
SCIENCE CHINA
Mathematics

October 2025 Vol. 68 No. 10: 2519–2537
https://doi.org/10.1007/s11425-023-2364-2

© Science China Press 2025 math.scichina.com link.springer.com

. REVIEWS .

Combinatorial optimization: From deep learning
to large language models

Peng Tao1 & Luonan Chen1,2,3,4,∗,†

1Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science,
Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;

2Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology,
Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China;

3Guangdong Institute of Intelligence Science and Technology, Zhuhai 519031, China;
4Pazhou Laboratory (Huangpu), Guangzhou 510555, China

Email: taopeng@ucas.ac.cn, lnchen@sjtu.edu.cn

Received November 26, 2023; accepted December 10, 2024; published online April 30, 2025

Abstract Traditional operational research methods have been the primary means of solving combinatorial
optimization problems (COPs) for the past few decades. However, with the rapid increase in the scale of problems
in real-world scenarios and the demand for online optimization, these methods face persistent challenges including
computational complexity and optimality. In recent years, combinatorial optimization methods based on deep
learning have rapidly evolved, progressing from tackling solely small-scale problems (e.g., the traveling salesman
problem (TSP) with fewer than 100 cities) to swiftly delivering high-quality solutions for graphs containing up to
a million nodes. Particularly, in the last two years, a multitude of studies has surfaced, demonstrating the ability
to generalize learned models to large-scale problems with diverse distributions. This capability empowers deep
learning-based methods to demonstrate robust competitiveness, even when challenged by professional solvers.
Consequently, this review summarizes the methods employed in recent years for solving COPs through deep
learning (including prompt learning), scrutinizes the strengths and weaknesses of these methods, and concludes
by highlighting potential directions for mitigating these weaknesses.

Keywords combinatorial optimization, deep learning, prompt learning, traveling salesman problem, chaotic
backpropagation, chaotic simulated annealing

MSC(2020) 90C11, 90C27

Citation: Tao P, Chen L N. Combinatorial optimization: From deep learning to large language models. Sci China
Math, 2025, 68: 2519–2537, https://doi.org/10.1007/s11425-023-2364-2

1 Introduction

Combinatorial optimization problems (COPs) involve optimizing discrete variables, aiming to identify
the optimal solution from a finite set of solutions. This is closely associated with numerous issues in
scientific and industrial domains, such as logistics and transportation, circuit design and drug development
[6, 22, 62, 80, 85, 136]. While the solution set of a COP is finite, the number of feasible solutions grows

† Current address: School of Mathematical Sciences and School of AI, Shanghai Jiao Tong University, Shanghai 200240,
China
*Corresponding author

http://crossmark.crossref.org/dialog/?doi=10.1007/s11425-023-2364-2&domain=pdf
https://doi.org/10.1007/s11425-023-2364-2
math.scichina.com
link.springer.com
https://doi.org/10.1007/s11425-023-2364-2


2520 Tao P et al. Sci China Math October 2025 Vol. 68 No. 10

exponentially with the problem’s scale. Consequently, when the problem is of significant scale, the solution
set approaches infinity, making exhaustive enumeration ineffective in obtaining the optimal solution.

In recent decades, a plethora of combinatorial optimization methods have been developed. Exact
methods such as branch-and-bound [59] and dynamic programming [7] decompose an original problem into
several subproblems, solving them to obtain the solution to the original problem. While these algorithms
can yield precise results, they are only suitable for small-scale COPs. As the scale increases, approximate
methods such as greedy algorithms [119], local search methods [127], tabu search methods [26], stochastic
simulated annealing [54], chaotic simulated annealing [54], evolutionary algorithms [82] and particle
swarm optimization [49] can provide a relatively good solution within a feasible time. While approximate
methods have been a focal point of research, the advent of the big data era has led to significantly large-
scale COPs in the real world. Faced with these extensive practical issues, approximate methods still
struggle to obtain high-quality feasible solutions within acceptable timescales.

On the other hand, artificial intelligence (AI) technologies, with deep learning as a representative, have
been rapidly advancing in recent years and have achieved remarkable milestones in various fields, including
disease diagnosis [95], time series prediction [13,91], machine translation [92], autonomous driving [60] and
protein structure prediction [102]. In the field of combinatorial optimization, AI methods demonstrate
various unique advantages, such as fast computational speed and strong generalization capabilities, in
comparison with traditional methods. While there are already some reviews in this field [6,31,65,80,120],
due to the rapid development in this field over the past two years, many significant advancements have
not been covered such as combinatorial optimization methods based on unsupervised learning (UL)
and prompt learning (PL). Therefore, this review further examines and summarizes deep learning-based
combinatorial optimization methods, compares their advantages and disadvantages, and finally identifies
the main challenges and potential solutions in this field.

2 Deep learning methods for combinatorial optimization

Methods for solving COPs based on deep learning can be classified according to multiple criteria. Based
on the role of deep learning, they can be categorized as end-to-end and non-end-to-end, with the former
primarily relying on deep learning, while the latter is often employed to enhance traditional operational
research methods. According to the construction of solutions, they can be classified into learning
constructive heuristics (LCH) and learning improvement heuristics (LIH) [9]. Additionally, classification
can be based on the neural network models used in deep learning such as the Pointer network (Ptr-
Net) and graph neural networks (GNNs). Below, we first classify these methods based on the COPs
(mainly focused on the TSP, see Table 1), then based on the model architectures, and finally based
on the training framework, i.e., supervised learning (SL), reinforcement learning (RL) and unsupervised
learning, including the gradient dynamics-based algorithm and the chaotic dynamics-based algorithm.
Considering space limitations, we see that this survey will not delve into detailed explanations of related
fundamental concepts and methods. For those unfamiliar with deep learning (including reinforcement
learning and GNNs), the references [27, 110,129] are recommended. For combinatorial optimization, the
reference [56] is suggested. It should be noted that the field of solving COPs with deep learning has
experienced rapid development, and there is a plethora of relevant work. This review, due to space
constraints, cannot cover all the work in this area. We apologize to authors who have made significant
contributions but may have been omitted in this paper.

2.1 The traveling salesman problem (TSP)

2.1.1 The Hopfield neural network (HNN )

The use of neural networks to solve COPs can be traced back to the Hopfield neural network (HNN)
in 1985 (see [38]). This network belongs to a single-layer fully connected recurrent network, where the
state of neurons changes over time, and each neuron serves as both input and output. Since the HNN
can be viewed as a nonlinear dynamical system, the concept of an energy function is introduced to assess



Tao P et al. Sci China Math October 2025 Vol. 68 No. 10 2521

the stability of network iterations. In this context, if the state of neurons encodes a solution to the
TSP, then the network’s energy is minimal precisely when it corresponds to the optimal TSP solution.
However, the Hopfield network can only address exceedingly small TSP instances, and owing to the
training process tending to converge to local minima, we see that the solutions obtained are frequently
suboptimal. Inspired by the chaotic dynamics found in the real brain, Aihara et al. [2] introduced chaos
dynamics into the Hopfield network, proposing the chaotic neural network (ACNN or Aihara network).
Subsequently, Chen and Aihara [10] further introduced the transient chaotic neural network (TCNN
or Chen network), which employs chaotic simulated annealing (CSA) to help the network escape from
local minima. Due to the pseudorandom nature of chaotic dynamics and the ergodicity in the fractal
space [11,12], this approach significantly improves the quality of TSP solutions, compared with the other
algorithms including stochastic simulated annealing (SSA). Although this approach has been gradually
optimized [117,122], it still can only handle small-scale COPs.

Table 1 The table presents a summary of the deep learning-based combinatorial optimization methods discussed in
this review, including information on the combinatorial optimization problems (COPs) addressed, the network model and
learning framework used, and the maximum number of variables (nmax) tested for each method

COP Model Framework Reference (Year) nmax

TSP HNN UL Hopfield and Tank (1985) [38] 30
HNN UL Chen and Aihara (1995) [10] 48

Ptr-Net SL Vinyals et al. (2015) [121] 50
Ptr-Net RL Bello et al. (2016) [5] 50
Ptr-Net RL Nazari et al. (2018) [86] 100
GNN SL Nowak et al. (2017) [87] 20
GNN SL Joshi et al. (2019) [48] 100
GNN SL Prates et al. (2019) [93] 80
GNN SL Xin et al. (2021) [130] 10,000
GNN SL Fu et al. (2021) [23] 10,000
GNN SL Sun and Yang (2023) [107] 10,000
GNN SL Li et al. (2023) [68] 1,000
GNN RL Dai et al. (2017) [18] 1,200
GNN RL Ma et al. (2019) [76] 1,000
GNN RL Hudson et al. (2022) [43] 100
GNN RL Jiang et al. (2022) [45] 200
GNN RL Qiu et al. (2022) [94] 10,000
GNN RL Ye et al. (2023) [133] 1,000
CNN SL Graikos et al. (2022) [29] 200

Transformer SL Luo et al. (2023) [75] 1,000
Transformer RL Deudon et al. (2018) [19] 100
Transformer RL Kool et al. (2018) [55] 100
Transformer RL Kwon et al. (2020) [58] 100
Transformer RL Wu et al. (2021) [128] 200
Transformer RL Ma et al. (2021) [77] 200
Transformer RL Kim and Park (2021) [50] 500
Transformer RL Zheng et al. (2021) [140] 85,900
Transformer RL Bi et al. (2022) [8] ⩽ 200

Transformer RL Kim et al. (2022) [51] < 250
Transformer RL Hottung et al. (2021) [40] 200
Transformer RL Son et al. (2023) [105] 1,000
Transformer RL Hou et al. (2023) [41] 7,000
Transformer RL Pan et al. (2023) [89] 10,000
Transformer RL Cheng et al. (2023) [15] 20,000
Transformer RL Zhou et al. (2023) [141] 5,000

LLM PL Wang et al. (2023) [123] 100
LLM PL Yang et al. (2023) [131] 50
LLM PL Liu et al. (2023) [72] 25
LLM PL Liu et al. (2023) [71] 1,000

(To be continued on the next page)



2522 Tao P et al. Sci China Math October 2025 Vol. 68 No. 10

(Continued )

COP Model Framework Reference (Year) nmax

VRP Ptr-Net RL Nazari et al. (2018) [86] 100
GNN SL Xin et al. (2021) [130] 10,000
GNN RL Gao et al. (2020) [24] 400
GNN RL Jiang et al. (2022) [45] 200
GNN RL Ye et al. (2023) [133] 1,000

Transformer SL Li et al. (2021) [66] 3,000
Transformer SL Luo et al. (2023) [75] 1,000
Transformer RL Kool et al. (2018) [55] 100
Transformer RL Chen and Tian (2019) [14] 100
Transformer RL Lu et al. (2019) [74] 100
Transformer RL Kwon et al. (2020) [58] 100
Transformer RL Wu et al. (2021) [128] 200
Transformer RL Ma et al. (2021) [77] 200
Transformer RL Kim and Park (2021) [50] 500
Transformer RL Bi et al. (2022) [8] ⩽ 200

Transformer RL Kim et al. (2022) [51] < 250
Transformer RL Hottung et al. (2021) [40] 200
Transformer RL Son et al. (2023) [105] 1,000
Transformer RL Hou et al. (2023) [41] 7,000
Transformer RL Zhou et al. (2023) [141] 5,000

MIS GNN SL Li et al. (2018) [69] ∼ 100,000
GNN RL Sun and Yang (2023) [107] 10,000
GNN RL Li et al. (2023) [68] 1,000
GNN RL Qiu et al. (2022) [94] 10,000
GNN UL Schuetz et al. (2022) [98] 1,000,000
GNN UL Tao et al. (2024) [114] 1,000,000
RNN UL Toenshoff et al. (2021) [116] 5,000

MCut GNN RL Abe et al. (2019) [1] < 5,000
GNN RL Barrett et al. (2020) [4] 2,000
GNN UL Yao et al. (2019) [132] 500
GNN UL Schuetz et al. (2022) [98] 1,000,000
GNN UL Tao et al. (2024) [114] 1,000,000
RNN UL Toenshoff et al. (2021) [116] 5,000

MVC GNN SL Li et al. (2018) [69] ∼100,000
GNN RL Dai et al. (2017) [18] 1,200
GNN RL Abe et al. (2019) [1] < 5,000
GNN RL Manchanda et al. (2020) [78] 20,000

GC GNN SL Lemos et al. (2019) [61] 561
GNN UL Schuetz et al. (2022) [98] 19,717
GNN UL Li et al. (2022) [67] 19,717
GNN UL Tao et al. (2024) [114] 19,717

SAT GNN SL Li et al. (2018) [69] ∼100,000
GNN SL Selsam et al. (2018) [101] 200
GNN SL Zhang et al. (2020) [138] 2,000
GNN SL Li and Si (2022) [70] 600
GNN RL Yolcu and Póczos (2019) [135] 100
GNN RL Kurin et al. (2020) [57] 600

MILP GNN SL Ding et al. (2020) [20] –
GNN SL Gupta et al. (2020) [33] 2,000
GNN RL Gasse et al. (2019) [25] 2,000
GNN RL Nair et al. (2020) [84] 1,000,000
GNN RL Tang et al. (2020) [112] 121
GNN RL Paulus et al. (2022) [90] 66

Ptr-Net RL Wang et al. (2023) [124] 61,000



Tao P et al. Sci China Math October 2025 Vol. 68 No. 10 2523

2.1.2 The pointer network (Ptr-Net )

A prominent work utilizing a supervised learning strategy to solve COPs is Ptr-Net proposed by Vinyals
et al. [121] for solving the traveling salesman problem (TSP). Its core is an encoder-decoder structure-
based seq2seq model. As depicted in Figure 1(a), for a TSP with n cities, Ptr-Net initially transforms the
two-dimensional coordinates of each city, (xi, yi), i ∈ [1, 2, . . . , n] into high-dimensional representation
vectors ci. Subsequently, it utilizes an encoder to encode the input representation vector sequence,
resulting in a feature vector ei. The decoder then decodes the output vectors dt, t = 1, 2, . . . in an
autoregressive manner. Finally, the attention mechanism is employed to calculate the probability ut

i of
selecting the i-th city at the t-th step, where the city with the maximum probability at each step forms
the final solution. Here, the calculation formula for ut

i is given by

ut
i = vT tanh(W1ei +W2dt), (2.1)

where W and v represent the parameters of the neural network. In contrast to supervised learning,
reinforcement learning excels in sequential decision-making, aligning well with the variable selection
process in COPs. Additionally, it overcomes the dependence on high-quality training samples, a challenge
in supervised learning. Therefore, leveraging reinforcement learning to address COPs is highly appropriate
and currently a focal point of research. Reinforcement learning was initially employed by Bello et al. [5]

(a)

(b)

(c)

Figure 1 (Color online) Three representative deep learning-based combinatorial optimization methods



2524 Tao P et al. Sci China Math October 2025 Vol. 68 No. 10

to train Ptr-Net (Figure 1(b) provides a simplified diagram). For each instance, the authors used the
expected tour length L(π) as a reward signal to train a policy pθ(π|s) that outputs city selections (action
π) based on the current state (s, including current city and visited cities). The policy gradient method
can be used to update the network parameters θ, e.g., for the vanilla REINFORCE [126] algorithm, its
update formula is

θ ← θ + αL(π)∇ ln pθ(π|s), (2.2)

where α is the learning rate. This work used a more advanced actor-critic [111] algorithm to further
improve the stability of training. Testing on TSP instances with up to 100 cities indicated that this
reinforcement learning-based method outperforms the results of Vinyals et al. [121]. It is worth noting
that to achieve optimal performance during testing, Bello et al. [5] fine-tuned the model’s weights for
each instance.

2.1.3 The graph neural network

GNNs are also efficient tools for solving TSPs. For example, Nowak et al. [87] input the two-dimensional
coordinates of TSP instances into a simple GNN to obtain the probability of each edge in the TSP
path, but this GNN can only solve small TSP instances approximately. Joshi et al. [48] used a graph
convolutional network (GCN) [53] to replace the GNN of Nowak et al. [87], and then utilized beam search
to convert these probabilities into an effective path with a simulation-based strategy further enhancing
the optimization performance [16]. Prates et al. [93] trained a GNN to encode nodes and edges in the TSP,
determining whether the model’s output, under a given loss, can form an effective path. Xin et al. [130]
introduced the NeuroLKH method, which trained a sparse graph network (SGN) through supervised
learning to enhance the edge candidate set artificially designed in the Lin-Kernighan-Helsgaun (LKH)
algorithm. The quality of its solutions surpassed the LKH algorithm in TSP instances with up to 10,000
cities. It is important to note that due to the differing data distributions between the training and test
sets, methods based on supervised learning often struggle to generalize well on the test set [47]. Some
recent work has begun to address this problem. Fu et al. [23] employed various techniques such as graph
sampling, graph transformation, and heat map fusion to train a small model, and then utilized the Monte
Carlo tree search (MCTS) to guide the search for high-quality solutions, achieving generalization even
on TSP instances with up to 10,000 nodes. Graikos et al. [29] pioneered the use of a diffusion model
[37] to generate solutions for COPs. This method projects each TSP instance onto a 64×64 grayscale
image space and processes it using a convolutional neural network (CNN). Building on the model of
Graikos et al. [29], Sun and Yang [107] proposed DIFUSCO, utilizing a GNN instead of a CNN. This
explicit modeling of variables further improves its optimization performance. Li et al. [68] introduced the
T2TCO (training to testing) framework. During training, it leverages the diffusion model to estimate
the distribution of high-quality solutions for each example. During testing, it performs a gradient-based
search in the solution space. Experimental results on datasets with 500 and 1,000 cities demonstrate that
T2TCO significantly outperforms DIFUSCO in terms of generalization performance.

Dai et al. [18] proposed the S2V-DQN method, using a GNN to encode the structure of solutions and
calculate the Q-values of the remaining optional nodes. Then, based on a greedy policy, they progressively
constructed a complete solution. Training the GNN through deep Q-learning [83] allowed the method
to approach the results of the CPLEX solver on the MVC problem, the MC problem and the TSP with
up to 1,200 nodes. Ma et al. [76] introduced a GNN to Ptr-Net, encoding all cities with the GNN to
obtain the graph embedding of each city. Simultaneously, they combined the point embeddings of each
city to select the next city. Additionally, the authors employed hierarchical reinforcement learning to
train the network, achieving efficient solving of the TSP with up to 1,000 cities. To further enhance the
solving speed, Hudson et al. [43] proposed a hybrid data-driven approach based on GNNs and guided
local search (GLS). It first predicted the regrets of including each edge of the graph in the solution,
and then merged these predictions with the original graph, inputting them into GLS to output the
final solution. While reinforcement learning-based combinatorial optimization methods have achieved
considerable success, their generalization performance remains limited for out-of-distribution data [46].



Tao P et al. Sci China Math October 2025 Vol. 68 No. 10 2525

To address this challenge, Jiang et al. [45] introduced group distributionally robust optimization (GDRO),
which alternately optimizes the weights of different group distributions and the parameters of deep
models during the training process. Qiu et al. [94] proposed the DIMES method, introducing a compact
continuous space to parameterize the underlying distribution of candidate solutions, making training
based on REINFORCE more stable. They also utilized meta-learning [39] for the effective initialization
of model parameters during fine-tuning. Ant colony optimization (ACO) [21] is a classic heuristic method,
but for specific problems, expert knowledge is often required to ensure solution quality. To address this,
Ye et al. [133] proposed DeepACO, which utilizes deep reinforcement learning for automatic heuristic
design, achieving performance surpassing the original ACO on 8 different COPs.

2.1.4 Transformer

Recently, Transformer has also achieved some competitive results. Luo et al. [75] introduced a novel light
encoder and heavy decoder (LEHD) model to dynamically capture relationships between all available
nodes of different sizes, enhancing the model’s generalization performance on large-scale problems. To
enhance the extraction of instance features, Deudon et al. [19] replaced the seq2seq model in Ptr-Net with
Transformer [118] and further optimized the results using a simple 2-opt [17] method. However, Kool et
al. [55] noted that the model used by Deudon et al. [19] did not fundamentally outperform traditional Ptr-
Net. To harness the potential of Transformer, the authors proposed the attention model (AM) method.
They first refined the decoding process, focusing on the first step and the last two steps of decision-
making during decoding. Additionally, they introduced a rollout baseline to replace the critic network.
Moreover, the best policy model during training serves as the baseline, and the parameters update only if
a policy surpasses this baseline. These improvements resulted in the optimization performance surpassing
previous reinforcement learning-based approaches and professional solvers like Concorde [3], LKH3 [36]
and Gurobi [88]. Kim and Park [50] utilized a model similar to Kool et al. [55], introducing a learning
collaborative policy (LCP) consisting of seeder and reviser strategies to further enhance optimization
performance. The seeder strategy generates as diverse possible solutions as possible, while the reviser
strategy decomposes these solutions into multiple parts for individual optimization, combining them into a
superior solution. Wu et al. [128] further employed deep reinforcement learning to directly learn a superior
rule. Additionally, earlier work did not account for the symmetry of solutions in path problems. Therefore,
Kwon et al. [58] proposed the policy optimization with the multiple optima (POMO) method, leveraging
the symmetry of solutions to reduce the baseline in the REINFORCE algorithm, making training faster
and more stable. It is noteworthy that the GDRO method proposed by Jiang et al. [45] can be integrated
with the POMO method, and thereby enabling training in the context of reinforcement learning. Based
on the POMO method, Hottung et al. [40] introduced effective active search (EAS), which, compared
with actively searching and fine-tuning all weights, selectively adjusts a small subset of weights for
better optimization performance. To adapt the model to larger-scale problems, Son et al. [105] proposed
the meta-SAGE method, where the scale meta-learner (SML) transforms context embeddings, and the
scheduled adaptation with guided exploration (SAGE) adjusts model parameters for specific instances
based on scale information. Ma et al. [77] found that positional encoding (PE) in Transformer is not
suitable for path problems such as the TSP. Hence, they developed the cyclic positional encoding (CPE)
method to capture the symmetry of solutions and proposed the dual-aspect collaborative Transformer
(DACT) to separately learn embeddings of node and position features. Zheng et al. [140] simultaneously
used three reinforcement learning methods (Q-learning [83], Sarsa [109] and Monte Carlo) to improve
the LKH method, replacing the α value used for candidate city selection and sorting in LKH with a
Q-value. The effectiveness was confirmed on the TSPLIB dataset with up to 85,900 cities, although the
overall performance was inferior to NeuroLKH [130]. Bi et al. [8] presented an adaptive multi-distribution
knowledge distillation (AMDKD) approach, using various knowledge from multiple teachers trained on
example distributions to generate a lightweight student model, and thereby learning a more generalized
deep model. Kim et al. [51] introduced Sym-NCO, a regularization-based training approach that leverages
symmetries such as rotation and reflection invariance in various COPs and solutions to improve the
generalization ability. Pan et al. [89] adopted a hierarchical reinforcement learning strategy, where the



2526 Tao P et al. Sci China Math October 2025 Vol. 68 No. 10

upper-level policy selects a small subset of nodes, and the lower-level policy outputs a route connecting
these nodes to the existing partial route. This end-to-end approach allows for rapid solving of COPs with
10,000 nodes. Hou et al. [41] proposed the two-stage divide method (TAM) to generate subproblems,
and then designed a two-step reinforcement learning process for training, ultimately achieving real-time
solving of large-scale VRPs. Cheng et al. [15] iteratively optimized a subproblem, extending small-scale
selectors and optimizers to large-scale TSP instances, significantly reducing solving time due to efficient
parallel computing. Zhou et al. [141] introduced a general meta-learning framework that utilizes second-
order techniques for effective model initialization, efficiently adapting to new tasks with limited data
during the inference process.

2.1.5 The large language model (LLM )

LLMs have made tremendous breakthroughs in the last two years, significantly impacting various
industries, for example, large models in computational biology like Geneformer [115] and time series
models such as one fits all [142]. Some researchers have begun attempting to solve COPs based on
LLMs. Wang et al. [123] were the first to use deep reinforcement learning to train bidirectional encoder
representations from transformers (BERT) for solving COPs (named BDRL). Compared with previous
encoder-decoder frameworks, there is no need to redesign the decoder for different problems, and the
model can be fine-tuned for specific tasks. By pretraining BERT on a large number of TSP/VRP-
20/50/100 instances and fine-tuning it on constrained variant tasks (CVRP, PCTSP), BDRL achieved
better results than several reinforcement learning-based methods, such as AM. However, training large
models is time-consuming and labor-intensive, and there is a growing interest in solving problems solely
through prompts. Recently, Yang et al. [131] proposed a simple and effective method called optimization
by prompting (OPRO) that utilizes LLMs as optimizers, where the optimization tasks are described in
natural language. In each optimization step, the LLM generates new solutions from prompts that include
previously generated solutions and their values, evaluates these new solutions, and adds them to the
prompts for the next optimization step (see Figure 2(a)). They conducted OPRO performance tests on
the TSP with 10 to 50 cities and compared them with the nearest neighbor (NN) and farthest insertion
(FI) methods. The LLMs used in the tests include text-bison1), GPT3.5-turbo, and GPT42). They found
that when n = 10, all the large models can find the optimal solution, but when n = 50, their performance
rapidly declines and is surpassed by the FI method. Additionally, they observed that GPT4 outperforms
GPT3.5-turbo and text-bison on all problem sizes. Liu et al. [72] further introduced the concept of
evolutionary algorithms, which instructs the LLM to select parent solutions from the current population,
and performs crossover and mutation to generate offspring solutions. Then these new solutions are
included in the population for the next generation. Although the introduction of evolutionary algorithms
improves the performance of OPRO, there is still a significant gap compared with heuristic methods such
as FI.

The above works use LLMs to generate new solutions at the operator level. However, their
performance declines considerably when applied to large-scale problems, mainly due to the longer solution
representation and large search space. To address this limitation, Liu et al. [71] proposed a novel approach
called AEL. It utilized an LLM to automatically generate optimization algorithms via an evolutionary
framework. The results show that heuristic methods derived from AEL can achieve better results than
simple hand-crafted and LLM-generated heuristics in the TSP with up to 1,000 cities. Recently, an
inspiring work was published in Nature, which introduced the FunSearch [96] method. It achieved the
best results in the cap set problem and significantly outperformed the first fit and best fit methods in
the online bin packing problem. Compared with previous methods, FunSearch uses a simple program
template as a prompt, and the LLM only needs to generate the most essential functions. Additionally,
FunSearch utilizes code-specific models (Codey3)) instead of general-purpose LLMs for generation and
employs an island model to update the function database (see Figure 2(b)).

1) https://cloud.google.com/vertex-ai/docs/generative-ai/learn/models
2) http://openai.com/api/
3) https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-models-overview



Tao P et al. Sci China Math October 2025 Vol. 68 No. 10 2527

(a)

(b)

Figure 2 (Color online) Two representative prompt learning-based combinatorial optimization methods, which leverage
LLMs to generate either (a) new solutions and (b) new programs, respectively

2.2 The vehicle routing problem (VRP)

The VRP is a more complex version of the TSP, with the objective of determining the best route of nodes
(or cities) to minimize the total travel expense, while still adhering to other restrictions like capacity
limits. A number of strategies outlined in the previous section for resolving the TSP are also applicable
to the VRP. However, in this subsection, we focus solely on techniques that are uniquely tailored for
the VRP. Nazari et al. [86] addressed the dynamic features of the VRP. Considering both customer
coordinates (static) and demands (dynamic) simultaneously, the authors replaced the recurrent layer in
the encoder with a one-dimensional convolutional layer, significantly improving computational speed.
While its performance on the TSP did not surpass that of Bello et al. [5], it outperformed classical
heuristic methods on the VRP.

Gao et al. [24] introduced a graph attention network (GAT) to encode problem features, and then used
destroy and repair policies to improve solution quality. These policies were trained using the proximal
policy optimization (PPO) [100] algorithm and the testing results on various scales of the capacitated
vehicle routing problem (CVRP) indicated that this method outperformed that of Kool et al. [55].

Li et al. [66] proposed a learning-enhanced local search framework, learning-to-delegate, and it identifies
appropriate subproblems and iteratively improves the quality of solutions using a black-box solver.
Leveraging spatial locality, it only needs to consider a linear number of subproblems at each iteration. As
a result, this approach accelerates SOTA VRP solvers by 10× to 100×, while still achieving competitive
solution qualities for VRPs ranging in size from 500 to 3,000.

Notably, deep reinforcement learning methods can automatically learn search rules, often outperform-
ing manually designed rules. An early example of such an approach is NeuRewriter proposed by Chen
and Tian [14], which constructs a feasible solution and then guides the local search process using the
region-picker and rule-picker policies (trained using an actor-critic algorithm) to continuously improve
solution quality. This method outperforms OR-tools in the job shop scheduling problem (JSSP) and the
VRP. Lu et al. [74] proposed the learn-to-improve (LSI) framework, which utilizes deep reinforcement
learning to train a selection policy. In each iteration of local search, this policy selects one operator from
a library of 9 improvement operators to enhance the current solution. When the solution reaches a local
optimum, it is perturbed. Testing on different scales of the CVRP showed that LSI outperformed LKH
in both solving speed and solution quality. GNNs efficiently represent graph structure information in
COPs, making them a recent research hotspot.

2.3 The maximal independent set (MIS)

Li et al. [69] estimated the likelihood (probability) of a node belonging to the optimal solution on a
graph by training a GCN. Based on these probabilities, they used tree search to construct feasible
solutions, ultimately selecting the best solution from numerous possibilities. The method was applied
to solve various COPs, including the MIS, with results indicating superior optimization performance



2528 Tao P et al. Sci China Math October 2025 Vol. 68 No. 10

compared with several benchmark methods. In addition, both the previously mentioned T2TCO and
DIFUSCO are also based on supervised learning and the GNN to solve the MIS problem, while DIMES
uses a reinforcement learning strategy. The emergence of unsupervised deep learning methods has only
occurred in recent years. Toenshoff et al. [116] proposed a recurrent unsupervised neural network for
the constraint satisfaction problem (CSP), RUN-CSP. It is based on a constraint language that can
automatically or manually design a loss function. Optimizing this loss function yields solutions to the
CSP, and the method has demonstrated results close to traditional greedy algorithms on CSPs with up
to 5,000 nodes. The physics-inspired GNN (PIGNN), recently proposed by Schuetz et al. [98], represents
an example of the unsupervised learning paradigm. Initially, it encodes the objective of COPs into the
Hamiltonian corresponding to the quadratic unconstrained binary optimization (QUBO) problem

H = xTQx =
∑
i,j

xiQijxj , (2.3)

where Q is a constant matrix encoding the COP and xi ∈ {0, 1} is the state of variable i. For example,
for the MIS problem in Figure 1(c), the Hamiltonian can be written as

HMIS = −
∑
i∈V

xi + P
∑

(i,j)∈E

xixj , (2.4)

where V and E are the sets of nodes and edges of a given graph, respectively. P is a penalty parameter,
usually set to 2. PIGNN transforms HMIS into a differentiable loss function by replacing xi with pi(θ),
where θ represents all parameters in a GNN and represents the final output of the GNN model on node i,
i.e.,

lossMIS(θ) =
∑
i,j

pi(θ)Qijpj(θ). (2.5)

Just optimize this loss function to get pi(θ), and a simple projection operation (the simplest one is to use
a threshold of 0.5, where pi(θ) above the threshold is set to be 1 and the values below the threshold are
set to be 0, which will give the final solution). Two significant advantages of the PIGNN over previous
work are that it can be applied to all COPs that can be transformed into QUBOs and that it can
handle large-scale (up to a million variables) COPs. From the last section, it is evident that the PIGNN
transforms the solution process of COPs into the optimization process of a loss function. Therefore,
the learning algorithm of neural networks plays a decisive role in the results of COPs. Although deep
learning has achieved remarkable results, the cornerstone of these achievements from the perspective of
learning algorithms is still the famous error backpropagation (BP) [97] algorithm and its variants such
as SGD [108] and Adam [52]. Despite the success of BP-based algorithms, they still suffer from two
significant flaws. Firstly, due to the fact that the BP algorithm is primarily based on gradient dynamics,
it is prone to get stuck in local minima (its variants may introduce stochastic dynamics to alleviate this).
Secondly, from a biological perspective, existing experimental results [79,104] suggest that the brain uses
chaotic dynamics to process information rather than gradient dynamics. In order to address these two
flaws of the BP algorithm, Tao et al. [113] proposed the chaotic backpropagation (CBP) algorithm, which
introduces a loss function losschaos from the internal neural interaction of a neural network, formulated
as follows:

losschaos = −
l∑

i=1

Mi∑
j=1

zij [I0 lnxij + (1− I0) ln(1− xij)], (2.6)

where xij is the output of the j-th neuron in the i-th layer of a multilayer perceptron (MLP) with l layers.
There are Mi neurons in the i-th layer and wijk is the weight from xi−1,k to xij . I0 is a constant between 0
and 1, and zij is a scalar parameter that controls the chaotic intensity (or annealing temperature) of wijk.
It can be demonstrated in [113] that when zij is sufficiently large, the introduction of losschaos leads to the
emergence of chaotic dynamics for wijk. Due to the ergodicity of chaotic dynamics in the fractal space,
wijk can sample a broader parameter space. Furthermore, as zij undergoes annealing (zij ← β zij , where
β > 0 is annealing constant less than 1, e.g., 0.999), the corresponding losschaos gradually approaches



Tao P et al. Sci China Math October 2025 Vol. 68 No. 10 2529

zero, at which point the CBP algorithm degenerates into the BP algorithm, ensuring the convergence
of learning. Experimental results on benchmark datasets such as CIFAR10 demonstrate that the CBP
algorithm not only outperforms BP in terms of optimization performance on the training set but also
exhibits superior generalization performance on the test set. Recently, the authors further extended the
CBP algorithm to GNNs and combined it with the PIGNN for solving large-scale COPs [114], and spiking
neural networks [125]. The results show that it significantly outperforms the BP-based PIGNN on the
MCut, MIS and GC, providing a promising approach for solving large-scale COPs.

2.4 Maximum cut (MCut)

To solve MCut problems, Abe et al. [1] improved the generalization ability by replacing the Q-learning
in S2V-DQN with the more efficient AlphaGo Zero [103]. However, previous work constructed solutions
by incrementally adding nodes, preventing the agent from correcting previous decisions and resulting in
suboptimal optimization performance. Therefore, Barrett et al. [4] proposed training an agent through
reinforcement learning to reassess the Q-values of adding or removing nodes during testing, achieving
corrections for early decisions.

Yao et al. [132] directly employed the MCut number as a loss function. By introducing relaxation,
they made the loss function differentiable. Ultimately, an unsupervised learning approach was utilized
to solve the MCut problem with 500 nodes. In contrast, based on the QUBO framework, the PIGNN
further increases the size of problems that can be handled to 1,000,000.

2.5 Minimal vertex cover (MVC)

The S2V-DQN model proposed by Dai et al. [18] has been demonstrated to tackle the MVC problem
effectively, showing a capacity to generalize for graphs with up to 1,200 nodes. Using the S2V-DQN model
as a reference point, the methods put forth by Li et al. [69] and Abe et al. [1] have shown superior results.
Recently, Manchanda et al. [78] employed an innovative probabilistic greedy mechanism to estimate a
node’s quality and applied GCNs to MVC problems involving up to 5,000 nodes. This approach yielded
a noteworthy enhancement in performance compared with the previously mentioned methods.

2.6 Graph coloring (GC)

The GC problem is a common extension of the MCut problem. The goal of the GC problem is to find the
smallest number of colors needed to color the nodes of a graph such that no edge connects two nodes of
the same color. Lemos et al. [61] trained a simple GNN on a large number of randomly generated graphs
to solve the GC problem, showing that its performance can surpass tabu search and greedy methods
under certain graph distributions. More recently, the unsupervised learning approach of the PIGNN was
expanded to handle more complex GC problems. This method outperformed traditional tabu search
techniques on citation graphs with up to 20,000 nodes [67,99].

2.7 Satisfiability (SAT)

Selsam et al. [101] introduced NeuroSAT, a model that predicts the satisfiability of SAT problems
using a trained message-passing neural network. The method maintains the permutation invariance and
negation invariance of Boolean formulae via symmetric edge connections and message passing. While the
optimization performance of this approach might not match up to state-of-the-art (SOTA) solvers, it does
demonstrate significant benefits in terms of computational efficiency and generalization performance. In
contrast to the end-to-end approach of NeuroSAT, Zhang et al. [138] put forth NLocalSAT. This method
enhances the performance of the stochastic local search (SLS) solver by guiding the initial assignments
with a GCN. The output of this network is a predicted solution. It is important to note that the
aforementioned methods aim to predict a single satisfying assignment for a satisfiable formula. However,
there can be multiple satisfying solutions, which raises the question of which particular solution should
be generated. To address this, NSNet [70] performs marginal inference in the solution space of an SAT



2530 Tao P et al. Sci China Math October 2025 Vol. 68 No. 10

problem, estimating the assignment distribution of each variable among all satisfying assignments. This
approach provides a more comprehensive understanding of the solution space, potentially leading to more
effective and diverse solutions.

Contrasting the supervised-learning based methods mentioned earlier, Yolcu et al. [135] introduced a
variable selection heuristic for SLS solvers, computed by a GNN through deep reinforcement learning.
In this methodology, the policy GNN takes the current assignment as input and outputs a probability
distribution over variables, reflecting their likelihood of being flipped in the next iteration. Despite these
advancements, the selection heuristics typically employed in SAT solvers often make suboptimal decisions.
To address this, Kurin et al. [57] proposed Graph-Q-SAT. This method formulates the Boolean formulae
as variable-clause graphs and learns a value function for each variable node, with a simple policy to
select the variables with the maximum value. For a more in-depth discussion of deep learning-based SAT
solvers, please refer to the review by Guo et al. [32].

2.8 Mixed integer linear programming (MILP)

MILP is indeed a widely used modeling technique for COPs. Traditionally, MILP can be solved
using a linear-programming based branch-and-bound (B&B) algorithm. This algorithm partitions the
search space by branching on variables’ values and smartly uses bounds from problem relaxations to
prune unpromising regions from the tree. However, solving a complex MILP problem often requires
a large number of branching variable selection (BVS) decisions, which are crucial for the performance
of the solver. The selection of branching variables typically relies on a multitude of expert-designed
rules. Recently, deep learning-based methods have shown competitive results. For example, Ding et
al. [20] created a tripartite graph from the MILP formulation and trained a GCN for variable solution
prediction based on the collected features, labels and tripartite graphs. Gupta et al. [33] proposed a
hybrid architecture that uses a GNN model only at the root node of the B&B tree and a weaker but
faster predictor at the remaining nodes. This approach results in an effective time-accuracy trade-off in
branching.

In contrast to SL-based methods, RL can learn a policy for BVS from scratch. This approach provides
a more flexible and potentially more effective means of solving complex MILP problems. Gasee et al. [25]
proposed a new GCN for learning branch-and-bound variable selection policies. This method takes
advantage of the natural variable-constraint bipartite graph representation of MILPs. Nair et al. [84]
encoded a MILP into a GCN as a bipartite graph and computed an initial feasible solution. The GCN
is then trained to imitate the policy branching that un-assigns one variable at a time, interleaved with
solving a sub-MILP problem to compute a new solution. This method shows a significant improvement
over SCIP (a popular MILP solver) on both large-scale real-world application datasets and MIPLIB. The
cutting plane technique is often integrated into the branch-and-bound method to improve efficiency. Some
works have sought to use deep learning to select cutting planes. For example, Tang et al. [112] introduced
a Markov decision process (MDP) formulation for the problem of sequentially selecting cutting planes for
MILP, and trained an RL agent using evolutionary strategies. Inspired by the observation that a greedy
selection rule looking ahead to select cuts that yield the best bound improvement delivers strong decisions
for cut selection, Paulus et al. [90] proposed NeuralCut for imitation learning on the lookahead expert.
Recently, Wang et al. [124] found that the order of selected cuts significantly impacts the efficiency
of solving MILPs. Therefore, they proposed a novel hierarchical sequence model to learn policies by
selecting an ordered subset via reinforcement learning. This method greatly improves the efficiency of
solving MILPs compared with human-designed and learning-based baselines on both synthetic and large-
scale real-world MILPs. For a more comprehensive discussion of the deep learning-based MILP solver,
please refer to the reviews [42,137].

3 Discussions and future directions
In the previous section, we have discussed how three different learning paradigms can address COPs.
Specifically, end-to-end methods based on supervised learning exhibit significantly faster solving speeds
than traditional operations research methods. Once the model is trained, it can rapidly solve problems



Tao P et al. Sci China Math October 2025 Vol. 68 No. 10 2531

of the same type through inference. However, these methods require a large number of samples that have
already been solved with high quality to serve as a training set. Moreover, the quality of solving depends
significantly on the training set, making it challenging for them to outperform traditional methods,
especially in large-scale scenarios [134]. End-to-end methods based on reinforcement learning can avoid
dependence on high-quality training sets and exhibit stronger generalization capabilities. However, the
training speed is noticeably slower than that of methods based on supervised learning. End-to-end
methods based on unsupervised learning can solve large-scale COPs. However, with the exception of
a few cases of self-imitation learning [106], they can only solve one instance at a time, requiring a
new training process for each given instance. Consequently, it is currently challenging to extend these
methods to online optimization scenarios [44]. In addition to end-to-end methods, recently, there has been
a focus on improving local search methods using deep reinforcement learning. These methods replace
manually designed rules with learned search rules, resulting in strong optimization performance that in
some scenarios, even surpasses that of professional solvers. However, it is crucial to note that the vast
majority of them are heuristics, and their computational efficiencies are still usually much lower than
supervised learning-based methods. Finally, directly using LLMs to generate solutions for COPs is not a
suitable choice. On the contrary, utilizing LLMs to generate programs or functions has not only achieved
significantly better performance but also demonstrated good interpretability. In conclusion, although
there has been some progress in using LLMs and prompt learning to solve COPs, the overall field is
still in its early stages [30]. For some classic COPs, these methods still have a noticeable performance
gap compared with deep learning approaches based on traditional operations research. Deep integration
with existing SOTA methods and automatic prompt optimization may bring brighter prospects to this
field. In summary, current methods based entirely on deep learning (i.e., not relying on existing solvers
at all) cannot achieve both computational efficiency and quality simultaneously higher than traditional
operations research methods. In practical applications, a trade-off between speed and quality needs to
be considered [73].

Through analyzing existing methods, it is evident that the choice of network models significantly
influences optimization performance. For COPs where the order of nodes holds significance, such as
the TSP and VRP, models based on attention mechanisms, like Transformer, often exhibit promising
results [55, 86]. In contrast, for COPs where the order of nodes is irrelevant, such as the MC and MIS,
graph neural networks are more commonly used [18, 69]. However, these two network models are not
mutually exclusive, and some studies combining them have achieved favorable results [24,76].

It is worth noting that deep learning-based combinatorial optimization methods have been developed
for less than 10 years. In the early stages, these methods could only solve very small instances, such
as the TSP with fewer than 100 cities [5, 121]. Moreover, both in terms of solving speed and solution
quality, they fell far behind professional solvers. Subsequently, numerous efforts have been made to
extend these methods to larger and more complex datasets and enhance solving speed using various
approaches [23, 55]. Recent works have further focused on the generalization performance of these
methods [68, 75, 105]. Although, currently, deep learning-based combinatorial optimization methods
cannot yet replace professional solvers in many practical scenarios, considering that these professional
solvers have undergone lengthy development and optimization, the progress achieved by deep learning-
based combinatorial optimization methods is significant. We can anticipate the emergence of more
universal and practical methods in this active research field in the foreseeable future.

Finally, while deep learning-based combinatorial optimization methods have achieved results surpassing
professional solvers in some scenarios, overall, they are still in the early stages of development. This is
especially true in the following aspects, where there is significant room for improvement.

(1) For end-to-end methods, the choice of the network model significantly influences optimization
performance. For example, the multi-head attention layer in Transformer compared with the regular
attention layer in Prt-Net, or GraphSAGE [35] compared with GCN. Therefore, designing more efficient
network models tailored to different COPs is a crucial research direction.

(2) For deep learning-based local search methods, although they have achieved good optimization
results, they are fundamentally search methods, and their solving speed is still much slower than end-to-



2532 Tao P et al. Sci China Math October 2025 Vol. 68 No. 10

end methods. Therefore, improving the efficiency of their search is a crucial issue for such methods.
(3) Currently, there is relatively less research on unsupervised learning. The main issue is that each

problem requires resolving, and it remains unknown whether there exists a more efficient algorithm to
overcome this limitation.

(4) Most learning algorithms for neural networks are based on gradient dynamics, such as REINFORCE
in reinforcement learning and Adam in supervised learning. However, learning algorithms based on
gradient dynamics are prone to getting stuck in local optima. A recent research has proposed a learning
algorithm inspired by the chaotic dynamics in the brain [113]. Introducing this chaotic learning algorithm
into the training process to solve COPs is a promising avenue worth exploring.

(5) Most deep learning-based methods are designed for static, single-objective and unconstrained COPs.
Exploring how to leverage deep learning to solve practical applications involving dynamic, multi-objective
and constrained COPs is an important direction for future research [63,64,139].

(6) Quantum approximate optimization algorithms (QAQAs) have shown tremendous potential in
solving combinatorial optimization problems, such as coherent Ising machines [28, 34, 81]. Combining
deep learning methods with QAQA is also a promising direction worthy of in-depth research.

(7) Through prompt engineering, LLMs have the potential to offer superior solutions or programs for
COPs, and preliminary progress has already been made. Consequently, the application of automatic
prompt optimization [131] and the integration of SOTA methods hold great promise for tackling larger-
scale and more intricate COPs.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos.
T2350003, 31930022, 12131020 and T2341007), the National Basic Research Program of China (Grant No.
2022YFA1004800) and Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.
XDB38040400).

References
1 Abe K, Xu Z, Sato I, et al. Solving NP-hard problems on graphs with extended AlphaGo zero. arXiv:190511623,

2019
2 Aihara K, Takabe T, Toyoda M. Chaotic neural networks. Phys Lett A, 1990, 144: 333–340
3 Applegate D, Bixby R, Chvatal V, et al. Certification of an optimal TSP tour through 85,900 cities. Oper Res Lett,

2009, 37: 11–15
4 Barrett T, Clements W, Foerster J, et al. Exploratory combinatorial optimization with reinforcement learning. In:

Proceedings of the 34th AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence, vol.
34. Palo Alto: AAAI Press, 2020, 3251–3258

5 Bello I, Pham H, Le Q V, et al. Neural combinatorial optimization with reinforcement learning. arXiv:1611.09940,
2016

6 Bengio Y, Lodi A, Prouvost A. Machine learning for combinatorial optimization: A methodological tour d‘horizon.
European J Oper Res, 2021, 290: 405–421

7 Bertsekas D. Dynamic Programming and Optimal Control: Volume I. Belmont: Athena Sci, 2012
8 Bi J, Ma Y, Wang J, et al. Learning generalizable models for vehicle routing problems via knowledge distillation.

In: Proceedings of the 36th Conference on Neural Information Processing Systems. Advances in Neural Information
Processing Systems, vol. 35. La Jolla: NIPS, 2022, 31226–31238

9 Cai Q, Hang W, Mirhoseini A, et al. Reinforcement learning driven heuristic optimization. arXiv:190606639, 2019
10 Chen L, Aihara K. Chaotic simulated annealing by a neural network model with transient chaos. Neural Netw, 1995,

8: 915–930
11 Chen L, Aihara K. Chaos and asymptotical stability in discrete-time neural networks. Phys D, 1997, 104: 286–325
12 Chen L, Aihara K. Global searching ability of chaotic neural networks. IEEE Trans Circuits Syst I Regul Pap, 1999,

46: 974–993
13 Chen P, Liu R, Aihara K, et al. Autoreservoir computing for multistep ahead prediction based on the spatiotemporal

information transformation. Nat Commun, 2020, 11: 4568
14 Chen X, Tian Y. Learning to perform local rewriting for combinatorial optimization. In: Proceedings of the 33rd

International Conference on Neural Information Processing Systems. Advances in Neural Information Processing
Systems, vol. 32. La Jolla: NIPS, 2019, 6281–6292

15 Cheng H, Zheng H, Cong Y, et al. Select and optimize: Learning to solve large-scale TSP instances. In: Proceedings



Tao P et al. Sci China Math October 2025 Vol. 68 No. 10 2533

of Machine Learning Research. International Conference on Artificial Intelligence and Statistics, vol. 206. San Diego:
JMLR, 2023, 1219–1231

16 Choo J, Kwon Y-D, Kim J, et al. Simulation-guided beam search for neural combinatorial optimization. In:
Proceedings of the 36th Conference on Neural Information Processing Systems. Advances in Neural Information
Processing Systems, vol. 35. La Jolla: NIPS, 2022, 8760–8772

17 da Costa P R, Rhuggenaath J, Zhang Y, et al. Learning 2-opt heuristics for the traveling salesman problem via deep
reinforcement learning. In: Proceedings of Machine Learning Research. Asian Conference on Machine Learning, vol.
129. San Diego: JMLR, 2020, 465–480

18 Dai H, Khalil E, Zhang Y, et al. Learning combinatorial optimization algorithms over graphs. In: Proceedings of
the 31st Annual Conference on Neural Information Processing Systems. Advances in Neural Information Processing
Systems, vol. 30. La Jolla: NIPS, 2017, 1–11

19 Deudon M, Cournut P, Lacoste A, et al. Learning heuristics for the TSP by policy gradient. In: Proceedings of the
15th International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations
Research. Lecture Notes in Computer Science, vol. 10848. Berlin: Springer-Verlag, 2018, 170–181

20 Ding J-Y, Zhang C, Shen L, et al. Accelerating primal solution findings for mixed integer programs based on solution
prediction. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial
Intelligence, vol. 34. Palo Alto: AAAI Press, 2020, 1452–1459

21 Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE Comput Intell Mag, 2006, 1: 28–39
22 Feng L, Huang Y, Zhou L, et al. Explicit evolutionary multitasking for combinatorial optimization: A case study on

capacitated vehicle routing problem. IEEE Trans Cybern, 2021, 51: 3143–3156
23 Fu Z-H, Qiu K-B, Zha H. Generalize a small pre-trained model to arbitrarily large TSP instances. In: Proceedings of

the 35th AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence, vol. 35. Palo Alto:
AAAI Press, 2021, 7474–7482

24 Gao L, Chen M, Chen Q, et al. Learn to design the heuristics for vehicle routing problem. arXiv:200208539, 2020
25 Gasse M, Chételat D, Ferroni N, et al. Exact combinatorial optimization with graph convolutional neural networks.

In: Proceedings of the 33rd Conference on Neural Information Processing Systems. Advances in Neural Information
Processing Systems, vol. 32. La Jolla: NIPS, 2019, 1–12

26 Glover F, Laguna M. Tabu Search. New York: Springer, 1998
27 Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT press, 2016
28 Goto H, Endo K, Suzuki M, et al. High-performance combinatorial optimization based on classical mechanics. Sci

Adv, 2021, 7: eabe7953
29 Graikos A, Malkin N, Jojic N, et al. Diffusion models as plug-and-play priors. In: Proceedings of the 36th Conference

on Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 35. La Jolla:
NIPS, 2022, 14715–14728

30 Guo P-F, Chen Y-H, Tsai Y-D, et al. Towards optimizing with large language models. arXiv:231005204, 2023
31 Guo T, Han C, Tang S, et al. Solving combinatorial problems with machine learning methods. In: Nonlinear

Combinatorial Optimization. Springer Optimization and Its Applications, vol. 147. Cham: Springer, 2019, 207–229
32 Guo W, Zhen H-L, Li X, et al. Machine learning methods in solving the Boolean satisfiability problem. Mach Intell

Res, 2023, 20: 640–655
33 Gupta P, Gasse M, Khalil E, et al. Hybrid models for learning to branch. In: Proceedings of the 34th Conference

on Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 33. La Jolla:
NIPS, 2020, 18087–18097

34 Hamerly R, Inagaki T, McMahon P L, et al. Experimental investigation of performance differences between coherent
Ising machines and a quantum annealer. Sci Adv, 2019, 5: eaau0823

35 Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. In: Proceedings of the 31st
Annual Conference on Neural Information Processing Systems. Advances in neural information processing systems,
vol. 30. La Jolla: NIPS, 2017, 1025–1035

36 Helsgaun K. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling salesman and vehicle
routing problems. Technical Report. Roskilde: Roskilde University, 2017

37 Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. In: Advances in Neural Information Processing
Systems, vol. 33. La Jolla: NIPS, 2020, 6840–6851

38 Hopfield J J, Tank D W. “Neural” computation of decisions in optimization problems. Biol Cybernet, 1985, 52:
141–152

39 Hospedales T, Antoniou A, Micaelli P, et al. Meta-learning in neural networks: A survey. IEEE Trans Pattern Anal
Mach Intell, 2021, 44: 5149–5169

40 Hottung A, Kwon Y-D, Tierney K. Efficient active search for combinatorial optimization problems. arXiv:2106.05126,
2021

41 Hou Q, Yang J, Su Y, et al. Generalize learned heuristics to solve large-scale vehicle routing problems in real-time.



2534 Tao P et al. Sci China Math October 2025 Vol. 68 No. 10

In: The Eleventh International Conference on Learning Representations, https://openreview.net/pdf/1360725553e9
aebf2b149f234ac6d83c46a077d4.pdf, 2023

42 Huang L, Chen X, Huo W, et al. Branch and bound in mixed integer linear programming problems: A survey of
techniques and trends. arXiv:211106257, 2021

43 Hudson B, Li Q, Malencia M, et al. Graph neural network guided local search for the traveling salesperson problem.
arXiv:2110.05291, 2021

44 James J, Yu W, Gu J. Online vehicle routing with neural combinatorial optimization and deep reinforcement learning.
IEEE Trans Intell Transp Syst, 2019, 20: 3806–3817

45 Jiang Y, Wu Y, Cao Z, et al. Learning to solve routing problems via distributionally robust optimization. In:
Proceedings of the 36th AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence, vol.
36. Palo Alto: AAAI Press, 2022, 9786–9794

46 Joshi C K, Cappart Q, Rousseau L-M, et al. Learning the travelling salesperson problem requires rethinking
generalization. Constraints, 2022, 27: 70–98

47 Joshi C K, Laurent T, Bresson X. On learning paradigms for the travelling salesman problem. arXiv:191007210, 2019
48 Joshi C K, Laurent T, Bresson X. An efficient graph convolutional network technique for the travelling salesman

problem. arXiv:190601227, 2019
49 Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the IEEE International Conferences on

Neural Networks, vol. 4. New York: IEEE, 1995, 1942–1948
50 Kim M, Park J. Learning collaborative policies to solve NP-hard routing problems. In: Proceedings of the 35th

Annual Conference on Neural Information Processing Systems. Advances in Neural Information Processing Systems,
vol. 34. La Jolla: NIPS, 2021, 10418–10430

51 Kim M, Park J, Park J. Sym-NCO: Leveraging symmetricity for neural combinatorial optimization. In: Proceedings of
the 36th Conference on Neural Information Processing Systems� Advances in Neural Information Processing Systems,
vol. 35. La Jolla: NIPS, 2022, 1936–1949

52 Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014
53 Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907, 2016
54 Kirkpatrick S, Gelatt C D Jr, Vecchi M P. Optimization by simulated annealing. Science, 1983, 220: 671–680
55 Kool W, Van Hoof H, Welling M. Attention, learn to solve routing problems! arXiv:1803.08475, 2018
56 Korte B H, Vygen J, Korte B, et al. Combinatorial Optimization. New York: Springer, 2011
57 Kurin V, Godil S, Whiteson S, et al. Can q-learning with graph networks learn a generalizable branching heuristic

for a SAT solver? In: Proceedings of the 34th Conference on Neural Information Processing Systems. Advances in
Neural Information Processing Systems, vol. 33. La Jolla: NIPS, 2020, 9608–9621

58 Kwon Y-D, Choo J, Kim B, et al. POMO: Policy optimization with multiple optima for reinforcement learning.
In: Proceedings of the 34th Conference on Neural Information Processing Systems. Advances in Neural Information
Processing Systems, vol. 33. La Jolla: NIPS, 2020, 21188–21198

59 Lawler E L, Wood D E. Branch-and-bound methods: A survey. Oper Res, 1966, 14: 699–719
60 Lechner M, Hasani R, Amini A, et al. Neural circuit policies enabling auditable autonomy. Nat Mach Intell, 2020, 2:

642–652
61 Lemos H, Prates M, Avelar P, et al. Graph colouring meets deep learning: Effective graph neural network models

for combinatorial problems. In: Proceedings of the IEEE 31st International Conference on Tools with Artificial
Intelligence. Los Alamitos: IEEE, 2019: 879–885

62 Leppek K, Byeon G W, Kladwang W, et al. Combinatorial optimization of mRNA structure, stability, and translation
for RNA-based therapeutics. Nat Commun, 2022, 13: 1536

63 Li J, Ma Y, Gao R, et al. Deep reinforcement learning for solving the heterogeneous capacitated vehicle routing
problem. IEEE Trans Cybern, 2021, 52: 13572–13585

64 Li K, Zhang T, Wang R. Deep reinforcement learning for multiobjective optimization. IEEE Trans Cybern, 2020, 51:
3103–3114

65 Li K, Zhang T, Wang R, et al. Research reviews of combinatorial optimization methods based on deep reinforcement
learning. Acta Autom Sin, 2021, 47: 2521–2537

66 Li S, Yan Z, Wu C. Learning to delegate for large-scale vehicle routing. In: Proceedings of the 35th Annual Conference
on Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 34. La Jolla:
NIPS, 2021, 26198–26211

67 Li W, Li R, Ma Y, et al. Rethinking graph neural networks for the graph coloring problem. arXiv:220806975, 2022
68 Li Y, Guo J, Wang R, et al. T2T: From distribution learning in training to gradient search in testing for combinatorial

optimization. In: Proceedings of the 37th Conference on Neural Information Processing Systems. Advances in Neural
Information Processing Systems. La Jolla: NIPS, https://github.com/Thinklab-SJTU/T2TCO, 2023

69 Li Z, Chen Q, Koltun V. Combinatorial optimization with graph convolutional networks and guided tree search. In:
Proceedings of the 32nd Conference on Neural Information Processing Systems. Advances in Neural Information



Tao P et al. Sci China Math October 2025 Vol. 68 No. 10 2535

Processing Systems, vol. 31. La Jolla: NIPS, 2018, 537–546
70 Li Z, Si X. NSNet: A general neural probabilistic framework for satisfiability problems. In: Proceedings of the 36th

Conference on Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 35.
La Jolla: NIPS, 2022, 25573–25585

71 Liu F, Tong X, Yuan M, et al. Algorithm evolution using large language model. arXiv:231115249, 2023
72 Liu S, Chen C, Qu X, et al. Large language models as evolutionary optimizers. arXiv:231019046, 2023
73 Liu S, Zhang Y, Tang K, et al. How good is neural combinatorial optimization? A systematic evaluation on the

traveling salesman problem. IEEE Comput Intell Mag, 2023, 18: 14–28
74 Lu H, Zhang X, Yang S. A learning-based iterative method for solving vehicle routing problems. In: International

Conference on Learning Representations, https://openreview.net/attachment?id=BJe1334YDH&name=original pdf,
2019

75 Luo F, Lin X, Liu F, et al. Neural combinatorial optimization with heavy decoder: Toward large scale generalization.
In: Proceedings of the 37th Conference on Neural Information Processing Systems. Advances in Neural Information
Processing Systems, vol. 36. La Jolla: NIPS, 2023, 8845–8864

76 Ma Q, Ge S, He D, et al. Combinatorial optimization by graph pointer networks and hierarchical reinforcement
learning. arXiv:191104936, 2019

77 Ma Y, Li J, Cao Z, et al. Learning to iteratively solve routing problems with dual-aspect collaborative transformer.
In: Proceedings of the 35th Annual Conference on Neural Information Processing Systems. Advances in Neural
Information Processing Systems, vol. 34. La Jolla: NIPS, 2021, 11096–11107

78 Manchanda S, Mittal A, Dhawan A, et al. Learning heuristics over large graphs via deep reinforcement learning. In:
Advances in Neural Information Processing Systems. La Jolla: NIPS, arXiv:1903.03332, 2020

79 Matsumoto G, Aihara K, Hanyu Y, et al. Chaos and phase locking in normal squid axons. Phys Lett A, 1987, 123:
162–166

80 Mazyavkina N, Sviridov S, Ivanov S, et al. Reinforcement learning for combinatorial optimization: A survey. Comput
Oper Res, 2021, 134: 105400

81 McMahon P L, Marandi A, Haribara Y, et al. A fully programmable 100-spin coherent Ising machine with all-to-all
connections. Science, 2016, 354: 614–617

82 Mitchell M. An Introduction to Genetic Algorithms. Cambridge: MIT press, 1998
83 Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature, 2015,

518: 529–533
84 Nair V, Bartunov S, Gimeno F, et al. Solving mixed integer programs using neural networks. arXiv:201213349, 2020
85 Naseri G, Koffas M A. Application of combinatorial optimization strategies in synthetic biology. Nat Commun, 2020,

11: 2446
86 Nazari M, Oroojlooy A, Snyder L, et al. Reinforcement learning for solving the vehicle routing problem. In:

Proceedings of the 32nd Conference on Neural Information Processing Systems. Advances in Neural Information
Processing Systems, vol. 31. La Jolla: NIPS, arXiv:1802.04240, 2018

87 Nowak A, Villar S, Bandeira A S, et al. A note on learning algorithms for quadratic assignment with graph neural
networks. Stat, 2017, 1050: 22

88 Optimization G. Gurobi optimizer reference manual. https://docs.gurobi.com/current/#refman/index.html,aufgeru
fen%20am%2027.10.20202020, 2020

89 Pan X, Jin Y, Ding Y, et al. H-TSP: Hierarchically solving the large-scale traveling salesman problem. In: Proceedings
of the 37th AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence, vol. 37. Palo
Alto: AAAI Press, 2023, 9345–9353

90 Paulus M B, Zarpellon G, Krause A, et al. Learning to cut by looking ahead: Cutting plane selection via imitation
learning. In: Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 162. San Diego: JMLR, 2022, 17584–17600

91 Peng H, Chen P, Yang N, et al. One-core neuron deep learning for time series prediction. Nat Sci Rev, 2025, 12:
nwae441

92 Popel M, Tomkova M, Tomek J, et al. Transforming machine translation: A deep learning system reaches news
translation quality comparable to human professionals. Nat Commun, 2020, 11: 4381

93 Prates M, Avelar P H C, Lemos H, et al. Learning to solve NP-complete problems: A graph neural network for
decision TSP. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial
Intelligence, vol. 33. Palo Alto: AAAI Press, 2019, 4731–4738

94 Qiu R, Sun Z, Yang Y. Dimes: A differentiable meta solver for combinatorial optimization problems. In: Proceedings
of the 36th Conference on Neural Information Processing Systems. Advances in Neural Information Processing
Systems, vol. 35. La Jolla: NIPS, 2022, 25531–25546

95 Ribeiro A H, Ribeiro M H, Paixão G M M, et al. Automatic diagnosis of the 12-lead ECG using a deep neural
network. Nat Commun, 2020, 11: 1760



2536 Tao P et al. Sci China Math October 2025 Vol. 68 No. 10

96 Romera-Paredes B, Barekatain M, Novikov A, et al. Mathematical discoveries from program search with large
language models. Nature, 2024, 625: 468–475

97 Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323:
533–536

98 Schuetz M J A, Brubaker J K, Katzgraber H G. Combinatorial optimization with physics-inspired graph neural
networks. Nat Mach Intell, 2022, 4: 367–377

99 Schuetz M J A, Brubaker J K, Zhu Z, et al. Graph coloring with physics-inspired graph neural networks. Phy Rev
Res, 2022, 4: 043131

100 Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms. arXiv:170706347, 2017
101 Selsam D, Lamm M, Bünz B, et al. Learning a SAT solver from single-bit supervision. arXiv:1802.03685, 2018
102 Senior A W, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning.

Nature, 2020, 577: 706–710
103 Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge. Nature, 2017,

550: 354–359
104 Skarda C A, Freeman W J. How brains make chaos in order to make sense of the world. Behav Brain Sci, 1987, 10:

161–173
105 Son J, Kim M, Kim H, et al. Meta-sage: Scale meta-learning scheduled adaptation with guided exploration for

mitigating scale shift on combinatorial optimization. In: Proceedings of the 40th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 202. San Diego: JMLR, 2023, 32194–32210

106 Song J, Lanka R, Zhao A, et al. Learning to search via self-imitation with application to risk-aware planning. In:
Advances in Neural Information Processing Systems. La Jolla: NIPS, arXiv:1804.00846, 2017

107 Sun Z, Yang Y. Difusco: Graph-based diffusion solvers for combinatorial optimization. In: Proceedings of the 37th
Conference on Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 36.
La Jolla: NIPS, 2023, 3706–3731

108 Sutskever I, Martens J, Dahl G, et al. On the importance of initialization and momentum in deep learning. In:
Proceedings of the 30th International Conference on International Conference on Machine Learning. International
Conference on Machine Learning, vol. 28. San Diego: JMLR, 2013, 1139–1147

109 Sutton R S. Generalization in reinforcement learning: Successful examples using sparse coarse coding. In: Proceedings
of the 9th Annual Conference on Neural Information Processing Systems. Advances in Neural Information Processing
Systems, vol. 8. Cambridge: MIT Press, 1996, 1038–1044

110 Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge: MIT Press, 2018
111 Sutton R S, McAllester D, Singh S, et al. Policy gradient methods for reinforcement learning with function

approximation. In: Proceedings of the 13th Annual Conference on Neural Information Processing Systems. Advances
in Neural Information Processing Systems, vol. 12. Cambridge: MIT Press, 1999, 1057–1063

112 Tang Y, Agrawal S, Faenza Y. Reinforcement learning for integer programming: Learning to cut. In: International
Conference on Machine Learning, San Diego: JMLR, 2020, 9367–9376

113 Tao P, Cheng J, Chen L. Brain-inspired chaotic backpropagation for MLP. Neural Netw, 2022, 155: 1–13
114 Tao P, Aihara K, Chen L. Brain-inspired chaotic graph backpropagation for large-scale combinatorial optimization.

arXiv:2412.09860, 2024
115 Theodoris C V, Xiao L, Chopra A, et al. Transfer learning enables predictions in network biology. Nature, 2023, 618:

616–624
116 Toenshoff J, Ritzert M, Wolf H, et al. Graph neural networks for maximum constraint satisfaction. Front Artif Intell,

2021, 3: 580607
117 Tokuda I, Aihara K, Nagashima T. Adaptive annealing for chaotic optimization. Phys Rev E, 1998, 58: 5157
118 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proceedings of the 31st Annual Conference

on Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 30. La Jolla:
NIPS, 2017, 5998–6008

119 Vazirani V V. Approximation Algorithms. New York: Springer, 2001
120 Vesselinova N, Steinert R, Perez-Ramirez D F, et al. Learning combinatorial optimization on graphs: A survey with

applications to networking. IEEE Access, 2020, 8: 120388–120416
121 Vinyals O, Fortunato M, Jaitly N. Pointer networks. In: Proceedings of the 29th Annual Conference on Neural

Information Processing Systems. Advances in Neural Information Processing Systems, vol. 28. La Jolla: NIPS, 2015,
2692–2700

122 Wang L, Li S, Tian F, et al. A noisy chaotic neural network for solving combinatorial optimization problems:
Stochastic chaotic simulated annealing. IEEE Trans Syst Man Cybern Part B-Cybern, 2004, 34: 2119–2125

123 Wang Q, Lai K H, Tang C. Solving combinatorial optimization problems over graphs with BERT-based deep
reinforcement learning. Inform Sci, 2023, 619: 930–946

124 Wang Z, Li X, Wang J, et al. Learning cut selection for mixed-integer linear programming via hierarchical sequence



Tao P et al. Sci China Math October 2025 Vol. 68 No. 10 2537

model. arXiv:230200244, 2023
125 Wang Z, Tao P, Chen L. Brain-inspired chaotic spiking backpropagation. Nat Sci Rev, 2024, 11: nwae037
126 Williams R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach Learn,

1992, 8: 229–256
127 Williamson D P, Shmoys D B. The Design of Approximation Algorithms. Cambridge: Cambridge Univ Press, 2011
128 Wu Y, Song W, Cao Z, et al. Learning improvement heuristics for solving routing problems. IEEE Trans Neural

Netw Learn Syst, 2021, 33: 5057–5069
129 Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn

Syst, 2020, 32: 4–24
130 Xin L, Song W, Cao Z, et al. Neurolkh: Combining deep learning model with Lin-Kernighan-Helsgaun heuristic for

solving the traveling salesman problem. In: Proceedings of the 35th Conference on Neural Information Processing
Systems. Advances in Neural Information Processing Systems, vol. 34. La Jolla: NIPS, 2021, 7472–7483

131 Yang C, Wang X, Lu Y, et al. Large language models as optimizers. arXiv:230903409, 2023
132 Yao W, Bandeira A S, Villar S. Experimental performance of graph neural networks on random instances of max-cut.

In: Wavelets and Sparsity XVIII, vol. 11138. Bellingham: SPIE-INT Soc Optical Engineering, 2019, 242–251
133 Ye H, Wang J, Cao Z, et al. DeepACO: Neural-enhanced ant systems for combinatorial optimization. In: Proceedings

of the 37th Conference on Neural Information Processing Systems. Advances in Neural Information Processing Sys-
tems, vol. 36. La Jolla: NIPS, https://proceedings.neurips.cc/paper files/paper/2023/hash/883105b282fe15275991
b411e6b200c5-Abstract-Conference.html, 2023

134 Yehuda G, Gabel M, Schuster A. It’s not what machines can learn, it’s what we cannot teach. In: International
Conference on Machine Learning. Ann Arbor: PMLR, 2020, 10831–10841

135 Yolcu E, Póczos B. Learning local search heuristics for Boolean satisfiability. In: Proceedings of the 33rd Conference
on Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 32. La Jolla:
NIPS, https://proceedings.neurips.cc/paper/2019/hash/12e59a33dea1bf0630f46edfe13d6ea2-Abstract.html, 2019

136 Zhang C, Wu Y, Ma Y, et al. A review on learning to solve combinatorial optimisation problems in manufacturing.
IET CIM, 2023, 5: e12072

137 Zhang J, Liu C, Li X, et al. A survey for solving mixed integer programming via machine learning. Neurocomputing,
2023, 519: 205–217

138 Zhang W, Sun Z, Zhu Q, et al. NLocalSAT: Boosting local search with solution prediction. In: Proceedings of the
29th International Joint Conference on Artificial Intelligence. Freiburg: IJCAI-INT Joint Conf Artif Intell, 2020,
1177–1183

139 Zhang Z, Wu Z, Zhang H, et al. Meta-learning-based deep reinforcement learning for multiobjective optimization
problems. IEEE Trans Neural Netw Learn Syst, 2023, 34: 7978–7991

140 Zheng J, He K, Zhou J, et al. Combining reinforcement learning with Lin-Kernighan-Helsgaun algorithm for the
traveling salesman problem. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. AAAI Conference
on Artificial Intelligence, vol. 35. Palo Alto: AAAI Press, 2021, 12445–12452

141 Zhou J, Wu Y, Song W, et al. Towards omni-generalizable neural methods for vehicle routing problems. In:
Proceedings of the 40th International Conference on Machine Learning. Proceedings of Machine Learning Research,
vol. 202. San Diego: JMLR, 2023, 42769–42789

142 Zhou T, Niu P, Wang X, et al. One fits all: Power general time series analysis by pretrained LM. In: Proceedings of
the 37th Conference on Neural Information Processing Systems. Advances in Neural Information Processing Systems,
vol. 36. La Jolla: NIPS, arXiv:230211939, 2023


	Introduction
	Deep learning methods for combinatorial optimization
	The traveling salesman problem (TSP)
	The Hopfield neural network (HNN)
	The pointer network (Ptr-Net)
	The graph neural network
	Transformer
	The large language model (LLM)

	The vehicle routing problem (VRP)
	The maximal independent set (MIS)
	Maximum cut (MCut)
	Minimal vertex cover (MVC)
	Graph coloring (GC)
	Satisfiability (SAT)
	Mixed integer linear programming (MILP)

	Discussions and future directions

