218 2014, Vol.35, No.12 **食品科学** ※分析检测

超高效液相色谱串联质谱同时测定酒类产品中多种人工合成甜味剂

周 彬,吕任一,肖丽恒*,李 萍,何学梅,杨 芩,杨丽娜 (楚雄州质量技术监督综合检测中心,云南 楚雄 675000)

摘 要: 建立超高效液相色谱-电喷雾电离串联质谱(ultra performance liquid chromatography-electro spray ionization tandem mass spectrometry,UPLC-ESI-MS-MS)同时测定酒类产品中安赛蜜、糖精钠、甜蜜素、三氯蔗糖、阿斯巴甜、阿力甜和纽甜人工合成甜味剂的分析方法。方法采用ZORBAX Eclipse XDB- C_{18} 柱(100 mm×4.6 mm,1.8 μ m)色谱柱,柱温50 $^{\circ}$ C。流动相由A(甲醇)和B(体积分数0.1%甲酸和20 mmol/L甲酸铵溶液,pH 4.0)组成,流速为0.5 mL/min,梯度洗脱。在ESI负离子模式下,采用多反应监测模式进行测定,可以在12.5 min内完成7种人工合成甜味剂的检测。安赛蜜、糖精钠、甜蜜素、三氯蔗糖、阿斯巴甜、阿力甜和纽甜在10~5 000 μ g/L范围内有良好的线性关系,相关系数大于0.999。安赛蜜、糖精钠、甜蜜素、三氯蔗糖、阿斯巴甜、阿力甜和纽甜检出限分别为4、6、4、8、4、4、2 μ g/L,回收率在88.3%~98.3%之间,相对标准偏差为2.1%~6.7%。该方法快速、准确,灵敏度高,适用于酒类产品中低含量人工合成甜味剂的测定。

关键词:超高效液相色谱-串联质谱;质谱法;酒类产品;甜味剂

Simultaneous Determination of Synthetic Sweeteners in Liquor Products by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry

ZHOU Bin, LÜ Ren-yi, XIAO Li-heng*, LI Ping, HE Xue-mei, YANG Qin, YANG Li-na (Chuxiong Quality of the Technical Supervision and Inspection Center, Chuxiong 675000, China)

Abstract: An ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS-MS) method was developed for the simultaneous determination of seven synthetic sweeteners, acesulfame-K, sodium saccharin, sodium cyclamate, sucralose, aspartame, alitame and neotame, in liquor products. ZORBAX Eclipse XDB-C₁₈ column (100 mm \times 4.6 mm, 1.8 μ m) chromatographic column was used, and the solvent system was composed of mobile phase A (methanol), and mobile phase B (0.1% formic acid and 20 mmol/L ammonium formate in water, pH 4.0). The flow rate was 0.5 mL/min for gradient elution, and the column temperature was held at 50 °C. In the ESI negative ion mode, multiple reaction monitoring (MRM) was used for quantitation. The 7 kinds of artificial sweeteners were successfully detected within 12.5 min. These sweeteners showed good linear relationships in the range of 10–5 000 μ g/L with correlation coefficients larger than 0.999. The limits of detection (LODs) for acesulfame-K, saccharin sodium, sodium cyclamate, sucralose, aspartame, alitame and neotame were 4, 6, 4, 8, 4, 4 and 2 μ g/L, respectively, and recovery rates for spiked samples ranged from 88.3% to 98.3%, with relative standard deviations between 2.1% and 6.7%. A rapid, accurate and sensitivity method has been developed in this study and this method has been successfully applied to the determination of synthetic sweeteners at low levels in liquor products.

Key words: ultra performance liquid chromatography-electro spray ionization tandem mass spectrometry (UPLC-MS-MS); mass spectrometry; liquor products; synthetic sweeteners

中图分类号: TS262.6

文献标志码: A

文章编号: 1002-6630 (2014) 12-0218-05

doi:10.7506/spkx1002-6630-201412045

酒是粮食或水果经发酵而成的饮料,富含人体需要 的营养成分,适量饮用能预防多种疾病。随着我国人民生 活水平的提高,酒的消费量呈现了快速增长的趋势,酒中添加人工合成甜味剂的安全性备受消费者的关注^[1-3]。为

收稿日期: 2013-09-24

作者简介: 周彬(1965—),男,工程师,学士,主要从事食品安全研究。E-mail: 1359003199@qq.com

*通信作者:肖丽恒(1981-),男,工程师,学士,主要从事食品中食品添加剂和农药兽药残留检测研究。E-mail: lanshuyan@163.com

了保障酒的饮用安全,GB 2760—2011《食品添加剂使用标准》对酒中允许添加的食品添加剂种类和浓度作了明确规定,其中规定不允许人工合成甜味剂添加到蒸馏酒酒中^[4]。然而,一些不法生产者向酒中非法添加人工合成甜味剂的情况却时有发生^[5],因此建立一种快速、准确、灵敏地测定酒中多种甜味剂同时检测的分析方法,对于保障酒的饮用安全尤为重要。

目前食品中经常使用的人工合成甜味剂包括糖精钠 (saccharin sodium, SA)、甜蜜素 (sodium cyclamate, SC)、安赛蜜(acesulfame-K, AK)、三氯蔗糖 (sucralose, SL)、阿斯巴甜 (aspartame, ASP)、阿 力甜 (alitame, ALT) 和纽甜 (neotame, NTM) 等。 随着仪器分析技术的发展,针对这些甜味剂的检测方 法,已报道的有高效液相色谱-紫外分光光度法[6-15]、 高效液相色谱-蒸发光检测法[16-18]、薄层色谱法、离 子色谱法[19-22]、气相色谱法[23-26]、高效液相色谱-质谱 法[27-36]等。其中高效液相色谱-紫外分光光度法较为常 用,主要检测的甜味剂有安赛蜜和糖精钠,但由于受到 紫外分光光度法灵敏度的限制,部分甜味剂可能因含量 较低而无法检出;而且该方法不能提供结构信息,在实 际样品分析时容易受到基质干扰而产生假阳性现象。高 效液相色谱-蒸发光散射法检测人工合成甜味剂,检测灵 敏度不高,对酒中低含量的人工甜味剂不能检出。气相 色谱法检测甜味剂需要衍生化,操作繁琐。近来,采用 高效液相色谱-质谱法对食品中的甜味剂进行分析已有 一些报道, 但是这些方法尚存在分析种类少、消耗时间 长、分离度差等不足[27-32]。鉴于此,本实验建立了一种 检测酒中多种人工合成甜味剂的高效液相色谱-串联质 谱 (ultra performance liquid chromatography-tandem mass spectrometry, UPLC-MS-MS) 检测方法。该方法处理样 品方式简单,分析速度快,灵敏度高,适用于酒类产品 中人工合成甜味剂的检测。

1 材料与方法

1.1 材料与试剂

白酒、黄酒、啤酒、葡萄酒 市购;糖精钠、安赛蜜、阿斯巴甜、三氯蔗糖、甜蜜素、阿力甜、纽甜(标准品纯度>95%) 美国Sigma公司;甲醇、乙腈(均为色谱纯) 美国Tedia公司;甲酸、甲酸铵、乙酸、乙酸铵(均为色谱纯) 美国Mreda公司。

1.2 仪器与设备

1260型超高效液相色谱-6460三重串联四极杆质谱 仪、液相色谱仪(配有G1367E自动进样器、G1316A 柱温箱、G1322A在线脱气机)、质谱(电喷雾离子源 (elector spray ionization, ESI) 美国Agilent公司; LA204、CPA225D分析天平 美国梅特勒-托利多公司;离心机(最大转速10000 r/min) 湖南省凯达科学仪器有限公司;AS20500AT超声波提取机 天津奥特赛恩斯仪器有限公司;PGC-01D氮吹仪 德州市昊诚实验仪器有限公司;纯水仪 美国密理博公司。

1.3 方法

1.3.1 贮备溶液

准确称取安赛蜜、糖精钠、甜蜜素、三氯蔗糖、阿斯巴甜、阿力甜和纽甜10 mg标准品于10 mL容量瓶中,用甲醇-水(1:1, *VIV*)溶液溶解并定容,阿斯巴甜用甲醇和pH值为4.5的甲酸溶液溶解并定容,配制成质量浓度 1 mg/mL的单标贮备溶液。

1.3.2 使用标准溶液

准确移取储备液100 μL混合于10 mL容量瓶中,用甲醇-水(1:1, WV)溶液稀释配制成10 mg/L的中间标准工作液。阿斯巴甜用甲醇和pH值为4.5的甲酸水溶液稀释定容,精密量取适量的中间标准工作液,根据色谱峰响应值用流动相配制成不同质量浓度混合标准工作溶液。现用现配。

1.3.3 色谱条件

色 谱 柱: ZORBAX Eclipse XDB-C₁₈柱 (100 mm×4.6 mm, 1.8 μm); 柱温: 50 °C; 进样量: 10 μL; 流动相: A相为甲醇,B相为体积分数0.1%甲酸和 20 mmol/L甲酸铵溶液,pH 4.0; 流速: 0.5 mL/min; 梯度 洗脱,洗脱程序见表1。

表 1 梯度洗脱程序 Table 1 Gradient elution program

时间/min	0~5.5	5.51~6.0	$6.1 \sim 8.0$	8.1~12.0	12.1~15.0
流动相A/%	25	35	70	85	25
流动相B/%	75	65	30	15	75

1.3.4 质谱条件

离子源: ESI负离子模式; 干燥气流速: 11 L/min; 喷雾器: 45 psi; 干燥气温度: 300 ℃; 毛细管电压: 4000 V; 碰撞诱导解离电压: 可变电压200 V; 检测模式: 多反应监测。实验中所用的气体均为液氮和高纯氮气。

1.3.5 样品处理方法

1.3.5.1 白酒和黄酒

用分析天平准确称取均匀白酒和黄酒样品10 g于 10 mL比色管中,用水浴加热氮吹仪除去乙醇,用10 mL 的容量瓶中,用水定容至10 mL,然后用0.22 μm滤膜过滤,滤液待上机分析。

1.3.5.2 啤酒

啤酒样品10 g置于50 mL比色管中,超声脱气10 min,用水定容至10 mL,然后用0.22 μm滤膜过滤,滤液待上机分析。

1.3.5.3 葡萄酒

准确称取葡萄酒10g于50mL离心管中,使用超声波 超声排气, 然后用离心机以6 000 r/min 速率离心5 min去 除大分子物质,上层清液用0.22 µm的针头过滤器过滤, 滤液待上机分析。

若样品中所检测的人工合成甜味剂质量浓度过高, 应将溶液用超纯水进行适当倍数的稀释, 使其在标准曲 线范围内进行测定。

1.3.6 样品测定方法

将处理好的待测液放入自动进样器的样品盘上, 进样器自动进样10 μL,数据采集采用Agilent Mass Hunter Data Acquisition工作站进行采集处理。采用QQQ Ouantitative Analysis软件,使用外标法进行数据分析,得 出样品溶液中人工合成甜味剂的质量浓度。再根据下列 公式得出检测结果。

结果计算公式:

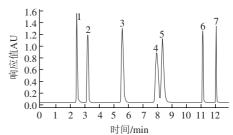
$$W = \frac{(\rho \times V) /1000}{m/1000}$$

式中: W为试样中各检测组分的含量/(mg/kg); V为样品提取液的总体积/mL; ρ为由标准曲线上查得进样 液中所测得量/(mg/L); m为试样的质量/g。

2 结果与分析

质谱条件的优化 2.1

表 2 7种甜味剂检测的质谱条件 Table 2 MS-MS conditions for the detection of 7 synthetic sweeteners


I adic 2	TATO-TATO	community i	or me ner	ecuon or /	зуншене з	M CELETICI 2
分析物	时间/min	相对分子 质量	母离子 (m/z)	子离子 (m/z)	裂解 电压/V	碰撞能 量/eV
安赛蜜	2.41	201.24	162.1	82.0* 78	90 90	20 20
糖精钠	3.15	241.2	182.1	106.1* 62.1	90 90	33 33
甜蜜素	5.57	201.22	178.2	80.1* 178	110 110	35 10
三氯蔗糖	7.94	397.64	395.1	359* 35	110 110	10 25
阿斯巴甜	8.36	294.31	293.2	261.1* 200.1	70 70	20 15
阿力甜	11.09	331.44	330.1	312.0* 295.1	70 70	15 20
纽甜	11.97	378.46	377.3	200.1 * 230	90 90	22 22

注:*. 定量离子。

将一定质量浓度的待测物标准品溶液分别通过注 射进样泵连续注入质谱,在ESI负离子方式下采用不同 的碎裂电压对各分析物进行一级质谱全扫描,得到各分 析物的分子离子峰和最佳的碎裂电压, 然后使用碰撞 气使其分子离子被碰撞活化解离,使用二级质谱扫描 其子离子,得到各分析物的子离子。确定每种待测物 的监测离子对,再采用多重反应监测(multiple reaction monitoring, MRM) 方式监测各离子对,调节质谱参数 使各信号最强,得最佳质谱条件见表2。

2.2 色谱条件的优化

采用乙腈-体积分数0.1%甲酸水体系作为流动相,进 行梯度洗脱分析时,安赛蜜、糖精钠以及三氯蔗糖和阿 斯巴甜不能达到良好的分离效果;采用乙腈-5 mmol/L乙 酸铵体系和甲醇-5 mmol/L乙酸铵体系下7 种甜味剂能分 离。但是分析时间太长,安赛蜜、糖精钠以及三氯蔗糖 色谱峰拖尾严重; 当采用甲醇-体积分数0.1%甲酸体系 作为流动相,进行梯度洗脱分析,7种人工合成甜味剂 的峰形对称良好,响应强度高,分离度好,在优化的色 谱与质谱条件下7种人工合成甜味剂的多重反应监测色 谱图见图1。

1.安赛蜜; 2.糖精钠; 3.甜蜜素; 4.三氯蔗糖; 5.阿斯巴甜; 6.阿力甜; 7.纽甜。

图 1 7 种人工合成甜味剂混合标准溶液的色谱图

Fig.1 Chromatogram of a mixed solution of 7 synthetic sweetener standards

样品处理条件的选择

7种人工合成甜味剂都能很好的溶于水中,因为样 品的复杂性,根据样品的不同采用不同的提取方法。

白酒和黄酒的主要成分是水和乙醇, 在进行直接进 样批量检测时,乙醇会缩短目标物从色谱柱上洗脱出来 的时间,从而使保留时间不稳定,会发生向前移动,为 了消除乙醇对检测结果的影响,于是就将白酒和黄酒中 的乙醇用氮吹仪50℃加热氮吹去除,用超纯水定容,用 0.45 μm的针头过滤器过滤进行检测。

对于啤酒开盖后,产生大量的泡沫,也不能进行直 接检测,在进行检测前,要采用超声波超声排除气泡, 再过针头过滤器后进行检测。

葡萄酒成分复杂,含有大量的天然色素和有机物, 在样品处理时,使用超声波超声排气,在用离心机离心 去除大分子物质,上清液过0.22 μm的针头过滤器过滤, 滤液供UPLC-MS-MS进行检测,效果良好。

2.4 添加回收率和方法精密度

采用建立的方法在检测样品中添加10、20、30 μg/kg的7 种食品添加剂混合标准溶液,按方法进行回收率实验,每个添加水平重复测定6次,计算添加平均回收率和相对标准偏差,结果见表3。7 种食品添加剂的平均回收率在88.3%~98.3%之间,相对标准偏差(relative standard deviations,RSD)为2.1%~6.7%。方法的准确度和精密度均符合残留分析的要求。

表 3 样品中7 种甜味剂的添加回收率及其相对标准偏差 (n=6)
Table 3 Recoveries and relative standard deviations (RSDs) of 7
synthetic sweeteners in spiked samples (n = 6)

_	synthetic sweeteners in spikeu samples (n = 0)									
序分析物		加标水平/	白酒		黄酒		葡萄酒		啤酒	
序号	分析物	$(\mu g/L)$	回收率/%	RSD/%	回收率/%	RSD/%	回收率/%	RSD/%	回收率/%	RSD/%
		10	97.3	4.3	97.6	3.6	95.9	6.1	98.33.7	3.7
1	安赛蜜	20	96.7	5.1	94.4	4.8	97.1	2.3	96.4	4.1
		30	97.8	2.9	95.5	2.2	96.4	5.2	98.1	3.4
		10	93.6	3.7	94.7	3.2	93.2	4.6	94.3	4.8
2	糖精钠	20	93.1	4.6	94.3	2.7	95.9	2.7	94.7	2.8
		30	94.2	4.1	95.1	5.4	94.7	6.3	95.4	3.5
		10	93.4	3.5	94.1	3.2	93.7	4.5	95.3	2.1
3	甜蜜素	20	94.6	4.4	92.6	4.6	95.1	5.3	95.7	3.6
		30	95.5	6.4	95.7	3.3	94.5	3.9	94.7	2.9
		10	88.9	5.2	90.6	5.7	89.9	3.9	87.9	6.6
4	三氯蔗糖	20	90.3	6.1	91.4	4.5	87.4	4.7	88.3	5.4
		30	90.7	4.7	90.7	5.3	88.3	4.1	89.1	5.5
		10	93.6	5.7	94.5	3.9	95.1	3.6	95.4	4.5
5	5 阿斯巴甜	20	94.3	4.9	94.1	4.4	94.5	4.2	96.3	5.4
		30	94.7	5.3	93.7	4.8	94.7	5.3	95.6	5.1
		10	94.2	2.6	95.4	3.8	93.9	4.3	95.5	2.4
6	6 阿力甜	20	96.6	3.4	94.7	5.1	95.3	4.7	95.1	2.9
	30	96.3	3.6	95.5	4.9	95.7	5.2	95.7	5.4	
		10	97.5	2.2	96.5	3.4	96.3	5.1	95.9	2.8
7	纽甜	20	97.1	3.6	97.3	4.9	96.7	4.3	96.5	3.7
		30	96.6	5.2	97.0	3.5	96.2	6.7	96.3	4.2

2.5 方法的线性范围和检出限

表 4 7 种目标分析物的线性关系和定量限($R_{\rm SN}$ =3) Table 4 Linear relationships and limits of quantification (LOQ, $R_{\rm SN}$ = 3) of 7 synthetic sweeteners

化合物	线性范围/ (μg/L)	线性方程	相关系数 (r)	LOQ/ (µg/kg)
安赛蜜	10~2 000	$y=75\ 034.8x+1.06\times10^3$	0.999 2	4
糖精钠	$10{\sim}4000$	$y=13\ 153.3x+0.58\times10^3$	0.999 3	6
甜蜜素	10~5 000	$y = 97471.7x - 1.06 \times 10^3$	0.999 9	4
三氯蔗糖	10~5 000	$y=2502.9x+1.78\times10^3$	0.999 6	8
阿斯巴甜	10~5 000	$y=78795.6x+0.21\times10^3$	0.9997	4
阿力甜	10~5 000	$y=14520.8x-0.38\times10^3$	0.999 6	4
纽甜	10~5 000	$y=70\ 288.2x-0.03\times10^3$	0.999 8	2

对7 种人工合成甜味剂的质量浓度在0.01~5 mg/L 之间的混合标准溶液进行测定,得到一系列不同质量 浓度的色谱图,并以目标组分的峰面积y对相应的质 量浓度x(mg/L)绘制标准曲线,相关系数 (r)都在 0.999以上。用信噪比 (R_{SN})为3时,作为方法的定量限 (limit of detection,LOQ)、线性方程、相关系数和定量限见表4。

3 结论

本实验应用超高压液相色谱-串联质谱建立了同时测定酒类产品中安赛蜜、糖精钠、甜蜜素、三氯蔗糖、阿斯巴甜、阿力甜和纽甜7种人工合成甜味剂的方法。将该方法用于酒类产品中低含量的人工合成甜味剂的测定,样品前处理步骤简单、分离度好、灵敏度高、精密度好、准确度高。在实际检测过程中发现,在一些酒中的人工合成甜味剂有糖精钠、甜蜜素、三氯蔗糖、纽甜。该法的建立为酒类产品提供可靠而准确的分析方法,为酒类产品的质量控制和安全评价提供科学依据,在保障食品安全方面有着重要的现实意义。

参考文献:

- [1] 李晓瑜. 非营养型甜味剂的安全性研究进展及管理现状(综述)[J]. 中国食品卫生杂志, 2002, 14(4): 43-45.
- [2] 鲁琳, 杭义萍, 高燕红, 等. 食品甜味剂分类及其检测技术现状[J]. 现代预防医学, 2009, 36(11): 2033-2035.
- [3] 朱兴江,丁振华,方猛,等.人工合成甜味剂与防腐剂的现状及发展 趋势[J].食品工业科技,2009,30(8):340-345.
- [4] 卫生部. GB 2760—2011 食品添加剂使用标准[S]. 北京: 中国标准 出版社, 2011.
- [5] 钟杰, 罗健, 陈鑫, 等. 白酒生产中甜味剂的正确选择和使用规范[J]. 酿酒科技, 2005(8): 115-117.
- [6] 卫生部. GB/T 5009.28—2003 食品中糖精钠的测定[S]. 北京: 中国标准出版社. 2004.
- [7] 卫生部. GB/T 5009.140—2003 饮料中乙酰磺胺酸钾的测定[S]. 北京: 中国标准出版社, 2004.
- [8] 郑玉芝,程江山,李晓,等. 液相色谱法分析白酒中糖精钠的含量[J]. 中国卫生检验杂志, 2005, 15(3): 310-313.
- [9] 吕国良. 高效液相色谱法测定白酒中甜蜜素[J]. 酿酒科技, 2008(3): 95-99.
- [10] 徐爱萍, 俞露, 顾建华, 等. 高效液相色谱法同时测定黄酒中4 种人工合成甜味剂的研究[J]. 中国卫生检验杂志, 2011, 21(5): 1085-
- [11] 稽超, 孙艳艳, 李秀琴, 等. 饮料中4 种人工合成甜味剂同时测定的超高效液相色谱快速检测方法[J]. 色谱, 2009, 27(1): 111-113.
- [12] 郑玲, 李丽华, 郭蔚, 等. 高效液相色谱法测定食品中的甜蜜素[J]. 化学分析计量, 2005, 14(3): 50-51.
- [13] 许龙福. 高效液相色谱法同时测定食品中安赛蜜、糖精、苯甲酸、 山梨酸和咖啡因[J]. 分析实验室, 2002, 21(2): 36-38.
- [14] 蒋定国, 王竹天, 杨大进, 等. 高效液相色谱法测定食品中阿斯巴甜的含量[J]. 中国卫生检验杂志, 2007, 17(6): 1012-1014.
- [15] 李学梅,商晓春. 反相高效液相色谱法快速测定维生素C、安赛密、糖精钠、苯甲酸、山梨酸[J]. 中国卫生检验杂志, 2001, 11(5): 566-567
- [16] 卫生部. GB/T 22255—2008 食品中三氯蔗糖(蔗糖素)的测定[S]. 北京: 中国标准出版社, 2008.

- [17] 武金忠, 钟其顶, 王昌禄, 等. UPLC-ELSD同时测定白酒中六种甜味 剂方法初探[J]. 酿酒, 2008, 35(1): 65-68.
- [18] 刘芳, 王彦, 王玉红, 等. 固相萃取-高效液相色谱-蒸发光散射检测法同时检测食品中5 种人工合成甜味剂[J]. 色谱, 2012, 30(3): 292-297.
- [19] ZHU Y, GUO Y Y, YE M L, et al. Separation and simultaneous determination of four artificial sweeteners in food and beverages by ion chromatography [J]. Journal of Chromatography A, 2005, 1085(1): 143-146.
- [20] WASIK A, MCOURT J, BUCHGRABER M. Simultaneous determination of nine intense sweeteners in foodstuffs by high performance liquid chromatography and evaporative light scattering detection-development and single-laboratory validation[J]. Journal of Chromatography A, 2007, 1157(1/2): 187-196.
- [21] 郭莹莹, 朱岩, 叶明立, 等. 淋洗液发生器离子色谱抑制电导法测定 甜味剂[J]. 浙江大学学报: 理学版, 2004, 31(4): 435-437.
- [22] ZHU Y, GUO Y Y, YE M L, et al. Separation and simultaneous determination of four artificial sweeteners in food and beverages by ion chromatography[J]. Journal of Chromatography A, 2005, 1085(1): 143-146.
- [23] GB/T 5009.97—2003 食品中环己基氨基磺酸钠的测定[S]. 北京: 中国标准出版社, 2004.
- [24] 陈玉波, 苏建国, 薛银飞, 等. 气相色谱毛细管柱内标法测定白酒中 甜蜜素含量[J]. 淮阴工学院学报, 2009, 18(1): 65-68.
- [25] 胡强, 王延云. 气相色谱-质谱法对不同食品中甜蜜素的测定[J]. 食品科学, 2009, 30(14): 235-237.

- [26] 洪家敏, 陈俊波, 白怡平. 毛细管气相色谱法测定食品中环己基氨基磺酸钠研究[J]. 安徽预防医学杂志, 2004(6): 352-354.
- [27] 王明泰, 牟俊, 戴华, 等. SN/T 1948—2007 进出口食品环己基氨基磺酸钠的检测方法: 液相色谱-质谱/质谱法[S]. 北京: 中国标准出版社, 2007.
- [28] 王骏. HPLC-MS测定白酒中的微量甜味剂[J]. 食品与发酵工业, 2007, 33(10): 152-154.
- [29] 盛旋, 陈昌骏, 丁振华, 等. 固相萃取-液相色谱-质谱法同时测定食品中磺胺类人工合成甜味剂[J]. 分析实验室, 2006, 25(7): 75-78.
- [30] 徐春祥,秦金平. 液相色谱-质谱联用直接测定白酒中甜蜜素[J]. 食品与发酵工业, 2006, 32(2): 106-107.
- [31] HUANG Z, MA J, CHEN B, et al. Determination of cyclamate in foods by high performance liquid chromatography-electrospray ionization mass spectrometry[J]. Analytica Chimica Acta, 2006, 555(2): 233-237.
- [32] 周莉莉, 杨颖, 刘艳明, 等. 超高效液相色谱-串联质谱法测定食品中的三氯蔗糖[J]. 分析测试学报, 2011. 30(10): 1175-1178.
- [33] 赵凯, 杨大进. 防腐剂、甜味剂、着色剂LC-MS测定方法研究进展[J]. 中国卫生检验杂志, 2011, 21(5): 1310-1312.
- [34] 嵇超, 冯峰, 陈正行, 等. 高效液相色谱-串联质谱法测定葡萄酒中的 5 种人工合成甜味剂[J]. 色谱, 2010, 28(8): 749-753.
- [35] 刘晓霞, 丁利, 刘锦霞, 等. 高效液相色谱-串联质谱法测定食品中6 种人工合成甜味剂[J]. 色谱, 2010, 28(11): 1020-1025.
- [36] 尹峰, 丁召伟, 曹雪, 等. 固相萃取-高效液相色谱串联质谱法测定食醋中的3 种甜味剂[J]. 色谱, 2011, 29(6): 554-557.