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A B S T R A C T

The increasing incidence of emerging infectious diseases emphasizes the 
urgent need for timely and accurate global surveillance and early warning 
systems. In recent years, infectious disease surveillance has become more 
diversified, and early warning technologies have seen significant ad
vancements in sensitivity and timeliness. This review outlines the evolu
tion and application of infectious disease surveillance and focuses on the 
potential of the One Health approach. By integrating data across human, 
animal, and environmental domains, the One Health approach provides a 
more comprehensive and effective framework for addressing future pan
demics. Furthermore, this review systematically introduces key concepts 
in infectious disease early warning that include the selection of warning 
thresholds and the categorization of warning models. This review also 
summarizes representative global early warning systems for infectious 
diseases, discusses their prospects, and offers insights for developing in
telligent, multi-source data-driven monitoring and early warning systems 
globally.
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1. Introduction

In recent years, the incidence and impact of emerging infectious diseases have increased significantly, 
with notable outbreaks such as the 2003 severe acute respiratory syndrome (SARS), the 2009 swine flu 
pandemic, the 2012 Middle East respiratory syndrome (MERS), and, most recently, the coronavirus 
disease 2019 (COVID-19) pandemic.1 These events highlight the urgent need for more robust and holistic 
infectious disease surveillance and early warning systems that allow the timely monitoring, detection, 
and assessment of emerging health threats.2,3

Surveillance systems made significant advancements during the COVID-19 pandemic, particularly in the use of 
wastewater surveillance and digital methods such as mobility tracking and infodemiology.4 However, notable 
gaps still remain. One major issue is that existing systems continue to focus primarily on human health, with 
hospital-based surveillance forming the backbone. However, hospital-based systems often experience delays in 
detecting anomalies, emphasizing the need for further enhancements to address future pandemic risks.5 Another 
challenge is the disparity in monitoring capabilities across countries. Whereas some nations have well-established 
infrastructures, others face barriers, including limited resources, a lack of laboratory capabilities, political in
stability, and inadequate data-sharing systems, which further hamper global efforts in detecting and responding 
to emerging infectious diseases.6,7 For example, since October 2024, the Democratic Republic of the Congo has 
been struck by an undiagnosed disease that includes symptoms of fever, headache, cough, runny nose, and body 
ache. However, the cause was not identified until 2 months later, in December, as an acute respiratory infection 
complicated by malaria, further indicating regional disparities in resources and diagnostic capabilities.

The performance of early warning systems is closely linked to the effectiveness of disease surveillance 
because these systems transform data into actionable insights. Early warning techniques have also 
evolved considerably with the expansion of data sources and advancements in computational power. 
Today, multi-channel surveillance data are integrated to assess factors that influence the spatiotemporal 
spread of diseases, expanding the range of indicators to include symptoms, risk factors (e.g., meteor
ological conditions, vector density, and pathogen data), population mobility, and even internet queries.8
Moreover, the scope of early warning has broadened to include spatial and spatiotemporal warnings, 
thus offering a more comprehensive view of disease dynamics.9 Furthermore, earlier warning techniques 
have relied primarily on time series models that issue real-time alerts. However, modern systems now 
employ a range of advanced algorithms, including machine learning and deep learning,10 to forecast 
trends and provide proactive alerts that enable earlier resource preparation and better allocation.

Generally, surveillance data and early warning techniques are integrated into systems such as the China 
Infectious Disease Automated-alert and Response System (CIDARS)10 and EPIWATCH11 to support timely in
terventions12,13 and optimal resource allocation.14 With ongoing advancements in technological and computa
tional power and data availability—including information on pathogens, animal hosts, vectors, human popula
tions, and environmental factors—early warning systems are increasingly capable of delivering precise and 
proactive alerts, thus enhancing global preparedness and response to emerging infectious diseases.15–17

In this review, we critically examine the current landscape of global infectious disease surveillance 
and early warning systems and discuss development, applications, and areas for enhancement. By in
tegrating data across human, animal, and environmental domains, the One Health approach offers a 
more comprehensive and effective framework for addressing future pandemics. Furthermore, we sys
tematically introduce key concepts in infectious disease early warning systems that include the selection 
of warning thresholds and the categorization of warning models. The review also provides an overview 
of key global early warning systems, discusses their potential, and offers insights into the development of 
intelligent, multi-source, data-driven monitoring and early warning systems.

2. Infectious disease surveillance

2.1. History and development of surveillance

The concept of surveillance dates back to the 14th century when the Venetian Republic made the first 
attempt to detect and exclude ships that carried infected individuals. As the plague spread through 
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London in the 17th century, parish clerks initiated the first weekly reports of deaths and their causes in 
the form of ‘Bills of Mortality’ to infer disease intensity and inform appropriate actions. This effort 
marked the formulation of basic surveillance principles, including data collection, analysis, inter
pretation to provide information, and the dissemination of information to guide actions.18,19

In the 19th century, the practice of analyzing and interpreting data to inform public health actions 
was fully developed. In 1850, Lemuel Shattuck’s landmark ‘Report of the Massachusetts Sanitary 
Commission’ in the USA first linked living conditions to various health outcomes, including death from 
any cause, infant and maternal mortality, and infectious diseases. During the same period, William Farr, 
one of the founders of modern surveillance, focused on collecting vital statistics, used data to advance 
population-based surveillance and disseminated findings to guide public health interventions.19 Sur
veillance became more systematic and institutionalized over this period. For example, the UK estab
lished the Central Register Office in 1836 and formally introduced death registries. In 1888, Italy 
mandated the reporting of 11 communicable diseases and death certification.18

Surveillance practices continued to evolve in the 20th century. In 1955, Dr. Alexander D. Langmuir 
in the USA first defined surveillance as the collection, analysis, and dissemination of data on illness and 
health events.20 This definition became a cornerstone for modern epidemiological practices and was 
integral to the newly created Communicable Disease Center, now known as the US Centers for Disease 
Control and Prevention (CDC).18,19 In 1986, the US CDC further refined the definition of surveillance as 
‘the ongoing systematic collection, analysis, and interpretation of health data essential to the planning, 
implementation, and evaluation of public health practice, closely integrated with the timely dis
semination of these data to those who need to know.’21 Since then, surveillance has played a crucial role 
in many aspects of public health and serves as its cornerstone. Former US Surgeon General Dr. David 
Satcher once stated, ‘In public health, we can’t do anything without surveillance. That’s where public 
health begins.’22 Although its most recognized use is the detection of epidemics in the population, 
surveillance has several other important functions, including risk factor monitoring, disease burden 
estimation, health intervention evaluation, guidance for research and development of vaccines and 
medications, disease eradication, and medical resource allocation.23–27

2.2. Common surveillance systems and data sources

As the importance of public health gains increasing recognition and technological advancements 
persist, surveillance systems have diversified into various forms including passive versus active sur
veillance,28 indicator-based versus event-based surveillance,29,30 and syndromic versus laboratory-based 
surveillance (Table 1).31,32 Each system contributes uniquely to understanding disease trends. Passive 
surveillance, which is based on routine healthcare reports, is widely used for its cost-effectiveness and 
broad coverage but is often limited by underreporting and delays in data collection. By contrast, active 
surveillance involves proactive data collection from healthcare providers or sentinel sites and generates 
more timely and accurate data but has greater resource requirements.

For example, indicator-based surveillance focuses on predefined indicators such as case counts, 
hospitalizations, and mortality that are essential for tracking established diseases. Conversely, event- 
based surveillance draws upon a broader range of formal and informal channels, including media reports 
and digital platforms, which are more suitable for identifying unusual health events and early out
breaks.29,30 The integration of these surveillance systems enhances the ability to capture a compre
hensive picture of disease dynamics.

Despite these strengths, the complexity of emerging infectious diseases, particularly those with 
zoonotic origins, necessitates a more integrated surveillance framework. Traditional systems, although 
effective for specific functions, often operate in isolation and may be inadequate in detecting the early 
signs of emerging infectious disease outbreaks. This shortcoming highlights the need for a One Health 
approach to surveillance that integrates information on pathogens, hosts, environments, and socio- 
factors to create a comprehensive, interdisciplinary system for early detection and response.
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2.3. Surveillance from a One Health approach

2.3.1. Pathogen surveillance
In the context of pathogen surveillance, genomic surveillance is a critical tool for identifying and 

understanding the genetic structure, variations, and evolutionary changes of pathogens.33 By sequencing 
pathogen genomes, researchers can monitor the emergence of new pathogens, track their transmission 
patterns, and detect mutations that may influence their virulence or capacity for immune evasion.34,35 A 
notable example is the initial identification of severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2) at the onset of the COVID-19 pandemic.33,36 Metagenomic RNA sequencing was employed to 

Table 1 
Common surveillance categories and their applications. 

Categories Applications Advantages Limitations

Passive31 vs. active 
surveillance28

Passive surveillance31 depends 
on routine reports from 
healthcare providers, who 
identify and document 
diseases during regular 
medical care.

Cost-effective, covers 
large populations.

Prone to underreporting, 
delays in data collection.

Active surveillance28 involves 
proactive data collection by 
health authorities through 
contact with healthcare 
providers, record reviews, and 
sentinel sites.

Provides more accurate 
and detailed data, allows 
early detection of 
outbreaks.

Resource-intensive, 
requires more manpower 
and coordination.

Sentinel28 vs. 
population-based 
surveillance31

In sentinel surveillance, a 
prearranged sample of 
reporting sources agrees to 
report all cases of defined 
conditions.

Could indicate trends in 
the entire target 
population. Excellent for 
detecting major public 
health problems.

May be insensitive to 
rare events, which may 
emerge anywhere in the 
population.

Population-based 
surveillance tracks the 
incidence and prevalence of 
diseases in the entire 
country (national) or a 
defined subnational 
population area.

Produces more 
generalizable data on 
incidence of disease.

Resource-intensive and 
may face challenges 
related to data quality.

IBS vs. EBS30 IBS collects data based on 
pre-defined specific 
indicators such as case 
numbers, hospitalization 
rates, and mortality.

Tracks the status of 
known diseases 
effectively.

Limited to predefined 
indicators, may miss new 
or emerging threats.

EBS gathers data from 
formal and informal sources 
such as media reports and 
social networks to detect 
unusual health events.

Allows rapid 
identification of unusual 
health events and quick 
response to new public 
health threats.

May result in false 
alarms due to unverified 
or unreliable sources.

Syndromic32 vs. 
laboratory-based 
surveillance31

Syndromic surveillance 
monitors symptoms and 
clinical presentations to detect 
potential outbreaks before 
specific diagnoses are made.

Enables early detection of 
outbreaks through pre- 
defined symptom 
tracking.

Lacks specificity, may 
result in false positives 
and mis-confirmed 
diagnoses.

Laboratory-based 
surveillance involves the 
identification of pathogens 
using techniques such as 
PCR, serological tests, and 
genomic sequencing.

Provides definitive 
pathogen identification, 
guides treatment and 
prevention strategies.

Resource-intensive, 
requires laboratory 
infrastructure and 
expertise.

EBS: event-based surveillance; IBS: indicator-based surveillance; PCR: polymerase chain reaction.
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uncover the cause of the unknown respiratory disease and successfully identified the novel coronavirus. 
This early detection was crucial and allowed for the rapid development of molecular diagnostic assays, 
vaccines, and therapeutic interventions.

Genomic surveillance also plays an essential role in monitoring the emergence of new pathogen variants. In 
the case of SARS-CoV-2, the ongoing surveillance of mutations—particularly in the spike protein and receptor- 
binding domains—has enabled scientists to evaluate changes in transmissibility, immune escape, and disease 
severity.37–41 This information helps forecast the predominance of specific variants and potential disease trends. 
Moreover, these data inform public health responses such as updating vaccine formulations to target specific 
variants and managing strategic reserves of antiviral medications.42

Genomic surveillance is equally vital for zoonotic diseases such as avian influenza. Tracking specific 
mutations, such as those in polymerase basic protein 2 and sialic acid binding sites, is crucial for de
tecting signs of viral adaptation in mammals. Such mutations can increase the risk of human-to-human 
transmission and heighten the pandemic potential, as exemplified by the global spread of clade 2.3.4.4b 
of H5N1 in 2023–2024. Early identification of these genetic markers offers an opportunity to implement 
targeted control measures and prevent wider outbreaks.

The global open sharing of genomic data is fundamental to pathogen surveillance and the evaluation 
of pathogen characteristics.33 International initiatives, including the World Health Organization’s 
(WHO) International Pathogen Surveillance Network and the Global Genomic Surveillance Strategy for 
Pathogens with Pandemic and Epidemic Potential, 2022–2032 and the Global Initiative on Sharing All 
Influenza Data,43–45 were developed to facilitate this process. These efforts enhance the early detection 
of pandemic and epidemic threats and enable coordinated global responses by providing a unified 
platform for genomic data exchange and analysis.

2.3.2. Vector surveillance
Vectors are living organisms that can transmit infectious pathogens between humans or from animals 

to humans. Many vectors are arthropods such as mosquitoes, ticks, and flies that ingest pathogens from 
an infected host (human or animal) during feeding.46 Once infected, the vector can transmit the pa
thogen to new hosts in subsequent feedings.47 Therefore, vector-borne diseases refer to human illnesses 
caused by viruses, bacteria, and parasites that are transmitted by vectors.

Vector surveillance involves the systematic and continuous collection, analysis, and interpretation of 
vector population data such as species composition, density, and distribution and the seasonal variation 
of mosquitoes, rodents, flies, and other disease-carrying organisms.48 These data are a critical resource 
for guiding public health authorities and disease prevention agencies in designing, implementing, 
evaluating, and adjusting vector control strategies. The effective surveillance of vector populations can 
help minimize their impact on communities, reduce economic losses, and most importantly, prevent and 
control the spread of vector-borne diseases. For example, in mosquito-borne diseases, warm and humid 
environments create favorable conditions for mosquito breeding and disease transmission.46,49,50

Countries such as Uganda have used satellite systems to predict heavy rainfall—a key factor in mosquito 
population growth—to forecast disease risk and prepare early control measures. To strengthen the global 
response to vector-borne diseases, the WHO launched the Global Arbovirus Initiative on March 31, 
2022.51 This initiative emphasizes improved risk monitoring and disease forecasting, the reduction of 
outbreak risk, the enhancement of vector control and prevention, innovation in new methods, and the 
development of partnerships to support these efforts globally.

2.3.3. Host surveillance
Host surveillance aims to elucidate the distribution and transmission dynamics of pathogens within 

animal hosts in natural ecosystems. This method includes identifying transmission factors and detecting 
spillover events, offering early warnings for potential human infections, and supporting epidemic pre
paredness. Generally, host surveillance targets wildlife, domestic poultry, and livestock that often serve 
as reservoirs for emerging infectious diseases. For example, monitoring wild birds, especially migratory 
species, is critical for tracking avian influenza virus transmission.52,53 Migratory birds are natural re
servoirs for various influenza strains, and their seasonal, transcontinental movements can introduce new 
viral subtypes into different regions.54,55 Surveillance along migratory routes and resting areas identifies 
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potential viral strains that could spread to domestic poultry and wildlife.52,56 Continuous monitoring of 
domestic poultry is also essential because these birds act as intermediaries between wild bird popula
tions and human environments.57 Infected flocks in poultry farms can lead to economic losses and 
elevated human exposure risk, making early surveillance in farms and markets vital for implementing 
rapid containment actions such as culling.

Spillover surveillance is also crucial in host surveillance. Spillover refers to the phenomenon in which 
pathogens cross species barriers and spread across various hosts, such as the transmission of the avian 
influenza virus from birds to mammals.58,59 Such spillover events may indicate that the virus is adapting 
to new hosts, thereby increasing the risk of human infection.60 Incidents involving the highly pathogenic 
avian influenza virus H5N1 have highlighted the need for vigilant monitoring given that the virus 
spreads from wild birds or poultry to mammals, including cattle, rodents, elephant seals, and pigs, thus 
triggering global outbreaks.61–63 Monitoring spillover incidents is essential—particularly for identifying 
adaptive mutations in mammals such as polymerase basic protein 2 adaptation or mutations that affect 
sialic acid binding—and provides critical insights into the risk of human-to-human transmission.60,64–66

Host surveillance systems should be customized to specific ecological and regional characteristics. For 
example, in urban green parks, monitoring tick, rodent, and weasel populations is essential for eluci
dating viral transmission in urban wildlife and allows the timely assessment of infection risk to the 
surrounding human populations.67,68 This localized approach enhances the effectiveness of host sur
veillance by addressing unique ecological challenges and improving public health preparedness.

2.3.4. Human surveillance
Once a pathogen establishes itself in human populations, systematic human surveillance becomes critical for 

monitoring its spread and public health impact. As illustrated in the infectious disease pyramid model, human 
surveillance encompasses various stages: initial infection, symptom manifestation, healthcare engagement, 
hospitalization, progression to severe cases, and mortality (Fig. 1).69 At each stage, only a portion of infected 
individuals advance to the next stage, creating a stratified disease structure. For example, a pathogen may cause 
symptoms in 80% of infected individuals, yet only 60% may seek medical care and approximately 30% of those 
may require hospitalization.70,71 Comprehensive surveillance must thus encompass the full continuum of 
healthcare encounters by integrating pre-hospital behaviors such as absenteeism, self-medication, and online 
health inquiries with clinical visit data and treatment outcomes. By using various monitoring systems—whether 
passive or active, indicator-based or event-based—human surveillance could provide a more comprehensive view 
of the pathogen’s impact on human populations, facilitating early detection and enabling prompt, targeted public 
health responses.

2.3.5. Environmental surveillance
Environmental surveillance for infectious diseases involves a comprehensive assessment of natural 

environmental conditions and socio-environmental factors. Natural environmental monitoring focuses 

Fig. 1. Spectrum of infectious disease surveillance in humans. EBS: event-based surveillance. 
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on systematically observing and assessing conditions, such as water, air, soil, and climate, and is es
sential for understanding disease dynamics and informing control strategies.72 For example, meteor
ological data are widely used in the predictive modeling of diseases such as dengue and malaria. Studies 
have demonstrated that specific climate indicators—such as sea surface temperature anomalies in the 
tropical Indian Ocean—can correlate with the incidence of dengue, potentially allowing for earlier 
disease forecasts and intervention planning.73

Wastewater surveillance has emerged as a highly effective tool for the early detection and monitoring 
of infectious agents in communities.74,75 This approach, which tracks RNA/DNA in sewage, was widely 
adopted during the COVID-19 pandemic by certain countries, including the USA, the UK, and Ger
many.76,77 By providing a cost-effective, community-wide measure of infection levels and even capturing 
trends among asymptomatic individuals, wastewater monitoring offers a valuable early warning system 
for emerging pathogens.75 Continued advancements in sampling, detection, and amplification technol
ogies are expected to expand the utility of wastewater monitoring in surveillance frameworks for in
fectious diseases.78

Environmental changes such as land degradation, forest loss, and climate shifts also significantly 
impact zoonotic spillover risks.72,79 For example, altered migratory bird patterns and changes in virus 
persistence under different climatic conditions can influence the spread of avian influenza (AIV). En
vironmental changes have led to AIV transmission in regions that had previously remained unaffected, as 
evidenced by the emergence of H5N1 in Antarctica in 2023.62 Additionally, monitoring high-density 
poultry farms—where the risk of virus amplification and human transmission is high—enables the early 
detection of AIV and provides essential data for containment efforts.

Socio-environmental factors such as human mobility and public health events also play a critical role. 
Population movement restrictions, as seen early in the COVID-19 pandemic, were crucial for limiting the 
virus’s spread.80 Mobility data enhance predictive models for cross-border transmission of vector-borne 
diseases and supplement traditional surveillance systems. Furthermore, platforms such as ProMED-Mail 
and EPIWATCH facilitate event-based surveillance by tracking public health events for indications of 
outbreaks.81,82 Internet search trends also offer early insights into potential outbreaks and assist public 
health officials in detecting emerging infectious disease threats and implementing timely interven
tions.83–85

In summary, comprehensive surveillance systems are essential for the effective monitoring and ana
lysis of infectious disease dynamics. Integrating multi-source data—including information on pathogens, 
hosts, vectors, human populations, and environmental conditions—allows public health officials to 
detect potential outbreaks and emerging threats with increased precision and promptness. The following 
section examines how the integration of these surveillance systems with predictive analytics and early 
warning frameworks significantly enhances the capacity to respond proactively to infectious disease 
challenges, ultimately safeguarding public health and preventing widespread outbreaks (Fig. 2).

3. Infectious disease early warning

3.1. Basic principles of early warning

Infectious disease early warning refers to the issuance of signals before or at the early stages of an 
outbreak or epidemic that alert to the potential occurrence, spread, and severity of the event.86 The 
fundamental principle is the use of specific analytical methods or models to detect anomalies in in
fectious disease surveillance data that exceed expected normal levels.87 The early warning framework 
consists of six main steps (Fig. 3). First, define the purpose of the warning: Is it to signal the start of an 
epidemic season? To identify an unusual rise in cases? Or to determine if case numbers exceed historical 
averages or available resources? Second, select alert indicators based on the objectives, such as number 
of cases, test positivity rate, or emergency department visits. For diseases with high underreporting 
rates, the test positivity rate can be a particularly effective indicator.88 Third, establish warning gold 
standards and thresholds. They should depend on the disease’s epidemiological characteristics and 
public health needs, ensuring timely warnings without triggering unnecessary responses. Fourth, 
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determine the warning strategies and models. Two common approaches are (1) using real-time data with 
preset thresholds for alerts and (2) using real-time data to predict future trends and assessing whether a 
warning is necessary based on thresholds. Fifth, evaluate the early warning system’s effectiveness, is 
measured by focusing on sensitivity (detecting true events), specificity (excluding non-events), and 
timeliness (the interval between a warning and the actual event). Finally, once objectives, indicators, 
thresholds, and methods are established, proactive warning signals are issued in real-time and are fol
lowed by necessary emergency responses, including pharmaceutical and non-pharmaceutical interven
tions, to mitigate epidemic risk.

Every step in the infectious disease early warning framework is essential. This review focuses specifically on 
the selection of early warning gold standards and thresholds and the classification of early warning models given 
that these elements are pivotal for ensuring timely and accurate alerts. Appropriate gold standards and thresholds 
balance the need for responsiveness with resource efficiency, whereas the choice of early warning models directly 
influences the reliability and precision of predictions.

Fig. 2. Framework for infectious disease surveillance and early warning. CUSUM: cumulative sum; EWMA: exponentially 
weighted moving average; MEM: moving epidemic method.
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3.2. Selecting appropriate early warning gold standards and thresholds

The terms ‘gold standard’ and ‘threshold’ refer to distinct concepts. The gold standard typically refers 
to verified, accurate reference data or methods—such as high-quality laboratory test results—that ac
curately reflect the epidemic situation and serve as a benchmark for assessing the sensitivity and spe
cificity of early warning practice. By contrast, thresholds are based on statistical models or epidemio
logical data to identify the timing of epidemic outbreaks as indicated by the gold standard.

The establishment of the gold standard and threshold is crucial for ensuring the timeliness and ac
curacy of alerts. Setting these parameters too high or too low can undermine their effectiveness. The 
determination of a gold standard should consider factors such as the characteristics of the pathogen, 
local immunity levels, and the availability of medical resources. For example, when the infectious dis
ease in question (e.g., influenza) poses a significant public health threat, a low gold standard that in
creases sensitivity and helps identify more potential outbreaks may be more appropriate. Conversely, for 
low-impact diseases, a high gold standard may be selected to minimize the societal consequences.

Fig. 3. The infectious disease early warning framework. 
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The gold standard for a specific pathogen in a particular region is generally not adjusted frequently, 
and only substantial evolutionary changes in the pathogen warrant a revision of the gold standard. By 
contrast, the early warning threshold often requires adjustments in response to the actual development 
of an epidemic. Alerts for infectious diseases are typically categorized into three types: fixed thresholds, 
moving averages, and historical trends.89 For certain diseases (e.g., Ebola infection) in which even a 
single case poses a potential public health risk, single-case alerts are commonly used. Trend-based alerts 
are frequently employed to signal the onset of seasonal infectious disease outbreaks.

CIDARS initially recommended uniform warning thresholds across all levels of China CDC. However, 
the practical implementation of these thresholds revealed a high false-positive rate and a substantial 
discrepancy between outbreak alerts and confirmed outbreaks.90 These findings suggest that the na
tionally recommended thresholds may not be suitable for all CDC levels. Therefore, it is recommended 
that each CDC level conduct localized studies to establish thresholds that are tailored to regional in
fectious disease patterns.91,92

3.3. Early warning models

The early warning model is a crucial component of infectious disease surveillance. In recent years, 
early warning methods have evolved with the expansion of monitoring dimensions and the advancement 
of artificial intelligence technology. Beyond traditional single-indicator models, multi-covariate ap
proaches—such as machine learning and deep learning models—offer significant advantages in pro
cessing large datasets. Research has demonstrated the effectiveness of these approaches in capturing 
complex transmission dynamics.93 Bayesian methods have also been applied to create disease risk maps 
and identify anomalies, particularly for surveillance systems that integrate data from multiple sources.94

Model-based integrated warning systems that aim to enhance warning effectiveness and prediction ac
curacy by combining the strengths of multiple models have been widely applied in recent years. These 
methods often integrate different types of models—such as transmission dynamic models, statistical 
models, and machine learning models—to improve the performance of infectious disease warning sys
tems.10 These emerging technologies not only facilitate the efficient processing and analysis of a vast 
amount of data but also enhance the timeliness, sensitivity, and specificity of infectious disease alerts by 
incorporating and analyzing data from diverse surveillance sources. Infectious disease early warning 
models can be classified into temporal, spatial, and spatiotemporal models based on the dimensions of 
analysis.

3.3.1. Temporal early warning models
Temporal early warning models focus primarily on detecting temporal changes in infectious disease data 

within a specified area; these models identify anomalous signals by setting threshold criteria. These methods can 
be classified into two categories based on their predictive capabilities (Table 2). The first category includes 
methods that provide real-time alerts without predictive functionality. One such method is Statistical Process 
Control (SPC),95 which was originally developed by Walter Shewhart in 1924 to detect statistical shifts in process 
quality. SPC has since been widely adapted for disease surveillance to identify abnormal signals. Building on the 
principles of SPC, cumulative sum (CUSUM)96 and exponentially weighted moving average (EWMA)98 were 
developed. Both methods are particularly effective at detecting small changes in data. Another widely used 
approach proposed by Serfling in the 1970s97 is the Serfling regression model, which has become a standard tool 
for epidemic detection and disease burden estimation based on clean historical data. Similarly, the moving 
epidemic method (MEM) 98 developed in Spain in 2001, is designed to detect the onset and intensity of an 
outbreak. The Serfling regression model and MEM rely solely on historical monitoring data and do not require a 
gold standard, making these methods highly applicable in infectious disease early warning systems.

The second category of temporal early warning methods involves predicting future trends before 
detecting abnormal signals. Common techniques in this category include classical time series models99

such as generalized linear models, generalized additive models, logistic regression, autoregressive 
moving average models, and transmission dynamic models (e.g., susceptible-infectious-removed and 
susceptible-exposed-infectious-removed model).100 In recent years, machine learning and deep learning 
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algorithms have also proven effective in infectious disease early warning93; models such as random 
forest, support vector machine, long short-term memory, and Informer have demonstrated strong pre
dictive capabilities. Importantly, time-based early warning models, although effective in capturing 
temporal trends, are limited because they rely solely on the temporal dimension and are unable to detect 
spatial anomalies.

3.3.2. Spatial early warning models
Spatial early warning models primarily focus on detecting changes in infectious disease patterns 

within a specific geographic area at a given time. These models compare the incidence of disease in the 
target area with that of the broader region or neighboring areas to identify statistically significant spatial 
clusters that may indicate an emerging epidemic. The application of spatial early warning models re
quires geographic information—such as the residential addresses of reported cases or the latitude and 
longitude of locations—within the surveillance data. Moran’s I, a spatial analysis method, was in
troduced in the mid-20th century to determine whether the spatial distribution of a disease exhibited 
clustering. Other techniques, such as local indicators of spatial association101 and Getis-Ord Gi*102, have 
been employed to identify spatial aggregation patterns. In 1997, Kulldorff developed the spatial scan 
statistic103 by using a likelihood ratio to detect spatial clustering. On the basis of this approach, the 
SaTScan software was developed and remains widely used in spatial data analysis.9 More recent im
provements, including the maximum clustering set-proportion104 and the maximum clustering hetero
geneous set-proportion,105 address limitations related to parameter selection in spatial scanning statis
tics, particularly by incorporating prior information. However, spatial early warning models are 
typically used to identify spatial anomalies within specific time frames and cannot detect temporal 
anomalies or compare current trends with historical data.

3.3.3. Spatio-temporal early warning models
The spatiotemporal alert model integrates both temporal and spatial dimensions to detect infectious 

disease outbreaks. By analyzing and using temporal and spatial surveillance, this model identifies high- 
risk periods and geographic areas prone to outbreaks or epidemics. Common approaches include spa
tiotemporal scan statistics based on single indicators of case information9 and more complex spatio
temporal regression models that incorporate multiple risk factors. Notably, Bayesian spatiotemporal 
models have been widely employed for risk mapping, particularly in the context of vector-borne dis
eases.94 As surveillance systems continue to evolve, these models are increasingly applied to a broader 

Table 2 
Classification of infectious disease early warning models. 

Categories Early warning based on real-time data Early warning based on forecast

Temporal early warning models • SPC
• CUSUM
• EWMA
• MEM
• Serfling

• Classical Time Series Models (e.g., 
GLM, GAM, ARIMA)

• Infectious disease dynamic model 
(e.g., SIR, SEIR)

• Machine Learning Models (e.g., RF, 
SVM)

• Deep Learning Models (e.g., LSTM, 
Informer)

Spatial early warning models • Moran’s I
• LISA
• Getis-Ord Gi*

Not applicable

Spatiotemporal early warning models Spatio-temporal scan statistics Bayesian spatio-temporal models

ARIMA: autoregressive moving average model; CUSUM: cumulative sum; EWMA: exponentially weighted moving average; 
GAM: generalized additive model; GLM: generalized linear model; LISA: local indicators of spatial association; LSTM: long 
short-term memory; MEM: moving epidemic method; RF: random forest; SEIR: susceptible-exposed-infectious-removed; SIR: 
susceptible-infectious-removed; SPC: statistical process control; SVM: support vector machine.
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range of infectious diseases and significantly improve the accuracy and precision of early warning 
systems.

4. Infectious disease early warning system

Infectious disease early warning systems are automated platforms that use analytical methods to 
detect anomalous data signals in real-time. The global importance of timely and efficient early warning 
systems was further emphasized in the aftermath of the COVID-19 pandemic. The development of in
fectious disease early warning systems has paralleled that of infectious disease surveillance systems. 
Infectious disease early warning systems are generally categorized into the following types based on the 
data sources on which they rely: case-based surveillance, syndromic surveillance, event-based surveil
lance, and pathogen surveillance.

4.1. Early warning systems that rely on case-based surveillance

Several countries have established infectious disease monitoring and early warning systems based on 
notifiable infectious disease data. For example, Norway106 implemented in 2005 a web-based rapid alert 
system that is designed to issue mandatory outbreak alerts to municipal medical officials, healthcare 
institutions, and food safety authorities. CIDARS,107 which was initiated in China in 2008, uses SPC, 
CUSUM, and spatial scan statistics to provide timely spatial warnings regarding 28 nationally notifiable 
infectious diseases. CIDARS successfully detected all dengue outbreaks with high specificity and time
liness by using the time series moving percentile method to automatically generate early warning signals 
when case aberrations occurred.108 The computer-supported outbreak detection system,109 Sweden’s 
early warning system established in 2009, integrated the SaTScan software based on space-time scan 
statistics and supported four statistical detection methods—SaTScan Poisson, SaTScan space-time per
mutation, the Farrington algorithm, and a simple threshold algorithm—that enabled the detection of 
spatial-temporal anomalies in weekly reported cases for 63 infectious diseases. However, given the issues 
of time lags and underreporting of notifiable infectious diseases,110 the early warning system based on 
case-based surveillance requires further optimization.

4.2. Early warning systems that rely on syndromic surveillance

Individuals typically seek medical attention after symptoms have manifested for some time, resulting 
in a delay between symptom onset and diagnosis. As a result, symptom-based early warning systems can 
often detect anomalies earlier than case-based systems.111 For example, the United States initiated the 
Early Aberration Reporting System112 in 2000 to monitor symptoms by using the CUSUM model to 
identify abnormal signals. Since 2003, the United States military has been using the Early Syndrome 
Detection System (ESSENCE II)113 to detect potential outbreaks by analyzing data such as emergency 
department chief complaints, pharmaceutical sales, and school absenteeism and using the autoregressive 
modeling algorithm and EWMA algorithm for early warning. The CDC evaluated the effectiveness of the 
ESSENCE influenza-like illness (ILI) surveillance system, the CDC observed that the system failed to 
provide early warning or timely detection of an emerging infectious disease during a localized, single- 
source outbreak despite strengths in data quality, flexibility, and representativeness. In 2013, the Re
public of Korea developed the Military Real-time Syndromic Surveillance System (MARSS), which 
gathers data from 19 military hospitals to track cases that meet the criteria for seven syndromes, in
cluding botulism, hemorrhagic diseases, fever, and influenza-like illnesses. The CUSUM algorithm is 
used in MARSS for early warning detection.

In the context of large-scale events, several countries have established symptom-based early warning 
systems to support infectious disease prevention and control. For example, the Beijing Olympic Games 
Infectious Disease Surveillance System (BOG-IDSS) was developed specifically for the 2008 Beijing 
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Olympics and uses a range of routine surveillance systems. This system effectively ensured public health 
security during mass gatherings.114 Similarly, the Emergency Department Sentinel Syndromic Surveil
lance System was established to enhance surveillance capabilities for the London 2012 Olympics.115 In 
recent years, advancements in artificial intelligence and wearable technology, such as smartwatches and 
smart rings, have enabled the detection of early signs of infection, potentially even before the mani
festation of symptoms.116

4.3. Early warning systems that rely on event-based surveillance

With advancements in internet technology, traditional early warning systems based on notifiable 
cases and symptom surveillance have been insufficient for detecting the emergence of new pathogens 
such as SARS. Importantly, some symptomatic individuals may not seek medical attention, whereas 
epidemic signals often appear earlier in unstructured online sources such as social media, forums, and 
news outlets. Monitoring these digital sources offers significant advantages for the early detection of 
anomalies.

Event-based early warning systems focus on the use of unstructured health-related information that 
could pose serious public health risks, followed by evaluation and interpretation.117 ProMED-mail, one 
of the pioneering platforms established in 1994, supports the early identification of epidemics by dis
seminating outbreak information via email from its expert group to subscribers.118 ProMED-mail has 
consistently been a leading platform for the early detection and reporting of a wide range of significant 
and minor disease outbreaks. Notable examples include the SARS outbreak in 2003, the emergence of 
MERS in Saudi Arabia in 2012, and the SARS-CoV-2 outbreak in Wuhan in 2020.119 Developed in 2006, 
HealthMap is a platform for the automated real-time collection of infectious disease outbreak data and 
offers visual data representation.120 EPIWATCH, launched in 2016, expands on the capabilities of 
ProMED-mail and HealthMap; in addition to real-time outbreak monitoring, this system provides fore
casting and warning functionalities.11

Platforms such as Google Flu Trend121 and the Baidu Index122 monitor search trends of disease-related 
keywords by indexing search volumes to generate time-series data that support the early warning of 
infectious diseases, thus contributing to epidemic monitoring and response.123 In 2009, Ginsberg 
et al.121 developed a simple linear regression model using web search data to successfully predict the 
percentage of influenza-like illness cases and forecasted epidemic trends 1–2 weeks in advance. At the 
end of 2022, China experienced widespread community transmission of COVID-19. The notifiable sur
veillance systems struggled to report the total cases, whereas the Baidu Search Index, with its real-time 
nature and stability, assisted in epidemic curve estimation during emergencies.124

4.4. Early warning systems that rely on pathogen surveillance

Key mutations in infectious disease pathogens can also trigger new pandemic waves, making pathogen 
monitoring and early warning crucial. Given the ongoing mutations of SARS-CoV-2, the WHO estab
lished the Technical Advisory Group on Virus Evolution in 2021 to support global information sharing on 
surveillance and research, monitor early warning signals, and assess the need for timely public health 
responses to emerging variants.125 Similarly, the WHO’s Global Influenza Surveillance and Response 
System, founded in 1952,126 substantially contributes to global influenza pandemic control by providing 
a robust platform for monitoring influenza epidemiology and serving as an alert system for novel in
fluenza viruses and other respiratory pathogens. In addition to the real-time monitoring of the dis
tribution characteristics of pathogens, prospectively predicting the evolutionary direction of pathogens 
and identifying in advance mutation sites of public health are possible. By developing a model for 
predicting the evolutionary trends of the SARS-CoV-2 receptor binding domain under neutralizing an
tibody immune pressure, Cao and colleagues127 accurately forecasted the mutation trends of various 
variants.
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4.5. Outlook for future early warning systems

Modern infectious disease early warning systems are increasingly powered by a comprehensive data 
stream that spans the infection cycle—from pathogen tracking and vector monitoring to host, popula
tion, and environmental surveillance. This holistic approach enables the more precise and timely de
tection of emerging threats. Specifically, at the population level, data now include bio-signals that are 
passively measured by wearable devices (e.g., smartwatches that detect physiological anomalies), cough 
sounds that are captured by smart listening devices, internet search queries for viral testing sites, 
symptom reports that are submitted online, positive test results for viruses, social media posts about 
diagnoses, and even behaviors such as mask-wearing that are observed through closed circuit televi
sion.17 Each data point represents a critical aspect of infection progression and transmission.

Integrating these diverse data sources offers a unique opportunity to enhance early warning system 
sensitivity and responsiveness. The EpiPulse system launched by the European CDC integrates three 
independent monitoring systems—the European Surveillance System, the five Epidemic Intelligence 
Information System platforms, and the Threat Tracking Tool—to provide new functionalities and offer 
seamless access to data in a single platform for use by experts.128 Similarly, China is building a national- 
level, provincially coordinated infectious disease monitoring, early warning, and emergency command 
information platform that integrates data from multiple monitoring channels to enhance early warning 
capabilities.129,130

5. Conclusions and perspectives

The increasing incidence and impact of emerging infectious diseases highlight the critical need for a more 
robust global surveillance and early warning framework. As demonstrated by the global outbreaks of SARS, 
MERS, and COVID-19, the interconnected nature of human, animal, and environmental health requires a more 
comprehensive and multi-sectoral approach. This review examined the current landscape of global infectious 
disease surveillance and early warning systems and highlighted the transformative potential of the One Health 
approach, which integrates data and insights across human, animal, and environmental domains to offer a more 
holistic and effective response to emerging health threats.

Technological advancements offer significant opportunities for enhancing surveillance and early 
warning systems. For example, large language models, such as PandemicLLM developed by Yang 
et al.,131 offer promising capabilities by integrating diverse data sources in real-time to analyze epide
miological, genomic, and policy data. However, further optimization is needed to improve the compu
tational efficiency and interpretability of these models. Furthermore, in 2023, China launched a com
munity-based novel surveillance system that uses a mobile app for ordering testing kits; samples are 
collected and transported for polymerase chain reaction testing. Results are delivered within hours, 
reducing the burden on clinics and improving efficiency during outbreaks.132 Additionally, wearable 
devices such as smartwatches and smart listening tools can detect biosignals such as health metrics and 
cough patterns and offer promising opportunities for the early detection of abnormal signals.17

Despite these strengths, significant challenges remain. Resource limitations in underserved regions, 
which often lack the infrastructure and capacity for effective surveillance, are a major concern. Given 
their weak public health systems, these areas are potential sources of emerging pandemics. Because 
laboratory-based methods are often impractical in these settings, symptom-based monitoring and a focus 
on common clinical signs such as fever, cough, or diarrhea are cost-effective alternatives that enable 
early outbreak detection. For example, integrating syndromic surveillance systems such as Kenya’s 
Animal Biosurveillance System133 facilitates rapid data transmission and enhances monitoring across 
human and animal health sectors. Engaging community health workers, animal health workers, and 
wildlife rangers is also essential in ensuring broader geographic coverage and leveraging local knowl
edge to improve data accuracy.134 Moreover, strengthening diagnostic capacity through field-based 
rapid tests, portable sequencing technologies, and regional laboratory networks is crucial for the timely 
identification of and response to emerging threats. In addition, comprehensive training in One Health 
practices for clinicians and frontline workers can further enhance interdisciplinary collaboration. 
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Ultimately, sustained funding and the engagement of stakeholders, including government and interna
tional organizations, are critical to ensuring the scalability and long-term durability of these surveillance 
efforts.135–137

Importantly, the widespread use of digital technologies—especially those for contact tracing—during 
the COVID-19 pandemic raised significant issues regarding data privacy and the protection of sensitive 
health information. Establishing transparent and standardized data-sharing frameworks is crucial for 
overcoming privacy concerns and ensuring data access and reliability.2,17 The WHO’s Global Digital 
Strategy (2020–2025), which sets high standards for data privacy, security, and governance, is an im
portant step toward achieving this goal.3

Looking ahead, the integration and optimization of surveillance and early warning systems are ex
pected to support health authorities in shifting from reactive to proactive responses. Prioritizing the 
development of these systems is expected to enhance the global community’s ability to detect, assess, 
and mitigate infectious disease threats, ultimately improving global health security and preparedness for 
future pandemics.
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