Low-temperature synthesis of sp² carbon nanomaterials

Yu Ding, Mengqi Zeng, Lei Fu

Abstract

sp² carbon nanomaterials are mainly composed of sp²-hybridized carbon atoms in the form of a hexagonal network. Due to the π bonds formed by unpaired electrons, sp² carbon nanomaterials possess excellent electronic, mechanical, and optical properties, which have attracted great attention in recent years. As the advanced sp² carbon nanomaterials, graphene and carbon nanotubes (CNTs) have great potential in electronics, sensors, energy storage and conversion devices, etc. The low-temperature synthesis of graphene and CNTs are indispensable to promote the practical industrial application. Furthermore, graphene and CNTs can even be expected to directly grow on the flexible plastic that cannot bear high temperature, expanding bright prospects for applications in emerging flexible nanotechnology. An in-depth understanding of the formation mechanism of sp² carbon nanomaterials is beneficial for reducing the growth temperature and satisfying the demands of industrial production in an economical and low-cost way. In this review, we discuss the main strategies and the related mechanisms in low-temperature synthesis of graphene and CNTs, including the selection of precursors with high reactivity, the design of catalyst, and the introduction of additional energy for the pre-decomposition of precursors. Furthermore, challenges and outlooks are highlighted for further progress in the practical industrial application.

1. Introduction

sp² carbon nanomaterials have been widely studied due to their unique properties for nearly three decades [1–4]. The sp² carbon nanomaterials, mainly including zero-dimensional (0D) fullerene, one-dimensional (1D) carbon nanotubes (CNTs) and two-dimensional (2D) graphene, have attracted great interests in both academy and industry [5–11]. The structure based on a hexagonal network arranged by sp² carbon atoms endows them with superior properties, such as excellent electrical and thermal conductivity, outstanding mechanical strength and superlubricity, extraordinary flexibility and high carrier mobility [12–16]. Owing to these unique properties, sp² carbon nanomaterials exhibit wide applications in field-effect transistor (FET) [17], capacitor [18], sensor [19], and composites [20]. An essential requirement to achieve the practical applications of sp² carbon nanomaterials is to reduce the synthesis temperature for reducing the energy consumption, lowering the cost and improving the safety of industrial production. There are many methods developed for preparing graphene and CNTs, involving arc discharge [21], laser vaporization [22], pyrolysis [23], mechanical and chemical exfoliation of graphite [20], thermal decomposition of SiC [24], chemical vapor deposition (CVD) of hydrocarbons [25,26] and so on. The synthesis processes mainly include the following elementary steps: (1) precursors undergo a few steps of reaction and are decomposed into carbon radicals with sufficient energy supply assisted by the catalyst; (2) carbon radicals combine with each other to form crystal nucleus; (3) the formed nucleus continues to combine with free radicals and grows into the desired sp² material. In general, the carbon source for the synthesis of sp² carbon nanomaterials is hydrocarbon, like alkane (CH₄), whose pyrolysis temperature is above 1000 °C. The high temperature is undesirable for large-scale industrial production of the sp² carbon nanomaterials. Besides, once the low-temperature synthesis technology is well established, sp² carbon nanomaterials are expected to directly grow on the substrate that cannot bear high temperature, like plastics, which is beneficial to the development of flexible electronic devices. For composites, direct growth of sp² carbon nanomaterials on polymers is more favorable to various applications, such as electrode materials and biosensors. Hence, it is critical to achieve the low-temperature synthesis of sp² carbon nanomaterials to meet the demands of their future practical applications.

In this review, we summarize the main strategies for low-temperature synthesis of two widely explored sp² carbon nanomaterials, graphene and CNTs, which can be seen in Scheme 1. The
essential factors that influence the growth process are discussed with the mechanisms in detail, including the selection of precursors, the design of catalysts, and the type of energy introduction. It is demonstrated that sp² carbon nanomaterials can be obtained at relatively low temperature by choosing the species of carbon source with high reactivity, adjusting the chemical component and physical state of catalysts as well as introducing additional energy for the pre-decomposition of precursors. Moreover, we summarize the challenges and outlook in the low-temperature synthesis of sp² carbon nanomaterials.

2. Carbon source selection with high reactivity

The precursor is decomposed into carbon free radicals at the first step in the synthesis of sp² carbon nanomaterials, followed by the assembly to form hexagonal carbon clusters. The conventional precursor for preparing sp² carbon nanomaterials is CH₄, whose decomposition temperature is generally above 1000 °C [25,27]. Hence, choosing suitable carbon sources with low decomposition energy is crucial to reduce the synthesis temperature. Different from CH₄, other hydrocarbon precursors have been used to synthesize sp² carbon nanomaterials at a lower temperature [28,29], such as ethylene, acetylene, as well as solid and liquid carbonaceous compounds. In this section, we will discuss the selection of different precursors for low-temperature synthesis of sp² carbon nanomaterials with the related growth mechanism.

2.1. Carbon source with an active halogen group

Carbon halides are usually used as liquid precursors in solution reactions due to their low C–X bond energy [30,31]. The C–H bond with the bond energy of 414 kJ/mol is stronger than the C–X bond with the bond energy of 285–340 kJ/mol, making the C–X bond in halogenated hydrocarbon easier to decompose than the C–H bond in alkane. Tetrachloroethylene (C₂Cl₄) can be successfully reduced to free radical C₂ by metallic potassium at a low temperature of 200 °C (Fig. 1a) [32]. The newly formed C₂ can assemble into hexagonal carbon clusters and then grow into multi-wall carbon nanotubes (MWCNTs) when using Fe/Au as catalyst. Hexachlorobenzene (C₆Cl₆) can be reduced to hexagonal carbon clusters by metallic potassium, followed by the assembly into MWCNTs in the presence of Co/Ni catalyst at 350 °C (Fig. 1b) [30]. Both methods required alkali metal catalysts to decompose precursors and form carbon-containing radicals, involving complicated metathesis reactions. Afterward, MWCNTs were synthesized through decomposing carbon tetrachloride (CCl₄) using Fe-encapsulated dendrimers as catalyst under heating at the high pressure without alkali metal (Fig. 1c) [31]. With this method, CCL₄ was decomposed into dichlorocarbene intermediate, and then the as-produced dichlorocarbene was delivered to the
encapsulated Fe surface for the nucleation and growth of MWCNTs at 175 °C.

In addition to Cl-containing hydrocarbons, Br-containing hydrocarbons can also serve as precursors with low decomposition energy to synthesize graphene. Monolayer graphene film was synthesized via a mild radical-coupling reaction at the low temperature of 220–250 °C [33]. During the deposition process, the C–Br bond of hexabromobenzene (C6Br6) precursors was easy to break, leading to the formation of benzene radicals for coupling together to prepare graphene. The charge carrier mobility of the as-prepared graphene film was 1000–4200 cm²/(V s), indicating the high quality of the obtained graphene film.

Selecting carbon halides as precursors can obtain carbon-containing radicals at a lower temperature, followed by a radical coupling reaction to obtain hexagonal carbon clusters. However, in this process, the halogen atom might be incorporated into carbon clusters, resulting in non-six-membered ring defects and heteroatom doping.

2.2. Carbon source with primitive aromatic structure

Apart from selecting a precursor which possesses low decomposition energy, an aromatic compound with hexagonal structure can also be used as a precursor for lowering the growth temperature [34,35]. The traditional CVD reaction contains complicated dynamic processes, including the adsorption of precursor molecules, dehydrogenation, and assembly of carbon-containing free radicals. According to the density functional theory (DFT) calculation by Choi et al. [35], the adsorption energy of sp²-hybridized aromatic molecules on the Cu catalytic substrate surface was ten times higher than that of hydrocarbon precursors like CH₄ or C₂H₂. The reason was that the London dispersion force would result in much stronger adsorption of aromatic precursors on the metal surface. Moreover, the magnitude of the adsorption energy determines whether the subsequent reaction is desorption or dehydrogenation. When the adsorption energy is lower than the energy barrier against dehydrogenation, the adsorbed molecule tends to desorb. Since large-sized molecules have more electron delocalization motion, they have exhibited more pronounced charge density fluctuations that increase their London dispersion power, thus increasing the adsorption energy. From the calculation results, it was more difficult for CH₄ to dehydrogenate than large-sized molecules like C₆H₆ and C₁₈H₁₄, because its dehydrogenation barrier of 1.53 eV was much higher than the desorption barrier of 0.17 eV. For C₁₈H₁₄, the dehydrogenation barrier was lower than the desorption barrier, which facilitated the dehydrogenation. Therefore, the growth of sp² carbon nanomaterials using aromatic compounds as the carbon source can proceed at a much lower temperature.

Early in 2004, p-xylene has been used as the carbon precursor to synthesize single-walled carbon nanotubes (SWCNTs) in a liquid solution through ultrasonic method at room temperature [36]. Limited by the technical level at the time, the growth mechanism of SWCNTs was unclear. Subsequently, many researchers began to focus on aromatic compounds whose basic structures are similar to those of graphene for the low-temperature growth, such as benzene, naphthalene and toluene. For instance, monolayer graphene flakes with excellent quality have been synthesized from benzene at a low temperature of 300 °C [37]. Continuous monolayer graphene has been synthesized in a temperature range of 300–600 °C by using naphthalene as the carbon source and Cu as the catalyst (Fig. 2a) [38]. All the C–C and C–H bonds in the naphthalene molecule are sp² hybridized and the benzene rings in the molecule resemble the basic unit of graphene. The z and π C–H bonds in naphthalene molecular are less stable than the C–H bonds in benzene [39], which is beneficial to promoting the formation of graphene at low temperature. The quality and layer number of the resulting graphene film were demonstrated by Raman spectra and transmission electron microscopy (TEM) characterizations, as shown in Fig. 2b and c. When the temperature was higher than 500 °C, the synthesized graphene was of high quality. As the temperature dropped, the catalytic activity of Cu reduced, resulting in
incomplete dehydrogenation of carbon-related radicals and the existence of significant defect confirmed by the Raman peak at \(\sim 1350 \text{ cm}^{-1} \) (Fig. 2b). The high-resolution TEM (HR-TEM) indicated that the graphene gained at 400 °C was monolayer (Fig. 2c), and the selective area electron diffraction (SAED) showed only one set of hexagonal diffraction spots, indicating that the investigated area was single crystalline.

As mentioned above, polycyclic aromatic hydrocarbons (PAH) have stronger adsorption energy, which can greatly reduce the synthesis temperature of sp² carbon nanomaterials owing to enhanced London dispersion forces [35]. However, structural defects and disordered stacks will occur when large molecules are bonded to each other, affecting the quality of sp² carbon nanomaterials. Adding aliphatic hydrocarbons in PAH is an effective strategy to reduce the formation of defects because the small aliphatic carbon fragments can fill up the defect sites. As can be seen in Fig. 2d, pyrene (C₁₆H₁₀) or 1,2,3,4-tetraphenylnaphthalene (TPN, C₂₄H₁₄) was used as the main carbon source for graphene growth at a temperature of 400 °C [40]. The defect density in graphene could be reduced by adding a small amount of 1-octylpyridinium acid (OPA) to the PAH source. Composed of a short carbon chain with a solubilizing phosphorous group, it could render the compound in the system. Both Raman spectroscopy and HR-TEM characterizations showed that the quality of graphene was extremely high after the addition of OPA (Fig. 2e, f). Furthermore, researchers also studied the effects of different configurations of PAH on the synthesis of sp² carbon nanomaterials [34]. The results showed that the specific molecular structure of the precursor played a decisive role in reducing the growth temperature. Among the three configurations of terphenyl, p-terphenyl and m-terphenyl were suitable precursors for monolayer graphene growth at 400 °C, whereas o-terphenyl and anthracene were not suitable to achieve graphene growth at such low temperature. In the reaction process, the skeleton of p-terphenyl and m-terphenyl can get flattened after being absorbed on the Cu surface, and the intermolecular dehydrogenation and the formation of enlarged aromatic system contribute to an energy gain and the successive attachment of terphenyl molecules. Hence, large-size graphene sheets can be produced. Conversely, o-terphenyl tends to undergo an intramolecular dehydrogenation and form a new central C6 ring. The as-resulted triphenylene was a planar and stable benzenoid structure, which went against the growth of graphene. These results emphasize the importance of the choice of suitable precursor with specific molecular structure and spatial configuration for the synthesis of sp² carbon nanomaterials at low temperature.

Precursors with the aromatic structure were also widely used to synthesize graphene nanoribbons (GNRs) at low temperature. The main methods for preparing GNRs include liquid-phase synthesis and surface-mediated synthesis. Liquid-phase synthesis relies on an organic coupling reaction, in which the target molecules are precisely constructed at the atomic level to achieve the control of the structure of GNRs. These small molecule precursors with aromatic components are able to form polycyclic aromatic structures by Suzuki–Miyaura coupling polymerization [41,42] and the Diels–Alder polymerization [43], and then form GNRs by cyclodehydrogenation (intramolecular Scholl reaction). These methods attracted great attention owing to their great potential in controlling the width of synthesized GNRs. The length control of GNRs was still a challenge. Recently, a living annulative π-π-extension (APEX) polymerization technique has been developed to the rapid and modular synthesis of GNRs at 80 °C, which achieved the controlling of their length, as well as width and edge structure [44]. The living polymerization utilized a silicon-containing compound benzonaphthosilole as a monomer and phenanthrene as an initiator. The silicon-containing group in the monomer coupled with the active K-side reaction of the initiator under the catalysis of silver and palladium salts in o-chloranil and 1,2-dichloroethane at 80 °C (Fig. 3a–f). After coupling, a new fused aromatic ring and a new K region (1a) were formed, resulting in subsequent APEX reactions to the synthesis of a fjord-type GNR. The length of GNRs can be controlled by simply changing the initiator-to-monomer ratio, thus achieving the synthesis of GNR block copolymers. When the ratio of monomer to initiator molar concentration increased from 10:1 to 500:1, the GNR molecular weight gained from 2.9 to 150 kDa and the length extended from 3 to 169 nm. The precise liquid phase synthesis of GNRs with controllable length, width and edge structure established the foundation for further exploring physical and chemical properties of GNRs.

The reactivity of oligophenylen precursors and their compatibility with reaction conditions are essential factors for limiting the liquid phase reactions. In contrast, there exists strong intramolecular π–π stacking between precursor molecule and the GNRs, and the solubility of them in the conventional organic solvent is poor, which makes it difficult for subsequent processing for electronic device applications. To solve this issue, the surface-mediated synthesis became another option for low-temperature growth of GNRs. Surface-mediated synthesis consists of several steps as follows. Aromatic precursors with halogen groups are deposited on the metallic surface by thermal sublimation under ultra-high vacuum conditions at first, then precursor monomers undergo polymerization and cyclodehydrogenation under heating, finally forming the desired GNRs. This method has been applied for fabricating many different GNRs with armchair edges in a temperature range of 200–440 °C [46–49], but it is not suitable for the synthesis of GNRs with zigzag edges, because aryl-aryl coupling is likely to take place along the armchair direction rather than the zigzag direction. As a matter of fact, GNRs with zigzag edges are also important and they are predicted to exhibit spin-polarized electronic edge states, playing a key role in graphene-based spintronics research [50]. Therefore, it is essential to prepare GNRs with zigzag edges. Researchers specifically designed precursor monomers by adding carbon functions at the edges of the monomers to complete the tiling toolbox needed for the fabrication of zigzag structures [45]. Fig. 3g illustrated the fabrication steps of suitably designed molecular precursors 1a to GNRs with zigzag edges. Monomer 1a was deposited on the clean Au(1 1 1) single-crystal surface, and then was activated by dehalogenation. It underwent polymer formation via radical addition at 475 K (step 1 in Fig. 3g). Further, the intermediate molecule was heated to 625 K for cyclodehydrogenation, then the final ZGNR was successfully formed (step 2 in Fig. 3g). The height was obviously reduced after the cyclodehydrogenation, indicating a complete planarization of the linear structures (Fig. 3h and i). Thence, GNRs with zigzag and armchair edges can be synthesized by designing different structures of aromatic precursors, whose length and width are also controllable. With this method, GNRs obtained on catalytic metallic surfaces are more beneficial to the electronic device applications.

2.3. Carbon source with a carbon chain skeleton

Many polymers with giant carbon chain skeleton are expected to prepare graphene at low temperatures, such as polymethylmethacrylate (PMMA) and polystyrene (PS) [51–53]. Compared with hydrocarbon, the decomposition temperature of polymers is much lower (200–300 °C), which may lower the temperature in the first step of the precursor decomposition in the synthesis process of sp² carbon nanomaterials [54]. On this basis, the C–H bond energy of PMMA (283–288 kJ/mol) and PS (292–305 kJ/mol) are weaker than that of the typical hydrocarbon like CH₄ (410 kJ/mol), C₂H₆ (443 kJ/mol) and C₃H₆ (508 kJ/mol), contributing to the reduction of dehydrogenation energy [55]. As a result, the growth
temperature of monolayer graphene can be reduced to 800 °C using PMMA and PS as precursors [37]. The growth of graphene can still be achieved when the temperature is as low as 400 °C, while the quality degrades owing to the residual disordered hydrocarbon. PS was also used to prepare monolayer and few layers of graphene via coating on the bulk stainless steel sheets and alloy nanofibers at the temperature below 400 °C, significantly improving the resistance to corrosion [52]. Except for directly acting as the carbon source, PMMA was reported to be used as a matrix host to introduce additional carbon sources to improve the quality of graphene [53]. High-quality monolayer graphene was obtained by using chlorobenzene as the carbon source at low temperatures of 180 °C. When the temperature raised to 400 °C, the disordered multilayered graphene film was obtained, where the decomposition of PMMA resulted in a high carbon concentration.

Another kind of carbon precursor with a carbon skeleton structure is the metal–organic frameworks (MOFs), which is not only a carbon source but also a metal catalyst. By varying the metal ions/clusters and organic linkers, MOFs with different structures can be synthesized. There has been many researches focusing on the fabrication of sp2 carbon nanomaterials from MOFs [56–59].

N-doped CNTs (N-CNTs) with excellent electrocatalytic activity was prepared via the high-temperature pyrolysis of zeolitic imidazolate frameworks (ZIFs) in the presence of H2 above 600 °C [57]. Further, CNTs with various oriented assembled architectures and heteroatom doping were successfully obtained by modulating the corresponding MOFs through a low-temperature (430 °C) pyrolysis process [58]. During the pyrolysis process, the metal ions/clusters were firstly reduced into metal nanocatalysts in the atmosphere of Ar. Then these nanocatalysts further catalyzed the residual organic units into N-CNTs. Fe, Co and Ni catalysts can be obtained by the pyrolysis process, which have a high catalytic activity in the synthesis of N-CNTs. Simultaneously, there are rich hexatomic or N-heterocyclic carbon rings in organic ligands in MOFs, directly acting as the basic units of CNTs to reduce the energy barrier of the cyclization, leading to the formation of CNTs at a lower temperature. However, not all the MOFs are capable of synthesizing CNTs by the pyrolysis reaction. Selecting MOFs with rich hexatomic or N-heterocyclic carbon rings from organic ligands and nanocatalysts can effectively prepare CNTs at the low temperature. Using MOFs to prepare CNTs and its complexes with different architectures broadens their application in the energy storage and conversion.

Fig. 3. (Color online) The formation route of GNRs by using carbon source with primitive aromatic structure at low temperature. (a) Living APEX polymerization using phenanthrene as the initiator and benzonaphthosilole as the monomer. Reaction conditions: Monomer (1.0 equiv.), Pd(OCOCF3)2 (1.0 equiv.), AgSbF6 (2.0 equiv.), o-chloranil (2.0 equiv.), CH2Cl2, 80 °C, 12 h. (b) Mw (D = Mw/Mn) profiles versus M/I in the conversion of the monomer in the living APEX polymerization. (c) STM image of fjord-type GNR (Mw = 1.5 × 10^5 Da, D = 1.22) deposited on HOPG (voltage = 1.0 V, current = 50 pA, temperature = 78 K). (d) AFM height image of GNR (Mw = 1.5 × 10^5 Da, D = 1.22) on HOPG. Cross-sectional height profile taken along the white line in c (e) and d (f), perpendicularly to the observed stripes. (g) Synthetic strategy to obtain GNRs with zigzag edges, Monomer 1a owns an additional dimethyl-biphenyl group in the interior of the U-shape, which is designed to synthesize a 6-ZGNR upon polymerization (step 1) and subsequent cyclization (step 2). (h) Large-scale STM image of the Au(111) surface after the deposition of monomer 1a held at 475 K. (i) Large-scale STM image of the Au(111) surface after annealing at 625 K. Reproduced with permission from (a–f) Ref. [44], Copyright 2019 Springer Nature; (g–i) Ref. [45], Copyright 2016 Springer Nature.
3. Catalyst design to reduce the energy barrier of the reaction

Catalysts play an important role in the growth of sp² carbon nanomaterials. Choosing different catalysts is capable to change the reactivity, reduce the reaction barrier and meanwhile tune the reaction path and selectivity towards precursors. Up to now, many transition metal and noble metal catalysts have been used to promote the decomposition of carbon sources and the later nucleation and growth, including Ni [17,60], Cu [25,61], Fe [62,63], Co [64,65] and Pt [66,67]. In the initial stage, precursor molecules can be decomposed into carbon radicals on the surface of the catalyst, then diffuse over the surface of the catalyst or dissolve into the catalyst. When the amount of carbon radicals increases to a critical concentration, they would agglomerate with each other to form sp² bond, thus forming crystal nuclei on the surface of the catalyst. Finally, the continuously supplied carbon radicals are connected to the formed crystal nuclei and further grow into sp² carbon nanomaterials. As the “container” of the whole reaction process, different catalysts exhibit various growth behaviors, including surface self-limitation growth and precipitation on the surface, which primarily depends on the carbon solubility of the metal catalysts. Therefore, the composition and physical state of the catalyst can be adjusted to prepare the sp² carbon nanomaterials at a lower temperature.

3.1. The composition design of catalyst

Generally, graphene films could be successfully synthesized by using Cu and Ni as catalysts [25,60,68]. Due to the low catalytic activity of Cu, the growth temperature is relatively high (over 1000°C) to obtain high-quality graphene. In the meantime, the low solubility of carbon in Cu would lead to monolayer graphene by the self-limiting surface reaction. At lower temperature, Co, Ni and Fe possess higher catalytic activity than Cu for the decomposition of carbon source, whereas the high solubility of carbon in these catalysts leads to the formation of multilayer graphene. Therefore, designing multi-component alloy catalysts is an effective strategy to overcome the shortcoming of single-component metal catalyst and reduce the growth temperature. Due to the synergy effect of the two kinds of metal catalysts, the catalytic activity can be improved at low temperature, and the reaction path can be changed by adjusting the solubility of carbon. On one hand, adding metal with high activity into the metal with low carbon solubility can reduce the growth temperature. Cu-Ni alloy has been widely used as a catalyst for growing graphene films [69–71]. Adding a small amount of Ni into Cu would enhance the catalytic activity with the maintaining of low carbon solubility to obtain uniform monolayer graphene. It was reported that monolayer graphene was obtained on Cu-Ni alloys substrate at 600°C when the compositions of Ni was less than 20 at.% (Fig. 4a) [72]. According to the experiment results and DFT calculation, the addition of Ni can facilitate the adsorption and decomposition of C₂H₂, thereby improving the catalytic activity. On the other hand, low-temperature growth of high-quality graphene can be achieved by adding the metal with low carbon solubility into the catalyst with high activity. For example, Au-Ni alloy was used to synthesize graphene film at 450°C, in which the monolayer coverage reaches 74% [73]. The effect of the inactive Au decorated on the majority of the highly active Ni surface sites was to lower the solubility of carbon and suppress the nucleation of carbon species at step edges or defects. Compared with the pure Ni, the graphene nucleation density on Au-Ni alloy decreased and the domain size increased to 20 μm at 450°C, as can be seen in Fig. 4b. In the same way, Cu-Co alloy was also developed for the growth of uniform, high-quality graphene at 750°C [74]. As shown in Fig. 4c, Cu was decorated on the highly reactive sites of Co to reduce the hydrocarbon dissociation rate and carbon solubility. Compared with Co, a continuous monolayer graphene film without any multilayer region was observed on Cu-Co alloy.

![Graphene growth on the metal catalyst with the composition design at low temperature.](image-url)
demonstrating the growth of high-quality graphene at low temperature. Besides, noble metal alloy catalysts were also used to reduce the growth temperature of graphene. Few-layer graphene films were formed on Pd-Co alloy catalyst at a temperature as low as 400 °C (Fig. 4d) [75]. Owing to the reduction of the density of states (DOS) in d-electron at the Fermi level, the alloy of Pd and other metals (Co, Ni, Cr) revealed better catalytic performance than the pure Pd [76,77]. Pd-Co alloy catalyst was more effective for dehydrogenation at a lower temperature below 500 °C. Later, the decomposed carbon would be incorporated into Pd-Co alloy to form nanoscale aggregates, resulting in the growth of the graphene at low temperature.

3.2. The physical state design of catalyst

In addition to changing the solubility and decomposition efficiency of carbon sources by designing the composition of the catalyst, liquid metal was also added into the metal catalyst to change its physical state from the solid to liquid to promote the carbon diffusion for lowering the synthesis temperature. Ga, as a liquid metal, has a long melting range from 29.8 to 2403 °C, and it can lower the melting point of the transition metal catalyst by forming the alloy. Large-area, uniform and monolayer graphene was prepared on a homogeneous liquid Ga-Cu alloy at 800 °C (Fig. 5a) [78]. The Ga-Cu alloy sustained its liquid state at 800 °C, which serves as a container to dissolve carbon atoms, facilitating the diffusion rate of carbon species at the same time. The rapid diffusion of carbon species on liquid surface contributed to the growth of uniform graphene film with low defect density at a reduced temperature. The added liquid metal also forms carbon-containing compounds during the growth of graphene. Strict monolayer graphene with 100% surface coverage was successfully synthesized by Ga-Ni alloy at 600 °C [79]. During the growth of graphene, Ga-Ni alloy formed an anti-perovskite layer (GaCNi3) with carbon species, which shielded and blocked the precipitation of excess dissolved carbon fragments from the catalyst during the cooling process (Fig. 5b). Same as mentioned above, the molten surface of Ga-Ni alloy favored a higher diffusion rate of absorbed carbon species.

Apart from alloying with other metals, the liquid metal itself also has high catalytic activity for graphitization. It is reported that nanographene has been synthesized by using CBr4 as the precursor and Ga as the catalyst at a temperature of 200 °C [80]. The efficient precipitation of carbon atoms toward the surface at such a low temperature indicated the high catalytic efficiency of Ga. It is worth mentioning that Ga is in liquid state at room temperature, which enhances the mass transport of carbon atoms and improves graphene growth kinetics. A near-room-temperature (50–100 °C) growth of graphene was successfully achieved by using Ga as an efficient catalyst under CH4 atmosphere [81]. In this strategy, the graphene nucleus islands were pre-formed at high temperature and then the carbon atoms attached to the island edges to form graphene on sapphire and polycarbonate at low temperature (Fig. 5c). The main advantage of using a molten Ga catalyst was the enhanced absorption of CH4 on Ga at a lower temperature, which led to a surprisingly low reaction barrier of ~0.16 eV below 300 °C. The faster growth kinetics due to low reaction barrier and the preset graphene nuclei facilitate the direct synthesis of graphene on many kinds of substrates at 50–100 °C, which significantly promotes the integration of graphene in electronic devices.

4. Non-thermal energy supply for the pyrolysis activation of the precursor

During the first step in the synthesis of sp2 carbon nanomaterials, the required thermal energy can be replaced by introducing energy supply in other types to facilitate the ionization, excitation and decomposition of carbon source, thereby reducing the temperature required for the entire reaction. The energy-assisted approaches contain microwave pyrolysis [82,83], plasma assistance...
[84–87], and so on. These approaches are usually combined with CVD, which can deposit activated radical molecules onto the substrate by the vapor phase transport.

4.1. Microwave assistance

Microwave pyrolysis was developed on the base of combining the research of traditional pyrolysis with microwave technology. The microwave, as a high-frequency electromagnetic wave with a frequency between 300 MHz and 300 GHz, is capable of penetrating the whole organic matter so that the energy is quickly transmitted to the functional group of the reactant. In the process of growing sp² carbon nanomaterials, the energy of the microwave replaces part of the thermal energy to decompose the precursor at a lower temperature. Moreover, microwave has the advantages of fast speed, immediacy and low cost. As a consequence, microwave pyrolysis is recognized as an attractive alternative for the low-temperature synthesis of sp² carbon nanomaterials. Aligned CNTs with high quality were synthesized at 550–650 °C by the microwave pyrolysis of acetylene in N₂ atmosphere, which was catalyzed by ferrocene [88]. The prepared aligned CNTs were densely packed, and some Fe₃C nanoparticles were encapsulated in all parts of CNTs. Apart from gaseous precursors, some macromolecular polysaccharides can also be decomposed by the microwave to synthesize CNTs. The formation of a large number of CNTs on the surface of cellulose bio-chars was demonstrated at 600 °C [82].

The volatile matter derived from cellulose was rich in monosaccharides, including D-glucopyranose and glucopyranose, which can act as carbon sources for the synthesis of CNTs. During the formation of CNTs, the volatiles that were rich in the monosaccharides and hydrocarbons were self-extruded, followed by the condensation and re-solidification of the volatiles on the softened cellulose particles at elevated temperatures. This study may pave the way for the development of the low-temperature production of large-scale CNTs.

4.2. Plasma assistance

Another effective means to lower the growth temperature is plasma-assisted deposition. It aims to use microwave or radiofrequency to create a gas containing the atoms of the desired material, and then form a local plasma. Afterwards, the electrons moving at high speed in the plasma impinge on the neutral reactive gas molecules, making the precursor molecules to become fragments or reactive radicals. In the end, the reactive radicals diffuse into the reactor and move along on the catalytic substrate to realize the nucleation and growth of the materials. The plasma is highly chemically active, which is easy to react. The high-energy electrons, excited-state molecules, atoms and free radicals in the plasma can promote the decomposition of gaseous carbon sources at a low temperature. Therefore, sp² carbon nanomaterials can be prepared at a very low temperature by introducing a plasma in CVD. As early as in 1998, the pioneering work was reported that aligned CNTs have been synthesized over an area up to several square centimeters on Ni-coated glass below 666 °C by plasma-enhanced hot filament CVD [28]. C₆H₆ was used as the carbon source and NH₃ was used as the catalyst and dilution gas. CNTs with controllable diameters from 20 to 400 nm and lengths from 0.1 to 50 μm were obtained in this way. Since then, the synthesis of aligned CNTs at low temperature by different plasma-enhanced CVD (PECVD) methods has been extensively studied. Vertically aligned CNTs were prepared using C₆H₆ as the carbon source and Ni as the catalyst at the temperatures as low as 120 °C by PECVD [89]. It was found that the activation energy was 0.23 eV, which was much lower than the values of 1.5 and 1.21 eV in the reported thermal growth methods [90]. And the activation energy (0.23 eV) was similar to the energy of the surface diffusion of C atoms on polycrystalline Ni (0.3 eV) [91], which demonstrated that the diffusion of C atoms on the catalyst surface was the rate-determining step at low temperature. The effect of the plasma was to accelerate the decomposition of C₆H₆, and etch the amorphous carbon deposited on top of the Ni particles, thereby providing a steady supply of carbon atoms at the top surface of the Ni particles. Then carbon atoms adsorbed at the top surface of the Ni particles diffused along the surface, finally segregated at the bottom of the particles, forming graphitic planes. Later, researchers reported a low-temperature growth of SWNTs by water plasma CVD [85]. Water plasma strategy lowered the growth temperature to 450 °C, and SWNTs were purely and densely grown without MWNTs. The water plasma with a weak power (15 W) acted as an oxidant which removed carbonaceous impurities and disordered carbons, resulting in the growth of SWNTs with good crystallinity.

Besides CNTs, graphene was also successfully synthesized by PECVD at low temperature. For example, graphene was prepared by decomposing CH₄ at a Cu substrate with the temperature of 500 °C through PECVD [92]. Unfortunately, the active fragments produced by the plasma would make the graphene continue to grow on the as-formed graphene layer, resulting in the formation of multilayer graphene. At the same time, ion bombardment also influenced the growth of graphene and created defects in the obtained graphene. Therefore, it was necessary to add an etchant or adjust plasma initial point to improve the quality of graphene. Then, high-quality graphene films were synthesized by PECVD on Cu foil by using CH₄ and H₂ mixture at a low temperature of 600 °C [Fig. 6a] [86]. As can be seen in Fig. 6b, the intensity of the D band decreases with the increase of H₂ flow rate, indicating that H₂ as a reducing agent can etch excess carbon impurities to reduce the defects. In the meantime, the increased distance between the plasma and the substrate was effective to reduce the defect in graphene. Therefore, high-quality graphene film could be obtained under a high concentration of H₂. Recently, a forced convection (FC)-PECVD method for the synthesis of graphene has been reported, in which the distribution of reactive radicals reaching the surface of the substrate can be controlled by using a specially designed blown plasma source [87]. Monolayer graphene growing with few defects was achieved even at low temperature (<400 °C). In the PECVD system mentioned above, the gas passing through the gas inlet diffused in all directions in the vacuum chamber. In FC-PECVD system, the gas source introduced into the chamber was directly blown onto the Cu surface by the nozzle (Fig. 6c). The plasma and radicals were generated primarily in and around the nozzle by the electric fields of the microwaves, and then were forcibly transported to the Cu surface by the blowing gases. As shown in Fig. 6d, the intensity of D band was weak, which indicated the high quality of graphene. In this study, the ion-neutral collision occurred on the sheath region instead of the substrate, which avoided the effects of collisions on the preparation of graphene. This method overcomes the limitations of traditional PECVD and provides a new idea for further promoting the low-temperature synthesis of graphene.

The PECVD was also used to grow graphene at low temperature on the insulating substrate. The production of micrometer-scale graphene crystals was directly conducted on SiO₂/Si substrates by PECVD at the temperature as low as 400 °C [93]. The H₂ plasma was also used as an etchant to remove the defects generated at the edges and keep the edges atomically smooth and active during the whole process of graphene crystal growth (Fig. 6e). In this way, the synthesis of the catalyst-free centimeter-level continuous graphene film is expected to realize on various substrates, such as sapphire, highly oriented pyrolytic graphite and hexagonal boron nitride (h-BN). The wafer-scale uniform graphene films were also...
directly synthesized on SiO\textsubscript{2} substrates at a low temperature of around 550 °C, using a remote PECVD system with CH\textsubscript{4} as the carbon source [94]. The nanographene islands with high coverage exhibited exponential tunneling behavior. At the same time, the nanographene islands with low coverage exhibited linear conduction behavior of metal. Moreover, N-doped graphene films were prepared on SiO\textsubscript{2}/Si substrate at 435–650 °C by using C\textsubscript{2}H\textsubscript{2} as the carbon source in PECVD [95]. The NH\textsubscript{3} plasma was used as both N and H source, which generated N-containing species for the substitutitional incorporation of N atoms into the graphene lattice and produced active H atoms to remove the edge defects. Reducing the temperature by plasma enhancement provides a feasible way to directly grow graphene on the dielectric substrate of electronic circuits. However, some defects and grain boundaries of graphene caused by plasma cannot be completely avoided, which limits its application in the high-performance electrical devices.

5. Summary and outlook

The low-temperature synthesis of high-quality sp2 carbon nanomaterials (graphene and CNTs) has attracted extensive attentions in recent years. In this review, we have discussed recent advances in the low-temperature synthesis approaches, including selecting precursors with high reactivity, adjusting the component and physical state of catalysts and offering additional energy for the pre-decomposition of precursors. Table 1 summarizes these strategies and the specific growth parameters of low-temperature synthesis in the mentioned studies. Graphene and CNTs can be obtained at 200–400 °C by using precursors with low decomposition energy for radical coupling reactions, for example, carbon halides. Although the growth temperature is greatly reduced, the use of carbon halide precursor may cause the doping of halogen atoms and the forming of structural defects. At the same time, the choice of precursor containing aromatic structure or carbon chain skeleton structure can also produce graphene and CNTs at low temperature. The surface-mediated synthesis is one of the most promising methods toward low-temperature growth of GNRs, which can precisely control the length, width and edge structure. Unfortunately, the low conversion rate and low yield limit its large-scale industrial application. Precursors with carbon chain skeletons like MOFs can be used to prepare sp2 carbon nanomaterials in large quantities, increasing their applications in energy storage and conversion. The combination of catalysts with different carbon solubility and catalytic activity is also an effective strategy to lower the activation energy of the reaction, thus reducing the growth temperature. High-quality and large-area graphene film can be obtained, which facilitates its applications in electronic devices. In addition, the use of liquid metal catalysts helps to solve problems including breakage and wrinkles during the transfer process by an innovative sliding transfer method, and ensures the high quality of graphene in the whole growth and transfer process [96]. Except for the thermal energy, the introduction of additional energy can effectively pre-decompose the carbon source, such as microwave energy, plasma energy and electric field energy. Based on this way, the temperature at the growth region is reduced below 500 °C without the strict requirement of the growth substrate. As the temperature decreases, sp2 carbon nanomaterials are expected to be synthesized on any substrate by PECVD method without the limitation of the temperature tolerance, such as insulating substrate or polymer film, improving compatibility with silicon-based modern electronics and flexible electronics.

However, in order to make further advances in the practical applications, there are still many challenges to be faced with. At the low temperature, the arrangement and incorporation of precursors may be disordered and limited by their geometric structure, resulting in the inevitable formation of structural defects. In the meantime, precursors cannot be decomposed completely at low temperature, leading to the formation of disordered hydrocarbon structures on the surface of obtained materials. Furthermore, the diffusion of carbon atom is also limited at low temperature, which also contributes to a large defect density. Therefore, the as-synthesized sp2 carbon nanomaterials at low temperature are likely to exhibit poor crystallinity and uniformity. Thence, further effort can be focused on seeking for suitable precursor with a specific structure and a low decomposition energy. Precisely controlling the reaction path is also a promising direction for low-temperature synthesis. It has been reported that room-temperature growth of graphene can be achieved based on the Ni substrate with excellent carbon solubility, while the yielded graphene shows poor uniformity [97]. Therefore, a promising effort goal can be achieved with...
TABLE 1
Strategies for the low-temperature synthesis of sp² carbon nanomaterials.

<table>
<thead>
<tr>
<th>Synthesis strategy</th>
<th>Synthesis strategy</th>
<th>Synthesis method</th>
<th>Synthesis temperature (°C)</th>
<th>Carbon source</th>
<th>Catalyst or substrate</th>
<th>Product</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon source selection with high reactivity</td>
<td>Carbon source with active halogen group</td>
<td>Liquid phase reaction</td>
<td>200</td>
<td>C₆Cl₄</td>
<td>Fe/Au</td>
<td>MWCNTs</td>
<td>[32]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid phase reaction</td>
<td>350</td>
<td>C₆Cl₆</td>
<td>Co/Ni</td>
<td>MWCNTs</td>
<td>[30]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supercritical fluid reaction</td>
<td>175</td>
<td>CCl₄</td>
<td>Fe</td>
<td>MWCNTs</td>
<td>[31]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>220–250</td>
<td>C₆Br₆</td>
<td>Cu</td>
<td>Monolayer graphene</td>
<td>[33]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>300</td>
<td>C₂H₆</td>
<td>Cu</td>
<td>Monolayer graphene</td>
<td>[37]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>300–300</td>
<td>C₆H₆</td>
<td>Cu</td>
<td>Monolayer graphene</td>
<td>[38]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>400–600</td>
<td>C₆H₁₀, C₆H₂₄</td>
<td>Cu</td>
<td>Monolayer graphene</td>
<td>[40]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>400</td>
<td>C₆H₁₄</td>
<td>Cu</td>
<td>Monolayer graphene</td>
<td>[31]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>300</td>
<td>C₆H₆, C₆H₁₄</td>
<td>Cu</td>
<td>Monolayer graphene</td>
<td>[32]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid phase reaction</td>
<td>80</td>
<td>Benzonaphthosilole and C₆H₁₀</td>
<td>–</td>
<td>–</td>
<td>[44]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surface-assisted reaction</td>
<td>400–440</td>
<td>C₂₆H₁₆Br₂, C₆H₂₆Br₂</td>
<td>Au{1 1 1}</td>
<td>GNRs</td>
<td>[42]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surface-assisted reaction</td>
<td>201.85–351.85</td>
<td>C₂₆H₁₆Br₂</td>
<td>Au{1 1 1}</td>
<td>GNRs</td>
<td>[45]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surface-assisted reaction</td>
<td>400</td>
<td>C₂₆H₁₆Br₂</td>
<td>Au{1 1 1}</td>
<td>GNRs</td>
<td>[46]</td>
</tr>
<tr>
<td>Carbon source with carbon chain skeleton</td>
<td>Catalyst design to reduce the energy barrier of the reaction</td>
<td>CVD</td>
<td>400–800</td>
<td>PMMA and PS</td>
<td>Cu</td>
<td>Monolayer graphene</td>
<td>[37]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>180–400</td>
<td>PMMA, C₆H₆Cl ZIF-67</td>
<td>Cu</td>
<td>Graphene</td>
<td>[53]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pyrolysis</td>
<td>430</td>
<td>ZIF-67</td>
<td>Co</td>
<td>CNTs</td>
<td>[58]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>600</td>
<td>C₂H₂</td>
<td>Cu-Ni</td>
<td>Monolayer graphene</td>
<td>[72]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>450</td>
<td>C₂H₂</td>
<td>Au-Ni</td>
<td>Monolayer graphene</td>
<td>[73]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>750</td>
<td>CH₄</td>
<td>Cu-Co</td>
<td>Monolayer graphene</td>
<td>[74]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RF-PECVD</td>
<td>400</td>
<td>C₂H₄</td>
<td>Pd-Co</td>
<td>Monolayer graphene</td>
<td>[75]</td>
</tr>
<tr>
<td></td>
<td>Physical state design of catalyst</td>
<td>CVD</td>
<td>800</td>
<td>CH₄</td>
<td>Ga-Cu</td>
<td>Monolayer graphene</td>
<td>[78]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>600</td>
<td>CH₄</td>
<td>Ga-Ni</td>
<td>Monolayer graphene</td>
<td>[79]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>200</td>
<td>CB₄</td>
<td>Ga</td>
<td>Nanographene</td>
<td>[80]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>50–100</td>
<td>CH₄</td>
<td>Ga</td>
<td>Monolayer graphene</td>
<td>[81]</td>
</tr>
<tr>
<td></td>
<td>Non-thermal energy supply for the pyrolysis activation of the precursor</td>
<td>Microwave assistance</td>
<td>550–650</td>
<td>C₂H₂</td>
<td>Ferrocene</td>
<td>Aligned CNTs</td>
<td>[88]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microwave CVD</td>
<td>600</td>
<td>Cellulose</td>
<td>Ni</td>
<td>CNTs</td>
<td>[82]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plasma assistance</td>
<td>PECVD</td>
<td><666</td>
<td>C₂H₂</td>
<td>Ni</td>
<td>Aligned CNTs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dc PECVD</td>
<td>120</td>
<td>C₂H₂</td>
<td>Ni</td>
<td>Vertically aligned CNTs</td>
<td>[89]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water plasma CVD</td>
<td>450</td>
<td>CH₄</td>
<td>Fe</td>
<td>SWNTs</td>
<td>[85]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PECVD</td>
<td>500</td>
<td>CH₄</td>
<td>Cu</td>
<td>Graphene</td>
<td>[92]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PECVD</td>
<td>600</td>
<td>CH₄</td>
<td>Cu</td>
<td>Graphene</td>
<td>[86]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FC-PECVD</td>
<td><400</td>
<td>CH₄</td>
<td>Cu</td>
<td>Monolayer graphene</td>
<td>[87]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PECVD</td>
<td>400</td>
<td>CH₄</td>
<td>SiO₂/Si or sapphire</td>
<td>N-doped graphene</td>
<td>[94]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remote PECVD</td>
<td>PECVD</td>
<td>435–650</td>
<td>C₂H₂ and NH₃</td>
<td>SiO₂/Si, Al₂O₃, h-BN, mica, HOPG</td>
<td>N-doped graphene</td>
</tr>
</tbody>
</table>

The accurate control of the carbon precipitation toward the surface. Liquid metal, as an emerging candidate, also exhibits enormous potential in the synthesis of sp² carbon nanomaterials at low temperature. It can be used as the “container” of carbon precursors due to the abundant vacancies in its bulk. It has been reported that the phase transition of liquid metal helps to facilitate the self-limited
growth of graphene on the surface. Once presetting decomposed carbon atoms in the liquid metal bulk, the uniform layer graphene may be obtained via the liquid metal catalyst. In spite of the quality and uniformity maintenance in the growth process, the in-growth or post-growth impairment of sp² carbon nanomaterials can also work well for achieving the goal. Recently, a few reports have shown that the introduction of CO₂, water vapor and static electricity can help with the removal of amorphous carbon on the surface of sp² carbon nanomaterials [98–100]. Another challenge or opportunity is a better understanding of growth mechanism of sp² carbon nanomaterials at low temperature. Emerging in-situ characterization techniques, such as in-situ TEM, in-situ scanning tunneling microscopy (STM) and in-situ Raman spectroscopy, can be used to explore the elementary reaction processes at a relatively low temperature. The establishment of the growth mechanism can enrich the fundamental research of graphene and CNTs and promote the growth parameter design for obtaining high-quality materials at the low temperature.

In addition to sp² carbon nanomaterials, the low-temperature synthesis of other nanomaterials, especially for the various emerging 2D materials, is also urgently to be developed. For example, 2D transition metal chalcogenides (TMDs) exhibit a variety of electronic properties, ranging from semiconducting to superconducting due to their abundant elemental composition and crystal structure. The rich experience in the low-temperature synthesis of sp² carbon nanomaterials can be implanted into the synthesis of TMDs and other 2D materials. It is favorable for lowering the growth temperature to choose appropriate precursors with low melting point and high chemical reactivity with chalcogen source. The pre-activation of the precursors assisted by the plasma and microwave is also promising for the low-temperature synthesis. The low-temperature growth of high-quality nanomaterials in a controllable way has achieved many progresses toward the industrial application. We believe such a timely review will inject new blood for the future industrial production of nanomaterials and thus promote their applications in the various fields.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21673161), the Sino-German Center for Research Promotion (1400), and the Postdoctoral Innovation Talent Support Program of China (BX20180224).

Author contributions

Lei Fu conceived the review topic; Yu Ding charted the figures; Yu Ding wrote the original draft in consultation with all the other authors; Mengqi Zeng and Lei Fu reviewed and edited the draft.

Appendix A. Supplementary materials

Supplementary materials to this article can be found online at https://doi.org/10.1016/j.scib.2019.10.009.

References

[69] Yu Ding received her B.S. degree from College of Chemistry and Materials Science, Northwestern University in 2018 and continued her studies as a Master’s degree candidate under the supervision of Prof. Lei Fu at the Laboratory of Advanced Nanomaterials (LAN) of Wuhan University. Her current research is focused on the synthesis and applications of two-dimensional materials.
Mengqi Zeng received her Ph.D. degree from the College of Chemistry and Molecular Science, Wuhan University. In 2018, she joined Wuhan University as an Associate Professor. Her current research is focused on the controllable synthesis and self-assembly of two-dimensional materials.

Lei Fu received his B.S. degree in Chemistry from Wuhan University in 2001, and Ph.D. degree from the Institute of Chemistry, Chinese Academy of Sciences in 2006. After that, he worked as a Director’s Postdoctoral Fellow at the Los Alamos National Laboratory, Los Alamos, NM (2006–2007). Thereafter, he became an Associate Professor at Peking University. In 2012, he joined Wuhan University as a Full Professor. His current interests of research relate to the controlled growth and novel property exploration of 2D atomic layer thin crystals.