肌少-骨质疏松症与肠道菌群相关性研究*

魏 巍1,王世轩1**,战丽彬2

(1. 辽宁中医药大学附属第二医院 沈阳 110000; 2. 辽宁中医药大学创新工程技术中心 沈阳 110000)

摘 要: 肌少-骨质疏松症是一种肌少症和骨质疏松症并存的退行性代谢综合征,常发生在老年人身上。其特点是骨密度低、肌肉质量下降和力量损失,这些因素会降低生活质量和活动能力。肌肉骨骼系统是人类整体健康的重要决定因素,随着人口老龄化,肌少-骨质疏松症患者日益增多,其治疗方法越来越受到重视。人体肠道中存在一个复杂的菌群,这些菌群影响着肌肉骨骼发育和体内平衡。因此本综述以肠道菌群对肌肉、骨骼的作用为切入点,分析肠道菌群在肌少-骨质疏松症发病机制及治疗中的作用,阐明肌少-骨质疏松症与肠道菌群的相关性,为更好地治疗肌少-骨质疏松症提供新思路。

关键词:肌少-骨质疏松症 肠道菌群 干预方式 研究进展 doi: 10.11842/wst.20230518008 中图分类号: R274.1 文献标识码: A

肌少-骨质疏松症(Sarcopenia-osteoporosis, OS)又 可称为"肌骨共减综合征",多见于老年人。肌肉减少 症是骨骼肌质量、力量或身体机能进行性和全身性丧 失为特点的疾病。骨质疏松症是一种系统性骨骼疾 病,其特征是骨量低和骨组织微结构恶化,从而导致 骨脆性和骨折易感性增加[1]。患有肌少-骨质疏松症 的老年人虚弱、残疾、住院、死亡和生活质量下降的风 险增加四。据推测,全球目前约有5000万人罹患肌少-骨质疏松症,预计到2050年患此症的人数将高达 5亿^[3]。肌少-骨质疏松症的发病机制涉及多个方面, 如运动减少、神经-肌肉功能减弱、激素变化、炎性细 胞反应、遗传因素和营养因素等。现代研究表明,肠 道菌群与肌肉、骨骼关系密切,并且认为使用益生菌 和益生元可以有效地干预肌少-骨质疏松症的进程[4]。 还有研究表明,老年人的肠道菌群与年轻人不同,患 有肌少-骨质疏松症的老年人与健康人群的肠道菌群 存在很大的差异[5]。因此本文综述肌少-骨质疏松症 和肠道菌群之间的相关性研究进展,为了解肠道菌群 在肌少-骨质疏松症发病及诊治中的作用提供治疗 思路。

1 肠道菌群的概述

肠道菌群(Intestinal flora)是指人体消化道内存在的微生物群落,包括细菌、真菌、病毒和其他微生物^[6]。肠道菌群包括1800多个属和40000多种菌,细菌总数高达万亿级,是人体体细胞总数的10-100倍^[7]。这个菌群在人体的结肠或大肠中定居,与宿主建立了共生关系,个体环境和遗传因素可以影响其组成,而宿主会受到肠道菌群及其代谢物影响并适应其存在,并对人体的健康发挥着重要的作用^[8]。

肠道菌群是一个高度复杂且多样的微生物生态系统,受到个体的基因、饮食、生活方式、环境等多种因素的影响。肠道菌群的基因组包括微生物的基因序列,这些基因序列编码各种生物学功能和代谢能力,对宿主的健康和生理功能具有重要的影响^[9]。菌群的组成和数量在不同人群以及不同生理状态下可

收稿日期:2023-05-18

修回日期:2023-08-23

^{*} 国家中医药管理局全国名老中医药专家传承工作室(国中医药人教函(2022)75号):2022 王世轩全国老中医药专家传承工作室建设项目,负责人:王世轩;辽宁省科学技术厅博士科研启动基金计划项目(2023-BS-050):基于"骨肉不相亲"理论探讨骨疏康调控Pi3k-Akt-Bad通路防治"肌少-骨质疏松症"的机制研究,负责人:魏巍。

^{**} 通讯作者:王世轩,教授/主任医师,博士研究生导师,博士后合作导师,主要研究方向:骨质疏松症、骨坏死及骨性关节炎。

能存在差异,如年龄、性别、地域等。肠道菌群在人体健康方面具有多重功能。其中包括营养吸收、炎性反应、氧化应激、免疫功能和合成代谢平衡等。最近的科学研究中,利用从粪便中提取的细菌 DNA 进行高通量测序的方法,以及鉴定 16S rRNA 基因多态性的技术(16S rRNA 微生物谱),推动了对人类肠道菌群的研究^[10]。同时,帮助识别与大量疾病相关的粪便微生物群改变。

2 肠道菌群与中医理论的联系

肠道菌群和中医理论中的脾之间有一定的关系。 虽然传统中医理论没有直接提及肠道菌群,但可以从 脾的功能和作用角度来解释两者的关系。中医将脾 视为消化系统的核心,其功能包括"脾主运化""胃主 受纳"和"脾胃化生"。中医视脾为运化水谷、提供水 谷精微的重要脏器[11]。

根据中医脾相关理论,推导出肠道菌群也具有运化水谷的作用。从中医角度认为,肠道菌群通过腐熟食物中的纤维和物质,产生 SCFAs 等有益代谢产物[12]。这些代谢产物在中医可被归纳为"脾胃化生之气""水谷精微",在促进脾胃功能、帮助消化和吸收上发挥着重要的作用。因此,肠道菌群与中医脾的运化功能有一定的相似性,可以将肠道菌群视为脾功能的一部分。因此,肠道菌群与中医理论中的脾功能密切相关,共同形成了中医理论关于脾主运化的综合认识。

3 肌肉减少症与骨质疏松症之间的关系

从现代医学角度来看,肌肉减少症和骨质疏松症之间存在一定的关系。肌肉对骨骼起着重要的支持和保护作用,共同协调运动和保持身体的稳定性。当肌肉减少时,对骨骼的保护以及支持降低,导致骨骼负荷过重,易引发骨质疏松症。此外,肌肉活动对骨骼有利,可以刺激骨骼生长并促进骨密度的增加[13]。如果肌肉活动不足,骨骼的新陈代谢可能会受到影响,会进一步加重骨质疏松症的风险。反之,骨质疏松症患者骨密度下降,硬度及强度受到影响,限制肌肉的正常活动,日久可致肌肉减少,导致废用性肌萎缩。因此,二者同时存在会相互加剧对方的症状。

从中医角度来看,肌少-骨质疏松症与脾、肾两脏 关系最为密切。脾肾的协调对于肌肉的养护和生长 发育至关重要,脾主运化,在体合肉,为后天之本,脾 气健运则肌肉丰盛,脾气亏虚,则肌肉失养渐萎^[4]。肾藏精,主骨生髓,为先天之本,肾气盛则骨壮筋坚,肾气衰则骨枯无力^[5]。脾气充盈,散精以资肾,故可见筋骨强壮有力,肾气充足可以先天推动后天,助脾运化水谷精微充养一身之肌肉,故肌肉丰隆有力。充分体现脾肾的先天与后天的关系,互为资助,互为所用,反之则骨枯肉萎。正如《黄帝内经》中有关于脾肾的描述"脾者,生食气,养肌肉,肉盛则气盛,气盛则肉盛"以及"人身有骨,骨有充,充者,肾也。充养其本,本盛而生骨也。"而在《灵枢经·经脉》中高度概括了脾肾退变所致的病理变化"骨肉不相亲……骨先死"。因此无论从现代医学的理论,还是从传统中医角度都证明了肌肉减少症和骨质疏松症之间的关系,也总结了脾肾理论与肌骨协同退变的联系。

4 肠道菌群对肌肉的影响

4.1 营养物质的代谢

肠道菌群参与食物中营养物质的分解和吸收,产 生短链脂肪酸(Short-chain fatty acid, SCFAs), 为肠道 上皮细胞提供能量。这些SCFAs可以作为肌肉细胞 的能量来源之一,对肌肉代谢起到支持作用[16]。另外, 肠道菌群也可以参与氨基酸的代谢,氨基酸是肌肉合 成蛋白质的重要组成部分。健康老龄化人群的粪便 中可观察到大量的SCFAs,这类人群能够降解复杂碳 水化合物[17]。在肠道中,特别是结肠,菌群代谢食物纤 维产生SCFAs,如乙酸、丙酸和丁酸等。这些SCFAs可 以通过肠道壁进入循环系统,并被运送到身体的各个 组织和器官,包括骨骼肌细胞。骨骼肌细胞可以利用 SCFAs作为能量来源或其他代谢途径。这一过程称为 肠道-肌肉轴(Gut-muscle axis),对于维持肌肉健康和 功能非常重要。从骨骼肌的角度来看,这种代谢物还 可能负责激活如 UCP2-AMPK-ACC 和 PGC1-α 等调 节途径,从而增加ATP的产生,并最终提高肌纤维的 代谢效率[18]。

4.2 毒素代谢

目前研究表明,肠道菌群可能对肌肉的健康和功能有一定的影响,而其中的一个潜在机制可能涉及毒素代谢^[19],其中包括毒素代谢酶、解毒酶调节和肠道屏障功能三个方面:①毒素代谢酶:肠道菌群中的某些细菌种类可以产生特定的代谢酶,这些酶能够转化毒素或其代谢产物,使其成为无毒或较低毒性的物质。

这种代谢转化可能有助于减少毒素对肌肉组织的损害。Walsh等^[20]认为丁酸盐可提高衰老小鼠毒素代谢,预防衰老相关的肌肉质量丢失。②解毒酶调节:解毒酶是一类酶,可以将毒素转化为无毒或较低毒性的物质。肠道菌群的平衡和功能可能会影响解毒酶的产生和活性,进而影响毒素的代谢和清除。③肠道屏障功能:肠道屏障是肠道黏膜形成的物理屏障,可以阻止有害物质进入人体循环系统。良好的肠道菌群平衡和功能有助于维护肠道屏障的完整性,减少毒素的吸收和对肌肉组织的潜在损害。

4.3 免疫调节

肠道菌群与免疫系统之间存在重要的相互作用, 可以调节免疫细胞的活性和免疫应答,影响肌肉组织 的炎症状态[21]。慢性低度炎症与肌肉代谢紊乱和肌肉 损伤有关,良好的肠道菌群可能有助于维持免疫系统 的平衡[22]。此外,肠道菌群能够合成一些氨基酸,如色 氨酸,这是肌肉蛋白质合成代谢的基本底物[23]。色氨 酸还可以刺激肌肉细胞中的IGF-1/p70s6k/mTor通路, 促进肌原纤维合成相关基因的表达[24]。感染和炎症可 导致恶病质和骨骼肌的消瘦,Schieber等[25]观察到大肠 杆菌菌株对小鼠的肠道定植可防止由肠道感染或物 理损伤引发的消瘦。这种大肠杆菌的存在不会改变 宿主代谢、热量摄取或炎症的变化,甚至可能通过 IGF-1/PI3K/AKT信号通路预防肌肉萎缩。有研究表 明,肠道菌群产生的维生素B族对细菌定植和调节免 疫反应具有重要作用,同时也是肠道菌群在多种代谢 途径中的辅助因子[26]。当肠道菌群失调时,可能会导 致维生素B水平下降,进而影响肌肉的代谢与合成,破 坏免疫稳态,同时还有可能为致病菌株的定植提供机 会,进一步加重肠道菌群失调的问题。

4.4 运动及中药单体

Gianoudis 等[27]指出老年人缺乏运动导致肌肉体积和肌肉力量减少,并且认为缺乏运动是肌肉减少症进展的"关键因素"。Clarke 等[28]发现,橄榄球运动员的肠道菌群生物多样性较高,而与年轻人相比,老年人肠道中与碳水化合物代谢和氨基酸合成相关的途径减少。此外,老年人的蛋白质吸收能力减弱,加上蛋白质摄入不足的问题,可能导致肌肉减少症的发生。除运动外有研究表示,鞣花单宁可能对肌肉功能有重要的影响,鞣花单宁是一类多酚,广泛存在于石榴皮、覆盆子、地榆、白芍、五倍子、金樱子、草莓和核

桃等食物中。这些鞣花单宁在胃中经酸分解为鞣花酸,在小肠水平的吸收很差。然而,当鞣花酸到达大肠后,经肠道菌群的广泛代谢,形成尿石素 A(Uro-A),Uro-A能够通过胃肠道进入啮齿类动物的血浆,并在肝脏、肾脏和结肠等组织中存在^[29]。在一项研究中发现,食用Uro-A后,参与者的运动能力和肌肉质量较对照组有所改善^[30]。因此,鞣花单宁及其代谢产物Uro-A可能对肌肉功能具有重要的影响。

肠道菌群对肌肉代谢也有一定的影响。首先,肠 道菌群可以参与食物中营养物质的分解和吸收,例 如,分解纤维素,产生SCFAs,为肠道上皮细胞提供能 量。这些SCFAs可以作为肌肉细胞的能量来源之一, 对肌肉代谢起到支持作用。其次,在炎症调节方面, 肠道菌群调节免疫系统活性和免疫应答,影响肌肉组 织的炎症状态,维持免疫平衡。慢性炎症状态可能对 肌肉代谢产生负面影响,并导致肌肉丧失和肌肉蛋白 质分解增加。某些肠道菌群可以分解食物中的毒素, 如肠道中的氨和硫化物等。这些毒素在过量情况下 可能对肌肉细胞产生负面影响。最后,运动和中药单 体也可能影响肠道菌群与肌肉之间的关系,如运动可 提高菌群多样性,而某些中药单体如鞣花单宁可能对 肌肉功能产生积极影响。综上所述,维护健康的肠道 菌群平衡对于促进肌肉健康具有重要意义。

5 肠道菌群对骨骼的影响

肠道菌群可以通过调节免疫系统、影响炎症反应、促进钙吸收和降解植物雌激素等途径影响骨代谢^[31]。事实上,骨质疏松症的风险与肠道菌群的个体间变异有关^[32]。了解宿主-微生物-骨骼相互作用原则,将为肌少-骨质疏松症的诊断和治疗开启新的思路。

5.1 SCFAs

肠道菌群可以通过发酵膳食纤维产生 SCFAs,如丙酸、丁酸和醋酸^[33]。研究表明,SCFAs可能对骨骼健康产生积极影响,促进骨骼细胞的生长和骨形成,并抑制骨吸收过程^[34]。在之前的研究中已经证实了肠道菌群产生的 SCFAs 是肠-骨轴中的关键介质,并且对成骨细胞以及破骨细胞具有一定作用^[35]。Khosla^[36]发现当肠道菌群中的丁酸盐维持在 0.05-1.00 mmol·L⁻¹时可增加小鼠碱性磷酸酶(ALP)的生成,并且认为丁酸能促成骨细胞数量增加并刺激骨形成。越来越多

的证据表明肠道菌群参与骨代谢的调节^[37]。Rettedal 等^[38]发现健康绝经后妇女与骨质减少/骨质疏松妇女的肠道菌群组成明显不同,健康对照组中的肠道菌群含有更多的梭状芽孢杆菌和甲烷杆菌科,而骨质减少/骨质疏松妇女的粪便中存在更多的拟杆菌,因此认为肠道菌群的组成变化与骨质疏松症密切相关。

5.2 免疫调节与激素调节

肠道菌群与免疫系统之间存在密切的相互作用,可以调节免疫细胞的活性和免疫应答[39]。IGF-1是一种众所周知的合成代谢激素,能通过内分泌、自分泌及旁分泌方式促进成骨细胞分化,可能通过影响激素水平和受体的活性,间接影响骨骼代谢和骨代谢,并且在调节炎症反应方面也具有重要作用[40]。实验表明,特定定殖菌群小鼠可通过增加IGF-1的产生而促进骨形成,而未经过特定肠道菌群移植小鼠在经抗生素治疗后,其体内血清IGF-1及骨小梁水平有所降低[41]。并且也有研究认为,肠道菌群通过调节IGF-1的血清水平来影响破骨细胞的活性,同时也作用于肠道对钙的吸收[42]。

5.3 营养素吸收和代谢

肠道菌群参与钙和维生素 D 的吸收和代谢,对于维持骨骼健康至关重要[43]。维生素 D 通过维持肠黏膜屏障的完整性来调节肠道菌群的稳态,并将微生物代谢产物转移到宿主体内。有研究表明,青春期女孩大量补充维生素 D(即每周 9次,每次 50000 IU)可导致厚壁菌、双歧杆菌和肠球菌增加,拟杆菌和乳酸杆菌减少[44]。根据这些发现,维生素 D 受体(VDR)敲除(KO)小鼠的肠道菌群富含拟杆菌和梭状芽胞杆菌,但缺乏乳酸杆菌^[45]。此外,钙是人体中最常见的矿物质。研究表明,肠道菌群产生的 SCFAs 有助于改善人类对钙的吸收,并增加动物模型中的骨密度和强度^[46]。钙补充剂已被证明可以增加小鼠肠道菌群的多样性,比如增加双歧杆菌属、瘤胃球菌科和阿克曼西亚菌的数量^[47]。在健康男性中,每天摄入 1000 mg 钙和 1000 mg 磷,持续 8周,会增加粪便样本中梭状芽胞杆菌 XVIII 的含量^[48]。

5.4 炎症调节

肠道菌群失衡可能导致慢性低度炎症的产生,而慢性炎症与骨质疏松症的发展有关。炎症反应可以促进骨吸收过程并抑制骨形成,从而对骨骼健康产生不利影响。叶试南等[49]应用复方贞术调脂胶囊治疗绝经后骨质疏松,认为骨代谢指标、骨密度及肠道菌群

指标均优于对照组,其作用机制可能是通过调节肠道 菌群,抑制炎性反应来达到间接改善骨质疏松症的目 的。杨平等^[50]研究草鱼鳞胶原蛋白肽防治骨质疏松作 用与血清炎性细胞因子、肠道菌群的关系,研究发现, 草鱼鳞胶原蛋白肽不仅可以增加骨小梁数量,还可显 著降低血清中炎性因子(IL-1β、IL-6和TNF-α)浓度, 降低厚壁菌门和拟杆菌门丰度比值,增加乳酸杆菌和 普雷沃菌等益生菌的丰度,通过改变肠道菌群结构从 而辅助治疗骨质疏松症。

5.5 中医药

中医药在治疗骨质疏松症方面表现出良好的疗 效。无论是单味中药还是中药复方,其机制可能与调 节肠道菌群有关。有研究表明,骨碎补可能是通过增 加肠道菌群的丰度及多样性,调节肠道菌群结构并介 导 Wnt/β-catenin 信号通路,来减少绝经后骨质疏松症 模型大鼠的骨量丢失[51]。甜菜碱在人体中经过肠道菌 群作用后可提供甘氨酸甜菜碱衍生的微生物代谢产 物,可激活人成骨细胞培养物中的胞质钙内流、细胞 外信号调节激酶(ERK)传导和IGF-1合成,从而可以 对骨骼肌细胞产生影响[52]。在中药复方治疗骨质疏松 症方面,周广文等[53]以自拟补肾化痰方干预去势骨质 疏松大鼠后发现,治疗组肠道菌群中的厚壁菌门丰度 增加,拟杆菌门丰度减少,并认为可能通过调节肠道 免疫、抑制破骨细胞功能发挥防治骨质疏松的作用。 曹雪姣等[54]观察益肾壮骨汤对糖皮质激素性骨质疏松 小鼠肾组织成骨细胞特异基因(Osterix)mRNA 和肠道 菌群的影响,结果发现益肾壮骨汤通过下调肾组织 Osterix mRNA水平,抑制气单胞菌等病原菌的增殖来 治疗骨质疏松症。中医药还可以肠道菌群为靶点,治 疗骨质疏松及其合并症。刘弘毅等[55]在辨证论治的基 础上,采用具有调节肠道菌群的中药(葛根芩连汤)治 疗2型糖尿病合并骨质疏松患者,可显著改善肠道微 环境,达到控制血糖、提高骨密度的作用。

以上均证明肠道微生物在骨骼代谢中发挥重要的作用。首先,肠道微生物可以分解食物中的复杂纤维素,产生SCFAs,有助于增强肠道上皮细胞的吸收能力,提高钙和磷的吸收效率。其次,肠道微生物参与调节免疫系统的功能,这对于骨骼健康也很重要。免疫细胞和骨细胞之间存在着复杂的相互作用,免疫系统的不平衡可能会导致骨骼相关疾病的发生,如骨质疏松症。肠道微生物可以通过调节免疫反应,帮助维

持骨骼的健康状态。此外,肠道微生物还可以影响激素的合成和代谢,包括雌激素和维生素 D等对骨骼健康至关重要的激素。因此,进一步研究肠道微生物与骨骼健康之间的关系有助于更好地理解骨骼相关疾病的发生机制。

6 肠道菌群与肌少-骨质疏松症共同的生理病理机制

随着肌少-骨质疏松症与肠道菌群之间的相关性 研究正在不断深入,需要进一步探索二者之间的共同 病理生理机制(见图1),根据以上分析及归纳,总结出 二者的共同生理病理机制有以下4点:①慢性炎症:慢 性低度炎症在肌少-骨质疏松症的发展中扮演重要角 色。肠道菌群的紊乱和失衡可能导致肠道黏膜的破 损和细菌代谢产物的释放,从而引起慢性炎症反应。 这种炎症状态可以损害肌肉和骨骼组织,导致肌肉的 减少和骨质的流失。②营养吸收和代谢紊乱:肠道菌 群在营养物质的吸收和代谢中发挥重要作用。当肠 道菌群失衡时,可能会影响营养物质的吸收和代谢过 程,包括蛋白质、维生素D和钙等对肌肉和骨骼健康 至关重要的营养素。这可能导致营养不足和代谢紊 乱,进而影响肌肉和骨骼的健康。③内分泌调节:肠 道菌群可以影响多种内分泌系统的功能,包括骨代谢 和肌肉生长的调节。肠道菌群的失衡可能影响关键 激素如雌激素、睾酮和胰岛素等的合成、代谢和活性,从而对肌肉和骨骼组织产生负面影响。④肠道屏障功能:肠道菌群对肠道屏障的健康和功能至关重要。肠道屏障是肠道黏膜形成的物理屏障,在防止有害物质进入循环系统方面起着重要作用。当肠道菌群失衡时,可能会导致肠道屏障功能受损,使有害物质渗透到血液中,进而对肌肉和骨骼产生不利影响。

7 肌少-骨质疏松症与肠道菌群相关性研究

7.1 中医基础研究

中医认为肌少-骨质疏松症与脾胃功能的失调有关。脾胃的功能不仅包括消化、吸收,还包括运送水谷物质、产生气血等。脾胃功能失调可能导致水湿停聚、气血不足等状况,进而影响到肌肉和骨骼的健康。也有学者以"阴阳"学说来推演肠道菌群与人体之间的关系,并认为都具有互相对立、相互依存的"阴阳"属性。而各种因素所致的肠道菌群阴阳消长失衡,菌群"阴阳偏盛、偏衰"均是促进疾病发展的重要因素。再者,中医强调"正气内存,邪不可干",田永超等[56]从气机立论,将肠道菌群与气联系一起,认为调节肠道菌也是"调气"的一种体现,利用药物、针刺、导引等手段,引气归位,恢复或重建其运行轨道及运转规律。对于代谢类疾病具有一定实用及参考价值。

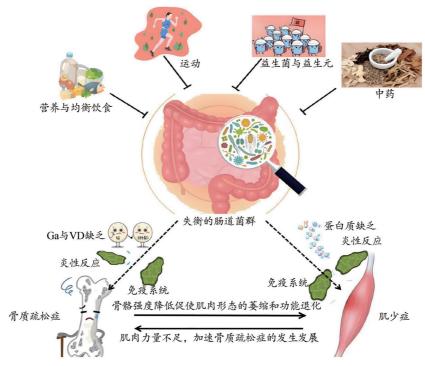


图1 肠道菌群与肌少-骨质疏松症病理机制

7.2 西医基础研究

肌少-骨质疏松症是一种常见的骨骼疾病,西医 对其进行了广泛的基础理论研究。此病与肠道菌群 之间的关系也是西医基础理论研究的一个重要领域。 肠道微生物群与肌肉、骨骼健康密切相关,参与调节 免疫系统、合成营养物质和影响能量代谢等过程。近 年来的研究表明,肠道微生物群的失衡可能导致肌 少-骨质疏松症的发生。目前正在探索肠道微生物群 与肌少-骨质疏松症的关联机制。一种理论是,肠道 微生物群通过产生代谢物和免疫调节来影响骨骼健 康[57],如产生SCFAs调节骨重建过程。此外,肠道微生 物群也参与免疫调节,影响骨骼健康。基于肠道微生 物群的重要性及其与肌少-骨质疏松症的关联,研究 人员正在探索调整肠道微生物群以治疗肌少-骨质疏 松症的潜力。一种方法是改变饮食习惯。膳食纤维 和益生菌的使用是已知影响肠道菌群组的因素[58],通 过改变饮食结构,增加益生元、膳食纤维和发酵食品 等摄入,改善肠道菌群结构[59],从而对肌少-骨质疏松 症产生积极影响。研究发现,增加膳食纤维益生菌和 益生元等的摄入量,有助于促进有益菌群的生长,从 而改善肌少-骨骼健康[60]。此外,粪便移植等方法也被 研究用于改变肠道微生物群,以期望对肌少-骨质疏 松症产生正面影响。

7.3 临床应用研究

通过对患者的肠道菌群进行深入了解,可以实现精准诊断和个性化治疗,以改善患者肌少-骨质疏松症的病程。在一项年轻人跑步试验中表明,摄入6周植物乳杆菌 TWK10(运动益生菌)可以提高耐力[61]。除此之外,研究表明,摄入热杀伤短双歧杆菌 B-3可通过增加大鼠体内比目鱼中 AMPK 的磷酸化、PGC-1α的活化以及细胞色素 c氧化酶的激活,提升骨骼肌质量和线粒体功能[62]。还有研究者在临床中观察到老年肌少症患者骨骼肌质量指数(SMI)与肥胖、骨质疏松的相关性,并分析不同 SMI 老年肌少症患者肠道菌群分布情况认为,老年男性中,普拉梭菌、梭菌属 I 族在极低 SMI 组的含量显著少于低 SMI 组;在老年女性中,与低 SMI 组比较,极低 SMI 组患者肠球菌含量显著减少,梭菌属 I 族含量显著增加[63]。

7.4 实验室研究

肌少-骨质疏松症的实验室研究涉及肠道菌群的 组成分析、功能研究和代谢产物研究、最终机制研究 及其干预方法,其中干预方法包括补充饮食干预(膳食纤维、益生菌、益生元等)肠道菌群移植、药物干预、噬菌体和基因编辑等。通过这些研究,可以逐步深入了解肠道菌群在肌少-骨质疏松症发展中的作用。

7.4.1 益生菌与益生元

益生菌是经过严格筛选的、对人体有益的活性微 生物,可以按照微生物的种类分为芽孢杆菌制剂、乳 酸杆菌制剂、酵母类制剂和复合制剂。通过补充特定 的益生菌,如双歧杆菌和乳酸杆菌,可以调节肠道菌 群平衡,增强肠道屏障功能,从而改善肌少-骨质疏松 症的症状[64]。研究表明,使用长双歧杆菌灌胃卵巢切 除的大鼠16周后,观察到上调骨形成和下调骨吸收, 从而增加骨密度[65]。这些研究结果为益生菌在肌少-骨质疏松症治疗中的应用提供了重要的支持。益生 元是一种无活性的食物成分,通过选择性促进肠道有 益菌群的生长,对宿主产生健康效益。有研究认为, 益生元的摄入可以通过与肠道菌群的相互作用[66],发 酵产生SCFAs,进而促进钙的吸收、释放IGF-1、调节 肠道激素等,从而对肌少-骨质疏松症产生积极影 响[67]。因此,补充益生菌或益生元可能是预防或治疗 肌少-骨质疏松症的一种潜在措施。

7.4.2 肠道菌群移植

肠道菌群移植(Fecal microbiota transplantation, FMT)是一种将健康人的肠道菌群移植到患者体内的新型治疗方法,旨在改善患者的肠道菌群结构[68]。尽管临床上在肌少-骨质疏松症治疗方面的研究相对较少,但一些实验室研究和动物实验显示了FMT在治疗肌少-骨质疏松症方面的潜在价值。研究表明,在无菌小鼠中进行肠道菌群移植能够促进骨骼的合成代谢活化,并改善骨矿物质密度,增加骨密度[69]。这些研究结果提供了肠道菌群移植对肌少-骨质疏松症治疗的初步证据。另一项研究发现,将营养不良的人类肠道菌群移植到无菌小鼠体内,即使在接受均衡饮食的情况下,也会导致小鼠肌肉和骨骼生长缺陷的发生[70]。这表明肠道菌群移植的菌群组成和功能对于肌少-骨质疏松症的预防和治疗可能起到重要作用。

7.4.3 药物干预

针对肠道菌群产生的代谢物,如SCFAs,可以通过 药物调节其生产和作用,从而对肌少-骨质疏松症产 生治疗效果。中医药方面,青娥丸可通过肠道菌群减 少大鼠血清中炎症因子的产生,增加大鼠肠道中 SCFAs的含量,改善大鼠骨质疏松,因此认为肠道菌群是青娥丸治疗骨质疏松症的靶点,青娥丸和肠道菌群之间的相互作用可能是青娥丸改善骨质疏松症的机制之一[71]。另一项研究发现,仙灵骨葆胶囊可增强模型大鼠骨密度及骨强度,仙灵骨葆胶囊联合益生菌使用可进一步发挥促骨折愈合作用[72]。

7.4.4 噬菌体

噬菌体与肠道菌群之间存在密切关系,噬菌体是一种感染细菌的病毒,可以感染有害菌并影响肠道菌群的组成和功能[73]。这种干预可能会改变SCFAs代谢产物的产生和代谢,从而影响肌少-骨质疏松症的发展[74]。但噬菌体干预肌少-骨质疏松症方面仍属于起步阶段,这是目前研究的热点,也是未来极具希望的疗法。Barr等[75]认为噬菌体可以通过裂解细菌、保护肠黏膜来发挥作用。在其他疾病方面,Norman等[76]认为炎症性肠道疾病的肠道菌群变化可能是噬菌体攻击的结果,噬菌体通过影响其数量和功能的表达来诱发疾病。这些研究为噬菌体在肌少-骨质疏松症治疗中的潜在作用提供了新思路。

7.4.5 基因编辑技术

利用基因编辑技术,如CRISPR/Cas9,对特定的肠道菌种进行调控可能是治疗肌少-骨质疏松症的一种潜在方法。Wang等^[77]在小鼠模型中通过敲除小肠上皮基因中的DEAD-boxHelicase15(Dhx15)发现,Dhx15的缺失导致小鼠对肠道细菌感染和结肠炎的易感性增加。同时,研究还显示Dhx15通过调节Wnt诱导的Paneth细胞防御α素的产生,在肠道的抗菌反应中起着关键作用。这表明肠道菌群的调控对于控制肠道菌群、预防肠道感染至关重要。然而,这种方法仍需要进一步研究肠道菌群在肌少-骨质疏松症发病机制中的具体作用,同时也需要确保基因编辑的安全性和有效性。

7.4.6 肠-脑轴研究

肠道菌群与神经系统之间的相互关系是近年来受到关注的研究领域,肠脑轴在维持体内平衡方面起着重要作用^[78]。这方面的研究可以探讨肠道菌群对肌少-骨质疏松症相关的神经因子、神经调节等方面的影响。

综上所述,实验室研究为深入了解肠道菌群与肌少-骨质疏松症之间的关系提供了重要的信息。首先,利用高通量测序技术对肌少-骨质疏松症患者和

健康人进行肠道菌群的组成分析。这种分析涉及比较菌群的多样性、丰度以及特定菌株的变化。其次,通过动物模型的实验研究,探究了肠道菌群在肌少一骨质疏松症中的功能,最后通过对肠道菌群的组成、功能、代谢产物以及相关机制的研究,可以揭示菌群与肌少一骨质疏松症之间的联系,并为潜在的治疗和预防策略提供理论基础。

8 小结与展望

肠道菌群是一个非常复杂的生态系统,被认为是 人类隐藏的代谢器官,肠道菌群及其产生的代谢物在 维持宿主的生理和代谢稳态中起着关键作用。随着 年龄的增长,肠道菌群的微生物组成和功能发生显著 变化,肠道细菌的代谢副产物与延长健康寿命有很大 关系,肠道菌群和肌肉、骨骼之间的相互作用可称为 肠-肌肉-骨轴,目前肠道菌群与肌少-骨质疏松症尚 处于起步阶段,通过以上的文献分析及整理,涉及中 医药通过调节肠道菌群治疗肌少-骨质疏松症时,可 能仍存在一些不足之处:①缺乏充分的临床证据:目 前,中医药通过调节肠道菌群治疗肌少症和骨质疏松 症的临床证据仍然非常有限。虽然一些研究和实验 室研究显示了一些有希望的结果,但仍需要更多的大 规模临床试验来评估中医药在这方面的疗效。②缺 乏一致的治疗方案和标准化:目前还没有一致的治疗 方案和标准化的指导,因此缺乏统一的治疗方法。中 医药的治疗方案往往是根据个体情况和医生的判断 来制定的,缺乏统一的治疗准则和标准。但是,中医 药作为一种综合的医学系统,注重整体调理和个体化 治疗。尽管目前在中医药通过调节肠道菌群治疗肌 少症和骨质疏松症方面存在一些不足之处,但仍具有 研究和探索的潜力。对于个体患者,应该寻求专业中 医的指导,结合现代医学的综合治疗,制定合适的个 体化方案。

展望未来的研究将有助于深入了解肠道菌群与 肌少-骨质疏松症之间的关系,并为临床治疗提供更 具实际应用价值的建议,笔者认为肠道菌群与肌少-骨质疏松症之间的关系可以进一步研究:①深入研究 肠道菌群与肌少-骨质疏松症之间的关系:通过对大 量患者的临床研究和实验室研究,揭示肠道菌群与肌 少-骨质疏松症发病机制之间的关联;②优化肠道菌 群干预策略:通过对患者肠道菌群的监测和分析,制 定更加精准的菌群调控策略,包括个性化的益生菌补充剂,肠道菌群移植等方法改善肠道菌群失衡,从而减缓肌少-骨质疏松症的进展;③利用新型生物技术进行肠道菌群调控:随着基因编辑技术、合成生物学等生物技术的不断发展,未来可能通过对特定菌种的基因编辑或合成菌种的设计,来实现对肠道菌群的精确调控,为肌少-骨质疏松症的治疗提供新的方法;④跨学科合作:肠道菌群研究涉及微生物学、免疫学、分子生物学等多个学科领域,可通过跨学科合作,整

合不同领域的优势资源,深入探讨肠道菌群与肌少-骨质疏松症之间的关系,为临床治疗提供更为全面的 指导;⑤整合现有研究成果,开发新型药物:通过对肠 道菌群及其代谢产物的深入研究,可能会发现新的药 物靶点,有望开发出针对肌少-骨质疏松症的新型药 物。总之,从医学角度来看,肠道菌群在治疗肌少-骨 质疏松症方面具有广泛的研究前景。随着科学研究 的深入,未来有望发现更多有效的治疗方法,为肌少-骨质疏松症患者带来福音。

参考文献

- 1 黄宏兴, 史晓林, 李盛华, 等. 肌少-骨质疏松症专家共识. 中国骨质疏松杂志, 2022, 28(11):1561-1570.
- 2 Clynes M A, Gregson C L, Bruyère O, et al. Osteosarcopenia: where osteoporosis and sarcopenia collide. Rheumatology (Oxford), 2021, 60 (2):529-537.
- 3 Coll P P, Phu S, Hajjar S H, et al. The prevention of osteoporosis and sarcopenia in older adults. J Am Geriatr Soc, 2021, 69(5):1388–1398.
- 4 Bulgakova S V, Treneva E V, Zakharova N O, et al. Intestinal microbiota: relationship to age-associated diseases (review of literature). Klinicheskaia Lab Diagn, 2019, 64(4):250-256.
- 5 O'Toole PW, Jeffery IB. Gut microbiota and aging. Science, 2015, 350 (6265):1214–1215.
- 6 刘奔, 陈琳双, 余正杰, 等. 生命早期肠道菌群的形成及影响因素. 中国病原生物学杂志, 2023, 18(3):358-363.
- 7 刘真真, 彭楠. 益生菌的应用现状和发展前景. 微生物学报, 2023, 63(5):1863-1887.
- 8 汤军, 刘晓飞. 痛风与肠道菌群相关性的研究进展. 中国微生态学杂志, 2022, 34(10):1228-1231.
- 9 赵晴, 刘星吟. 肠道微生物在孤独症中的研究进展. 中国科学: 生命科学, 2023, 53(5):605-615.
- 10 Kim H K, Lee M J, Kim E H, et al. Comparison of muscle mass and quality between metabolically healthy and unhealthy phenotypes. Obesity, 2021, 29(8):1375–1386.
- 11 刘雷蕾, 马淑然. 基于脑-肠轴探讨牌主运化水液应长夏而变的物质基础与科学内涵. 辽宁中医杂志, 2020, 47(9):43-45.
- 12 何方,李金星,吴思谋. 肠源性短链脂肪酸生成机制及其饮食调控. 食品科学技术学报, 2023, 41(1):10-21.
- 13 许明明, 于志锋. 骨骼肌通过力学刺激对骨重建的影响. 医用生物力学, 2020, 35(3):385-390.
- 14 姜慧阳, 骆天炯. 肌少症的中西治疗及靶点研究. 智慧健康, 2022, 8(2):43-47.
- 15 郭澜, 李莉, 葛继荣. 从外泌体探讨"肾主骨生髓" 理论与骨质疏松 症的关系. 中国骨质疏松杂志, 2020, 26(12):1852-1856.
- 16 熊淑琪. 胆汁酸生理功能及其与肠道微生物互作研究进展. 生物技术通报, 2023, 39(4):187-200.

- 17 徐家宁, 陆一风, 唐昊. 肠道微生物群通过 SCFAs 影响骨质疏松症研究进展. 海南医学院学报, 2023, 29(8):635-640.
- 18 Björkegren J L M, Lusis A J. Atherosclerosis: recent developments. Cell. 2022, 185(10):1630-1645.
- 19 杨雪, 高亚男, 王加启, 等. 短链脂肪酸在肠脑轴中的作用. 动物营养学报, 2023, 35(3):1368-1379.
- 20 Walsh M E, Bhattacharya A, Sataranatarajan K, et al. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell, 2015, 14(6):957-970.
- 21 吴永娜, 张磊, 陈拓, 等. 人体肠道微生态与肝脏免疫关系研究进展. 中国微生态学杂志, 2021, 33(2):227-230.
- 22 蔡淑珍, 吴磊, 谢新强, 等. 肠道微生物群在人类健康衰老中的作用机制研究进展. 微生物学报, 2023, 63(1):85-105.
- 23 Su X, Gao Y, Yang R. Gut microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis. *Cells*, 2022, 11(15):2296.
- 24 Lahiri S, Kim H, Garcia-Perez I, et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med, 2019, 11(502):eaan5662.
- 25 Schieber A M, Lee Y M, Chang M W, et al. Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science, 2015, 350(6260):558-563.
- 26 Mandić M, Mitić K, Nedeljković P, et al. Vitamin B complex and experimental autoimmune encephalomyelitis-attenuation of the clinical signs and gut microbiota dysbiosis. Nutrients, 2022, 14(6):1273.
- 27 Gianoudis J, Bailey C A, Daly R M. Associations between sedentary behaviour and body composition, muscle function and sarcopenia in community-dwelling older adults. Osteoporos Int, 2015, 26(2):571–579.
- 28 Clarke SF, Murphy EF, O'Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 2014, 63(12): 1913–1920.
- 29 Chen P, Pei J, Wang X, et al. Gut bacterial metabolite Urolithin A inhibits myocardial fibrosis through activation of Nrf2 pathway in vitro and in vivo. Mol Med, 2022, 28(1):19.
- 30 García-Villalba R, Tomús-Barberún FA, Iglesias-Aguirre CE, et al. Ellagitannins, urolithins, and neuroprotection: human evidence and the

- possible link to the gut microbiota. Mol Aspects Med, 2023, 89:101109.
- 31 李志强, 杨乾滋, 苏安平, 等. 肠道微生物与骨质疏松症的研究进展. 中国骨与关节杂志, 2023, 12(4):311-315.
- 32 李月曦, 陈书艳, 高艳虹. 肠道微生物对骨骼质量的双向调节作用. 中国骨质疏松杂志, 2021, 27(1):153-156.
- 33 Arifuzzaman M, Won T H, Li T T, et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature, 2022, 611(7936):578-584.
- 34 郭慧慧, 申浩然, 韩燕星, 等. 短链脂肪酸: 肠-器官轴调控疾病的信号使者. 药学学报, 2023, 58(3):593-604.
- 35 Lucas S, Omata Y, Hofmann J, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun, 2018, 9(1):55.
- 36 Khosla S. The microbiome adds to the complexity of parathyroid hormone action on bone. *J Clin Invest*, 2020, 130(4):1615–1617.
- 37 Wen K, Tao L, Tao Z, et al. Fecal and serum metabolomic signatures and microbial community profiling of postmenopausal osteoporosis mice model. Front Cell Infect Microbiol, 2020, 10:535310.
- 38 Rettedal E A, Ilesanmi-Oyelere B L, Roy N C, et al. The gut microbiome is altered in postmenopausal women with osteoporosis and osteopenia. JBMR Plus, 2021, 5(3):e10452.
- 39 Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Genetics of human gut microbiome composition. bioRxiv, 2020, DOI: 10.1101/ 2020.06.26.173724.
- 40 董万涛, 张杰, 赵张凯, 等. 微生物-肠-骨轴与骨质疏松疾病的研究进展. 微生物学通报, 2023, 50(2):719-728.
- 41 Jia R, Liu N, Zhu Y, et al. Curative effect of prebiotics/probiotics preparations combined with zoledronic Acid + Calcitriol regimen on patients with primary osteoporosis and their influences on bone metabolism markers. Emerg Med Int, 2022, 2022:3293362.
- 42 de Sire A, de Sire R, Curci C, et al. Role of dietary supplements and probiotics in modulating microbiota and bone health: the gut-bone axis. Cells, 2022, 11(4):743.
- 43 Lee J Y, Tsolis R M, Bäumler A J. The microbiome and gut homeostasis. *Science*, 2022, 377(6601):eabp9960.
- 44 Tabatabaeizadeh S A, Fazeli M, Meshkat Z, et al. The effects of high doses of vitamin D on the composition of the gut microbiome of adolescent girls. Clin Nutr ESPEN, 2020, 35:103–108.
- 45 Liu Y, Yang M, Ran Z, et al. Effect of different doses of vitamin D on the intestinal flora of babies with eczema: an experimental study. Life, 2022, 12(9):1409.
- 46 Yoon L S, Michels K B. Characterizing the effects of calcium and prebiotic fiber on human gut microbiota composition and function using a randomized crossover design-a feasibility study. *Nutrients*, 2021, 13(6):1937.
- 47 Fan L, Zhu X, Sun S, et al. Ca: Mg ratio, medium-chain fatty acids, and the gut microbiome. Clin Nutr, 2022, 41(11):2490-2499.
- 48 Trautvetter U, Camarinha-Silva A, Jahreis G, et al. High phosphorus intake and gut-related parameters - results of a randomized placebo-

- controlled human intervention study. Nutr J, 2018, 17(1):23.
- 49 叶试南, 董群伟, 郑帮明, 等. 复方贞术调脂胶囊在绝经后骨质疏松 患者中的应用效果及对骨代谢、肠道菌群的影响研究. 中国医学创 新, 2021, 18(18):90-93.
- 50 杨平, 王丽娟, 徐昕, 等. 草鱼鳞胶原蛋白肽对骨质疏松小鼠骨微结构、血清 $TNF-\alpha$ 、 $IL-1\beta$ 与 IL-6和肠道菌群的影响. 食品科学, 2022, 43(13):118-124.
- 51 王杰, 李琰, 石威, 等. 基于肠道菌群的骨碎补抗绝经后骨质疏松症的机制研究. 中国中医骨伤科杂志, 2022, 30(12):7-14.
- 52 Gargiulo Isacco C, Inchingolo A D, Nguyen Cao K D, et al. The bad relationship, osteo-decay and diabetes type 2 searching for a link: a literature review. J Biol Regul Homeost Agents, 2021, 35(2):253-269.
- 53 周广文,向楠,张妍,等.高通量测序研究补肾化痰方对去势骨质疏松大鼠肠道菌群结构与多样性的影响.中华中医药杂志,2019,34(7):3305-3310.
- 54 曹雪姣, 孙大卫, 陈建伟, 等. 益肾壮骨汤对糖皮质激素性骨质疏松 小鼠肾组织 Osterix mRNA 和肠道菌群的影响. 中国微生态学杂志, 2021, 33(8):891-896.
- 55 刘弘毅, 陈岳祺, 颜洁, 等. 中药调节肠道菌群干预2型糖尿病合并骨质疏松患者的影响研究. 中国骨质疏松杂志, 2021, 27(11):1572-1575, 1593.
- 56 田永超, 张斯怡, 王旭慧. 试以气机论肠道菌群. 中华中医药杂志, 2022, 37(4):2171-2173.
- 57 Engevik M A, Ruan W, Esparza M, et al. Immunomodulation of dendritic cells by *Lactobacillus reuteri* surface components and metabolites. *Physiol Rep*, 2021, 9(2):e14719.
- 58 Bitto A, Polito F, Squadrito F, et al. Genistein aglycone: a dual mode of action anti-osteoporotic soy isoflavone rebalancing bone turnover towards bone formation. Curr Med Chem, 2010, 17(27):3007-3018.
- 59 Sonnenburg J L, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. *Nature*, 2016, 535(7610):56-64.
- 60 戴毅, 崔丽英. 青少年成人脊髓性肌萎缩症临床诊疗指南. 罕见病研究, 2023, 2(03):377-397
- 61 Huang W C. Effect of *Lactobacillus plantarum* TWK10 on improving endurance performance in humans. *Chin J Physiol*, 2018, 61(3): 163–170
- 62 李亚梦, 刘明宇, 孙婧, 等. 运动与肠道菌群相关研究的热点主题和趋势——基于文献计量学分析. 中国运动医学杂志, 2023, 42(1): 63-73.
- 63 李姝敏, 汪晶美, 李晗宇, 等. 老年肌少症患者骨骼肌质量指数与肥胖、骨质疏松及肠道菌群的相关性研究. 中华危重症医学杂志(电子版), 2018, 11(6):361-365.
- 64 Seely K D, Kotelko C A, Douglas H, et al. The Human Gut Microbiota: A Key Mediator of Osteoporosis and Osteogenesis. Int J Mol Sci. 2021, 22(17):9452.
- 65 Kim C S, Cha L, Sim M, et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. J Gerontol A Biol Sci Med Sci,

- 2021, 76(1):32-40.
- 66 陈哲, 缪琴, 金岚, 等. 肠道微生物群改变在老年肌少症发病中的作用. 中国慢性病预防与控制, 2022, 30(1):66-69.
- 67 Rodriguez J, Delzenne N M. Modulation of the gut microbiota-adipose tissue-muscle interactions by prebiotics. *J Endocrinol*, 2021, 249(1): R1–R23.
- 68 邓寒丹, 范兴丽. 肠道菌群在肿瘤发生发展及免疫治疗中作用的研究进展. 生物工程学报, 2022, 38(6):2105-2119.
- 69 Berland M, Cadiou J, Levenez F, et al. High engraftment capacity of frozen ready-to-use human fecal microbiota transplants assessed in germ-free mice. Sci Rep, 2021, 11(1):4365.
- 70 Cheng S, Qi X, Ma M, et al. Assessing the relationship between gut microbiota and bone mineral density. Front Genet, 2020, 11:6.
- 71 谢辉, 林上阳, 华政颖, 等. 基于粪菌移植研究青娥丸的抗骨质疏松作用. 南京中医药大学学报, 2021, 37(4):521-528.
- 72 邓祖跃, 黄俊俊. 仙灵骨葆联合益生菌对骨质疏松性骨折大鼠的愈

- 合作用. 中国临床药理学与治疗学, 2018, 23(10):1126-1131.
- 73 Dion M B, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. *Nat Rev Microbiol*, 2020, 18(3):125–138.
- 74 Manrique P, Dills M, Young M. The human gut phage community and its implications for health and disease. *Viruses*, 2017, 9(6):141.
- 75 Barr J J, Auro R, Sam-Soon N, et al. Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. Proc Natl Acad Sci U S A, 2015, 112(44):13675-80.
- 76 Norman J M, Handley S A, Baldridge M T, et al. Disease-specific alterations in the enteric virone in inflammatory bowel disease. Cell, 2015, 160(3):447-460.
- 77 Wang Y, He K, Sheng B, et al. The RNA helicase Dhx15 mediates Wnt-induced antimicrobial protein expression in Paneth cells. Proc Natl Acad Sci U S A, 2021, 118(4):e2017432118.
- 78 Margolis KG, Cryan JF, Mayer EA. The microbiota-gut-brain axis: from motility to mood. Gastroenterology, 2021, 160(5):1486-1501.

Study on the Correlation Between Sarcopenia-Osteoporosis and Intestinal Flora

WEI Wei¹, WANG Shixuan¹, ZHAN Libin²

The Second Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China;
Innovation Engineering Technology Center, Liaoning University of Chinese Medicine,
Shenyang 110000, China)

Abstract: Sarcopenia-osteoporosis is a degenerative metabolic syndrome in which sarcopenia and osteoporosis coexist, often in the elderly. It is characterized by low bone density, decreased muscle mass and loss of strength, factors that can reduce quality of life and mobility. The musculoskeletal system is an important determinant of overall human health, and as the population ages, the number of patients with sarcopenia-osteoporosis is increasing and its treatment is receiving increasing attention. A complex flora exists in the human gut and these flora influence musculoskeletal development and homeostasis *in vivo*. Therefore, this review takes the role of intestinal flora on muscle and bone as an entry point to analyze the role of intestinal flora in the pathogenesis and treatment of sarcopenia-osteoporosis, to elucidate the correlation between sarcopenia-osteoporosis and intestinal flora, and to provide new ideas for better treatment of sarcopenia-osteoporosis.

Keywords: Sarcopenia-osteoporosis, Intestinal flora, Intervention modality, Research progress

(责任编辑: 李青)