延长蜗轮副使用寿命的经验介绍

陈建 (国营616厂)(大同机车厂职校)

我厂从德国进口的DRT-50型六角车床溜板箱自动进给的蜗轮传动机构,近年来由于大 量加工强度高、刚性好、韧性大的 4 Cr14NiW Mo不锈钢,蜗轮副的磨损极快,虽 经 多次 适当调正蜗轮副啮合侧隙,提高蜗轮副加工和装配精度及加工光洁度,仍然收效不大。蜗轮 的平均使用寿命约为两个月,蜗杆则约为四个月。用过的蜗轮,工作齿部被磨出 明 显 的 凹 坑, 其边界清楚, 深度约1~1.5毫米, 凹坑表面被刻画出很粗糙的条痕。在这种蜗 轮 传动 机构中、发现蜗轮下面有很多磨粉、呈不规则的棱状、有的毛刺锋利、经化验确定磨粒是由 蜗轮撕脱下来的金属颗粒。

经过观察和化验分析,初步推断蜗轮磨损的原因是,由于润滑不良,使高滑速的啮合面 间形不成良好的润滑油膜。从而产生金属间的干摩擦引起大量摩擦热,致使材料变形;当接 触点的温度达到金属熔融时就发生胶合、撕裂的循环过程。另外,由于摩擦力的作用,使齿 面最大剪切应力增大,金属在交变应力的作用下产生微小裂纹並发展而成为点蚀。从金属撕 裂下来的颗粒又造成磨料磨损,这些都加剧了磨损。因为,蜗轮的材质比蜗杆的硬度低,故 蜗轮的磨损比蜗杆快得多。

蜗轮传动的理论和实践表明,润滑的好坏与蜗轮传动的瞬时接触线形状和部位有密切的 关系,瞬时接触线形状优越的蜗轮承载能力和传动效率都高,使用寿命也长,接触线在出口 区可造成入口的油楔和有利于出口的瞬时接触线形状,促使蜗轮传动中油膜的形成。同时, 蜗轮传动润滑油的选择,必须考虑传动特点、工作速度、载荷等。为使蜗轮齿啮合面容易形 成流体动压润滑油膜,隔开摩擦表面和减少金属的磨损,我厂采取了下列措施:

- (一)改进蜗轮传动副瞬时接触线形状和位置:从前,蜗轮加工没有通过工艺手段制造 楔形,蜗轮副两轴心是按常规正交装配,一般入口侧隙较小,润滑油不易进入啮合表面,难 以形成液体动压润滑,即使开始有点油膜,但由于润滑油不能连续供给而造成干摩擦或半干 摩擦。为改善入口区楔形侧隙,依照理论要求,我们把蜗杆相对于蜗轮的轴线倾斜3°~5° 左右, 使入口区出现楔隙, 在出口区发生接触。楔隙可用0.1~0.2毫米塞规塞入以及在出口 区有18~30%的接触面积为宜。这样能使润滑油充分地进入相对运动表面,有利于形成流体 动压润滑。
- (二)改用添加MoS₂的机油和油膏: 我们选用具有良好抗压性,附着性和减磨性 能的 MoS₂油膏作为蜗轮副装配时的底膜。方法是先把蜗轮、蜗杆分别用汽油彻底清洗 干 净,然 后在各工作齿面上喷涂或涂刷一层不太厚的MoSz油膏,装配好后沿用毛线滴式 润 滑,但将 (下转第192页)

190

无填料和含填料的各种尼龙材料的性能列于表 2。

表 2

无填料和含填料的尼龙材料的性能比较

材	料	24小时 吸水率 (%)	模压收 缩量 (吋/吋)	抗拉强度 •屈服 •断裂	弯曲模量 (磅/吋 ²)	IZod 缺口 冲击强度 呎一磅/吋	热变形温度 ω264 磅/吋 ² (°F)	热胀系数 (10 ⁻⁵ 吋/吋 °F)	比重
ASTM		D570	D955	D638	D790	D256	D648	D696	D792
尼龙6/6填料		1.5	0.015	11,200	175,000	2.1	220	4.5	1.13
尼龙6/6 G/F30% PTFE15%		0.5	0.006	*23,500	1,350,000	1.8	490	2.4	1.49
尼龙6/6 MoS25%		1.0	0.012	13,800	450,000	5	230	3.61	1.17
尼龙6/6 G/F40%		0.4	0.002	40,000	3,400,000	1.60	500	0.80	1.34
尼龙 6 无填料		1.6	0.013	11,800	395,000	1.1	150	0.80	1.34
尼龙 6 G/F30% PTFD15%		0.85	0.0035	19,000	1,250,000	1.90	410	2.3	1.47
尼龙11无填料		0.3	0.0065	*8,250	142,000	0.75	131	5.06	1.04
尼龙11石墨		0.3	$\overline{\Delta}$	•5,700	180,000	-	149	5.06	1.09
尼龙12无填料		0.25	0.010	*7,200 *8,000	213,000	0.90	130	6.11	1.015
尼龙12 G/F		0.15	0.006	*9,500 *9,500	498,000	1.5	250	3.89	1.21

邵本建摘译自 Power Transmission Design 1982, №.4, 25~28.

(上接第190页)

原用的机油改用 1:1 的 MoS_2 和 10^* 机油调和而成的润滑油,这种油粘度及流动 性 均 较合适,效果较为理想。

这些措施经过两年多的使用试验,发现齿面复盖一层褐黄色的油膜,在润滑油内没有金属杂质,使用运转正常,至今未更换过蜗轮和蜗杆。从经济效果上分析,过去每台设备一年要更换蜗轮6个,蜗杆3个,包括一切修理、停产损失在内,每年每台设备可节省3500元左右。我们采取的措施,虽已初见成效,但各个措施的具体贡献,尚待进一步认识。