旋齿轮 的三维造型中极为重要。文献[1]用 B 样条来近似 齿廓渐开线,然后用 4 条 B 样条曲线近似齿廓曲 面的 4 条边界曲线构造 B 样条曲面,来近似渐开 螺旋齿廓曲面。但是此方法构造的齿廓曲面都是 近似的,不是实际齿轮上的渐开曲面。同时在以 前的齿轮三维建模研究中,对直齿圆柱齿轮造型 的讨论要多于对圆柱螺旋齿轮。如果考虑到后续 的有限元分析和数控加工、仿真等步骤,对齿轮 齿廓曲面的精确数学描述是必须的。有了齿廓曲 面的精确描述, 我们才能知道齿廓曲面上任意点 的位置、法矢、法曲率等参数,以利于后续的设 计、分析、仿真以及制造。但是一般商用三维造 型设计软件不提供渐开线齿轮的直接建模功能, 因此直接实现圆柱渐开线齿轮的建模就要进行软 件的二次开发。

针对这一问题,本文利用 Pro/Engineer 与 C 语言的接口 Protoolkit,在详细分析了 Pro/Engineer 中与圆柱螺旋齿轮有关的特征描述、计算机表示、处理、操作的基础上,给出了对其进行三维参数 化精确建模的开发方法、步骤和过程,实现了一个圆柱螺旋齿轮的三维参数化设计系统。

1 渐开螺旋面的形成原理与曲面参数方程

1.1 渐开螺旋面的形成

圆柱螺旋齿轮的齿廓曲面是渐开螺旋面, 根

据文献[2-3],渐开螺旋面的形成原理如图 1 所示。 r_b 为基圆柱面半径,发生面 LMK 沿基圆柱作纯滚动时,其上面的一条与基圆柱母线成夹角 β_b 的斜直线 ML 展成的曲面,称为渐开螺旋面。渐开螺旋面与齿轮端面(垂直于齿轮轴线的截面)的交线仍是渐开线;其与基圆柱面以及和基圆柱同轴线的任一圆柱面的交线均为螺旋线。基圆柱螺旋线 AE 的切线与齿轮轴线所夹的锐角 β_b 称为基圆柱螺旋角,简称基圆螺旋角。

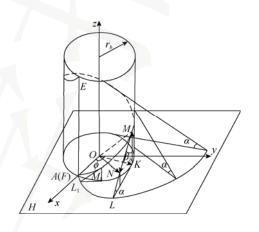


图 1 渐开螺旋面的形成

1.2 渐开螺旋面的参数方程

建立如图 1 所示的坐标系,原点 O 为基圆柱底面的圆心,y 轴正方向向右,x 轴正方向向前,z 轴正方向向上。渐开螺旋面是发生面上的直线 ML 在发生面与基圆柱面做纯滚动时形成的曲面,其上一点 N 的径矢 $O\vec{N}$ 为

$$O\vec{N} = O\vec{K} + \vec{K}M + M\vec{N} \tag{1}$$

其中, $M\bar{N}=u$ 为直母线的一段,即由直母线同基圆柱的切点 M 到渐开螺旋面上任一点 N 的距离,是曲面参数方程的一个参数; $O\bar{K}=r_b$ 为基圆柱半径; $\bar{K}M=p\phi$ 为在螺旋运动中,转过角 ϕ 时的轴向位移,p 为基圆螺旋线的螺距, ϕ 是曲面方程的另一个参数。

将矢量 $O\overline{N}$ 投影到坐标轴上,得到

 $\vec{ON} = (r_b \cos \phi + u \sin \beta_b \sin \phi) \mathbf{i} +$

 $(r_b \sin \phi - u \sin \beta_b \cos \phi) \mathbf{j} + (p \phi - u \cos \beta_b) \mathbf{k}$ (2) 其中, \mathbf{i} 、 \mathbf{j} 、 \mathbf{k} 为 x、y、z 坐标轴的单位矢量; $p = 2\pi r_b$

 $ctan\beta_b$; β_b 为直母线 MN 的升角, 等于基圆柱上螺

nttp://www.txxb.com.cn

旋线的升角; u、 ϕ 是曲面方程的参数。将以上矢量方程写成直角坐标的形式,有

$$x = r_b \cos \phi + u \sin \beta_b \sin \phi$$

$$y = r_b \sin \phi - u \sin \beta_b \cos \phi$$

$$z = p \phi - u \cos \beta_b$$
(3)

由式(3)可知,当 z=0 时,得到渐开螺旋面的端面截交线,其形式为

$$x = r_b \cos \phi + r_b \phi \sin \phi$$

$$y = r_b \sin \phi - r_b \phi \cos \phi$$
(4)

得到基圆为 r_b 的渐开线的参数方程,可利用渐开螺旋面的端面渐开线齿廓,完成圆柱螺旋齿轮的三维建模。

2 圆柱螺旋齿轮建模过程

2.1 渐开线齿廓的形成

在 Pro/Engineer wildfire 5.0 中,可以通过草绘模块得到圆柱螺旋齿轮的端面齿廓^[4]。根据渐开线的的直角坐标方程可以直接绘制渐开线齿廓曲线,并根据给定齿轮参数计算齿顶圆、齿根圆、分度圆尺寸。根据机械设计手册的齿轮齿廓设计规定,得到齿根过渡圆弧的尺寸,并建立约束,生成端面渐开线齿廓(图 2)。

图 2 端面渐开线齿廓

2.2 空间圆柱螺旋线的形成

根据螺旋齿轮的性质,螺旋齿轮分度圆柱面与齿廓曲面的交线是一条分度圆柱面上的螺旋线,其螺旋角为 β ,展开则成为一条斜直线,斜直线和轴线之间的夹角即为 β 。在 Pro/Engineer wildfire 5.0 中生成此斜线,使得斜线与轴线之间的角度为螺旋角 β ,再将绘制的斜直线投影到分度圆柱面上就可以得到分度圆螺旋线。

2.3 圆柱螺旋齿轮轮齿的生成

利用 Pro/Engineer 的扫描特征生成功能可生成齿轮的一个轮齿:①以齿根圆拉伸生成齿根圆实体;②选择生成普通扫描特征,扫描截面选择2.1 节中生成的齿廓面,扫描路径选择2.2 节中生成的螺旋线,通过扫描就可生成齿轮一个斜齿实体;③利用阵列功能,对已完成的斜齿实体进行环形阵列,阵列个数即为齿轮的齿数 Z,完成后的圆柱螺旋齿轮三维造型如图3所示。

图 3 三维斜齿轮建模结果

3 Protoolkit 的相关函数功能及开发 应用

上述过程是用手工在 Pro/Engineer 下操作命令完成圆柱螺旋齿轮的造型步骤。如果在设计过程中所有的圆柱螺旋齿轮都用这种方法完成,有以下几方面的问题:

- (1) 过程还显复杂。齿轮的形状、尺寸、结构的参数都比较多,相对应的关系也比较多。如果参数间的关系完全靠手工的方法来建立和处理,造型过程则复杂繁琐,不利于提高设计效率。
- (2)设计者对齿轮三维模型的几何信息、设计信息的了解和处理不够完全。齿轮的齿廓曲面是非常重要的,整个齿轮的啮合传动过程都在其上面进行。如果要在后续的分析、仿真、制造等过程中想得到齿廓曲面上任意点的位置、法矢、曲率等参数,或者进行需要的、任意的有限元网格划分以至于在 3D 打印中处理,都需要对Pro/Engineer中生成的三维模型进行更深入地了解和处理。但是用命令得到的 Pro/Engineer 实体,其

计算机内部结构和表达、处理是未知的。

(3) Pro/Engineer 提供了许多高级的二次开发方法以满足一些高级的特殊需要。没有一种 CAD 系统可以满足所有用户的所有应用需要,因此二次开发是必须的。而与 C 语言的接口 Protoolkit 就是 Pro/Engineer 二次开发方法中效率最高、功能最强的一种。通过对这种开发方法的掌握,利用 Protoolkit 函数,可以对 Pro/Engineer 中的对象进行各种处理和操作以满足用户的各种需要,扩展了软件功能。

3.1 特征对象(ProFeature)

参数化和特征造型应该是 Pro/Engineer 的两大最基本的特点。在 Pro/Engineer 中,所有的三维模型都是由特征构成的^[5]。对于零件,有基准特征、拉伸特征、旋转特征、扫描特征、孔特征和切口特征等,将这些特征叠加,就可生成三维零件模型。基于面向对象的方法,各种对象还有派生、继承等特性。在 Protoolkit 中,特征对象定义为:

Typedef struct pro_model_item

ProType type; //类型,取值 PRO_FEATURE
Int id; //具体特征在模型中的标识号
ProMdl owner; //特征的拥有者

}

ProFeature

每种特征都有相应的特征元素树,在特征元 素树中对特征的类型、参照信息、尺寸信息、特 征截面等进行了定义和确定,在每一种特征生成 以前,特征元素树是必须确定的。

在 Protoolkit 中生成特征有以下 3 个步骤:

步骤 1. 为特征分配内存,调用 ProElementAlloc ()函数:

步骤 2. 填充特征元素树内容,将确定该特征的各种信息确定并填入;

步骤 3. 调用特征生成函数 ProFeatureCreate() 生成特征。

3.2 截断面对象(ProSection)

截断面对象是一个用来定义三维零件或装配上的特征的二维参数化模型^[6]。当生成旋转、扫描、拉伸等特征时,都必须确定一截断面。对于圆柱螺旋齿轮建模来讲,端面齿廓形状就是一截断面

对象。生成和存储截面的步骤为:

步骤 1. 为截面对象分配内存和命名;

步骤 2. 在截面坐标系下将直线、圆弧、曲线、 样条曲线等几何元素添加到截面中定义截面形状;

步骤 3. 添加截面尺寸以参数化的驱动截面 形状:

步骤 4. 求解并生成截面;

步骤 5. 保存截面对象。

3.3 三维不规则形状特征对象(ProSketchedFeature)

三维不规则形状特征是由一个或多个截面形状特征定义的三维特征,包括由拉伸、旋转等方法形成的凸起特征等。对于圆柱螺旋齿轮的造型,每一个轮齿就可以看成是端面齿廓沿分度圆螺旋线扫描形成的三维不规则形状特征,其生成步骤如下:

步骤 1. 建立特征元素树;

步骤 2. 调用 ProFeatureCreate()函数生成不完整元素树;

步骤 3. 调用函数 ProFeatureElemtreeExtract() 得到上面生成的元素树的值;

步骤 4. 定义和生成截断面对象;

步骤 5. 定义拉伸深度或扫描轨迹线等参数:

步骤 6. 调用 ProFeatureRedefine()函数完成特征的建立。

3.4 阵列对象(ProPatteren)

在 Protoolkit 中可以生成任何特征的阵列,在 阵列的生成和处理中,要用到 Protoolkit 中的 ProPatteren 对象和 ProPatternClass 对象。前者是包 含阵列类型和拥有者等信息的结构,后者是包含 阵列类的枚举类型。圆柱螺旋齿轮的最终生成就 是将一个轮齿沿轴线环形阵列而形成。

构造阵列对象采取如下步骤:

步骤 1. 使用函数 ProElementAlloc()分配元素 树内存;

步骤 2. 使用函数 ProElement Value Set()设置元素树的各项确定值:

步骤 3. 使用 ProElemtreeElementAdd()函数将元素加入零件。

以上是进行圆柱螺旋齿轮三维参数化造型使用到的 Protoolkit 函数。对于整个圆柱螺旋齿轮的

三维参数化精确建模系统而言,生成三维模型有以下步骤:

步骤 1. 参数的输入和处理。输入齿轮的模数、齿数、压力角、螺旋角、齿轮宽度等参数;

步骤 2. 利用输入参数生成端面齿廓截断面和 分度圆圆柱螺旋线对象;

步骤 3. 以端面齿廓和分度圆柱螺旋线扫描构造一个轮齿特征;

步骤 4. 圆周阵列轮齿得到整个齿轮。

根据以上的分析步骤在 VS2008 下用 Protoolkit 开发了圆柱螺旋齿轮的三维参数化精确建模系统,在 Pro/Engineer 5.0 下运行,图 4 是用此方法得到的圆柱螺旋齿轮轮齿。

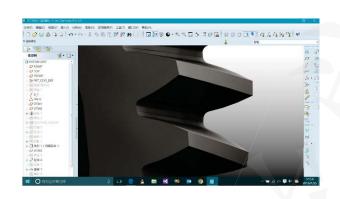


图 4 螺旋齿轮轮齿

4 结果及进一步的讨论

在 Pro/Engineer wildfire 5.0 中用 Protoolkit 实现一个圆柱螺旋齿轮的精确三维参数化造型系统,模型的齿廓曲面可描述精确的渐开螺旋面,而不像其他方法对齿廓曲面近似处理。同时对于零件的任意参数的分析和得到都是自由的、透明的、可处理的。因此,建模以后的分析、优化、运动和动力仿真以及制造过程以精确三维模型为基础,满足用户的多种应用需求。利用功能强大和丰富的 API 函数和 Pro/Engineer 二次开发的优点,掌握了 Protoolkit 开发方法,可对 Pro/Engineer

的多种对象进行操作和处理以满足应用的需要。 利用上述方法,在 Pro/Engineer 中,用 Protoolkit 开发了一个圆柱螺旋齿轮的三维参数化设计系 统,图 5 是系统运行结果,生成的圆柱螺旋齿轮。 该齿轮端面模数是 3; 压力角 20°; 分度圆螺旋角 12°; 齿数 45; 齿厚 60。

图 5 系统运行结果

在下一步工作中,将继续研究形状和空间关 系更加复杂的螺旋锥齿轮的精确三维造型。

(**致谢**: 浙江大学 CAD&CG 国家重点实验室 开放课题 A1518 支持!)

参考文献

- [1] 黄学文. 基于B样条曲面精确建模的斜齿轮接触分析[J]. 煤矿机械, 2012, 33(9): 132-134.
- [2] 周建军,李秀梅.基于渐开螺旋面形成原理的渐开线 齿轮造型[J].组合机床与自动化加工技术,2010(12):35-38.
- [3] 杨可桢,程光蕴,李仲生,等. 机械设计基础[M]. 北京: 高等教育出版社,2014:225-240.
- [4] 朱学文, 朱国文, 何小新. 斜齿轮的参数化建模与动力学分析[J]. 机械传动, 2006, 30(2): 32-35.
- [5] 吴立军,陈波. Pro/ENGINEER二次开发技术基础[M]. 北京: 电子工业出版社, 2006: 26-158.
- [6] Parametric Technology Corporation. CreoTM Elements/ ProTM TOOLKIT user's guide [EB/CD]. [2016-06-28]. http://www.ptcuser.org.