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Abstract This paper develops a fast Laplace transform method for solving the complex PDE system arising

from Parisian and Parasian option pricing. The value functions of the options are governed by a system of

partial differential equations (PDEs) of two and three dimensions. Applying the Laplace transform to the PDEs

with respect to the calendar time to maturity leads to a coupled system consisting of an ordinary differential

equation (ODE) and a 2-dimensional partial differential equation (2d-PDE). The solution to this ODE is found

analytically on a specific parabola contour that is used in the fast Laplace inversion, whereas the solution to

the 2d-PDE is approximated by solving 1-dimensional integro-differential equations. The Laplace inversion is

realized by the fast contour integral methods. Numerical results confirm that the Laplace transform methods

have the exponential convergence rates and are more efficient than the implicit finite difference methods, Monte

Carlo methods and moving window methods.
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1 Introduction

Parisian and Parasian options are two special kinds of barrier options for which the knock-in or knock-out

feature is only activated if the underlying remains continually in breach of the barrier S̄ for a pre-specified

time period T̄ . In Parisian and Parasian option pricing systems there is a separate “clock” set up to

record the total time, denoted by ξ, in which the underlying has passed the barrier S̄. How the clock is

reset is the main difference between Parisian and Parasian options. If the “clock” is reset to zero at each

time the underlying price crosses the barrier, we refer to it as a continuous Parisian option, or simply

Parisian option. If one adds the time spent below or above the barrier without resetting the accumulated

time to zero each time the underlying crosses the barrier, we refer to it as a cumulative-Parisian option,

or simply Parasian option.
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In this paper, we study the Parisian and Parasian options only on the up-and-out call with the strike

price K and maturity T . It will be straightforward to extend the studies to the up-and-in call, down-

and-out call, down-and-in call, and the corresponding put options. Under the risk-neutral measure, the

stock price St̃ is assumed to follow the geometric Brownian motion

dSt̃ = (r − δ)St̃dt̃+ σSt̃dWt̃,

whereWt̃ is the standard Brownian motion with respect to the calendar time t̃, σ > 0 the volatility, r > 0

the risk-free interest rate and δ > 0 the continuous dividend rate. For the case of an up-and-out barrier,

the “clock” time ξ is defined by {
ξ = 0, dξ = 0, S 6 S̄,

dξ = dt̃, S > S̄,

where S̄ is the pre-set barrier of the underlying price. The prices of Parisian and Parasian options depend

on the underlying price S, the time to maturity t (i.e., t = T − t̃ with T representing the expiry time

and t̃ the current time) and the barrier time ξ.

Let

x = log(S/S̄), x̄ = log(S̄/S̄) = 0

and T̄ be the pre-specified trigger time. The domains Ω1 and Ω2 are defined as

Ω1 := {(t, x) | T̄ < t 6 T, −∞ < x < x̄},
Ω2 := {(t, x, ξ) | T̄ − ξ < t 6 T, 0 6 ξ < T̄ , x̄ < x <∞}.

As shown in Figure 1, the region Ω1 refers to the plane QKEX and Ω2 the cuboid KGME-DLBJ. For

(t, x) ∈ Ω1, the value function V1(t, x) of the Parisian option is governed by a 2-dimensional PDE. In this

case, the barrier time keeps ξ = 0. For the other case where (t, x, ξ) ∈ Ω2, the value function V2(t, x, ξ)

of the Parisian option price is governed by a 3d-PDE. The main difficulty of solving the problem is that

the coupled PDEs have different dimensions and the connection conditions are very complicated. To be

more precise, the PDEs for pricing the Parisian option are given by (see [14])
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Figure 1 (Color online) Pricing domain of the Parisian up-and-out option
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

∂V1
∂t

= AV1, (t, x) ∈ Ω1,

V1(t, x) = VBS(t, S̄e
x), 0 6 t 6 T̄ , −∞ < x < x̄,

V1(t, x̄) = V2(t, x̄, 0), T̄ < t 6 T,

lim
x↑x̄

∂V1(t, x)

∂x
= lim

x↓x̄

∂V2(t, x, 0)

∂x
, T̄ < t 6 T,

lim
x↓−∞

V1(t, x) = 0, T̄ < t 6 T

(1.1)

and 

∂V2
∂t

=
∂V2
∂ξ

+AV2, (t, x, ξ) ∈ Ω2,

V2(T̄ − ξ, x, ξ) = VBS(T̄ − ξ, S̄ex), ξ ∈ [0, T̄ ), x̄ < x <∞,

V2(t, x̄, ξ) = V2(t, x̄, 0) = V1(t, x̄), T̄ < t 6 T, 0 6 ξ < T̄ ,

lim
x↓x̄

∂V2(t, x, 0)

∂x
= lim

x↑x̄

∂V1(t, x)

∂x
, T̄ < t 6 T,

V2(t, x, T̄ ) = 0, 0 < t 6 T, x̄ < x <∞,

lim
x↑∞

V2(t, x, ξ) = 0, T̄ − ξ < t 6 T, 0 6 ξ < T̄ ,

(1.2)

where the linear differential operator is defined by

A =
1

2
σ2 ∂

2

∂x2
+

(
r − δ − 1

2
σ2

)
∂

∂x
− rI,

and I denotes the identity operator. The value of European call option has analytical Black-Scholes

formula

VBS(t, S) = Se−δtN(d+(t, S))− e−rtKN(d−(t, S)),

where

d±(t, S) =
1

σ
√
t

[
log

S

K
+

(
r − δ ± 1

2
σ2

)
t

]
, N(y) =

1√
2π

∫ y

−∞
e−

z2

2 dz.

Contrary to the “resetting” feature of the continuous Parisian options, Parasian options are introduced

with no reset of the “clock” time ξ: the knock-in or knock-out is only activated if the cumulative time

spent beyond or below x̄ exceeds some prescribed time T̄ . According to Zhu and Chen [14], the pricing

domain of the knock-out-call Parasian option is divided into two sub-domains

(t, x, ξ) ∈ Ω̃1 := {(t, x, ξ) | T̄ − ξ < t 6 T, −∞ < x < x̄, 0 6 ξ < T̄},
(t, x, ξ) ∈ Ω̃2 := {(t, x, ξ) | T̄ − ξ < t 6 T, x̄ < x <∞, 0 6 ξ < T̄}.

As shown in Figure 1, the region Ω̃1 refers to the cubic QWIX-EMGK and Ω̃2 the cuboid KGME-DLBJ.

The value functions V1(t, x, ξ) and V2(t, x, ξ) for Parasian options satisfy

∂V1
∂t

= AV1, (t, x, ξ) ∈ Ω̃1,

V1(t, x, T̄ − t) = VBS(t, S̄e
x), 0 6 t 6 T̄ , −∞ < x < x̄,

V1(t, x̄, ξ) = V2(t, x̄, ξ), T̄ < t 6 T, 0 6 ξ < T̄ ,

lim
x↑x̄

∂V1(t, x, ξ)

∂x
= lim

x↓x̄

∂V2(t, x, ξ)

∂x
, T̄ < t 6 T, 0 6 ξ < T̄ ,

V1(t, x, T̄ ) = 0, T̄ < t 6 T, −∞ < x < x̄,

lim
x↓−∞

V1(t, x, ξ) = 0, T̄ < t 6 T, 0 6 ξ < T̄

(1.3)
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and 

∂V2
∂t

=
∂V2
∂ξ

+AV2, (t, x, ξ) ∈ Ω̃2,

V2(t, x, T̄ − t) = VBS(t, S̄e
x), 0 6 t 6 T̄ , x̄ < x <∞,

V2(t, x̄, ξ) = V1(t, x̄, ξ), T̄ < t 6 T, 0 6 ξ < T̄ ,

lim
x↓x̄

∂V2(t, x, ξ)

∂x
= lim

x↑x̄

∂V1(t, x, ξ)

∂x
, T̄ < t 6 T, 0 6 ξ < T̄ ,

V2(t, x, T̄ ) = 0, T̄ < t 6 T, x̄ < x <∞,

lim
x↑∞

V2(t, x, ξ) = 0, T̄ < t 6 T, 0 6 ξ < T̄ .

(1.4)

In the literature, there are three types of valuation methods that are well documented, namely the

quasi-analytic approaches, the Monte Carlo simulation and the numerical PDEs methods. Chesney et

al. [2] and Schröder et al. [8] proposed a quasi-analytic method that expresses the value of a Parisian

option in terms of some four-fold integrals; however the computation of these high-dimensional integrals is

very difficult. Haber et al. [4] proposed two 3d-PDEs for the prices of Parisian and Parasian options, and

then solve these PDEs using the explicit finite difference methods (FDMs). To ensure the computational

stability, it has to require the time step be much smaller than the spatial mesh size, which makes the

computation too costly and inefficient. The Monte Carlo simulation (see, e.g., [1]) is not that efficient

too, as at least 200, 000 stock price paths need to be simulated and tracing the time accumulated in the

“clock” takes vast CPU time. Zhu and Chen [14] presented so-called moving window methods (MWMs)

which greatly raise the computational efficiency for valuating Parisian options, but it is still not that fast

for pricing Parasian options as the analytical formulas are very different for these two kinds of options.

The MWMs are further extended to pricing American-style Parisian options (see [5, 15]).

In this paper, we develop a fast Laplace transform method to solve the coupled 3d-PDEs of Parisian and

Parasian options. The Laplace transform method is regarded as an efficient alternative to the commonly

used time-stepping method for solving PDEs as it has exponential convergence rates. Laplace transform

methods have been applied to the option pricing in the literature, for example, the valuation of regime-

switching option pricing (see [6]), the American option pricing (see [12,13]) and the fractional-order option

pricing (see [11]). This paper further studies the applications to the difficult problems of Parisian and

Parasian option pricing. The main idea is described as follows. The 3d-PDE system is first re-written into

a convenient form and then taking the Laplace transform to the PDE system with respect to the calendar

time to maturity gives a coupled system consisting of an ODE and a 2d-PDE. Since there is “clock” time

and coupling of them, it is not easy to find the solutions to the ODE and 2d-PDE. This paper chooses a

specific contour such that the ODE has an analytical form of the solution and the contour is also used to

the fast Laplace inversion. This technique leads to both the fast computation of the transformed system

of ODEs and PDEs in the Laplace space and the fast contour integral Laplace inversion. Numerical

examples show that the Laplace transform method has exponential convergence rates and is much faster

than the implicit FDMs, Monte Carlo simulations and moving window methods.

The rest of this paper is arranged as follows. In Sections 2 and 3 the Laplace transform methods (LTMs)

are derived to solve the coupled PDEs for Parisian and Parasian options, respectively. In Section 4,

numerical examples are provided to compare the Laplace transform methods with the implicit FDMs,

Monte Carlo simulations and moving window methods. Conclusions are given in Section 5.

2 LTMs for pricing Parisian options

Instead of using directional derivative as in [14], we perform a coordinate transform on the coupled 3d-

PDE systems (1.1) and (1.2), and then obtain the two 2d-PDE systems which are more convenient for

the derivation of the Laplace transform methods. Let

α =
1

σ2

(
σ2

2
+ δ − r

)
, β = − 1

2σ2

(
σ2

2
+ δ − r

)2

− r, η = T̄ − ξ. (2.1)
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Here, the new time η can be interpreted as the remainder of barrier time. For (t, x) ∈ Ω1, let t = τ + T̄

and

eαxW1(τ, x) = V1(t, x). (2.2)

Then
∂V1
∂t

= eαx
∂W1

∂τ
, AV1 = A[eαxW1(τ, x)]. (2.3)

For (t, x, ξ) ∈ Ω2, let t = τ + T̄ − ξ and

eαx+βηW2(τ, x, η) = V2(t, x, ξ). (2.4)

Then 
∂V2
∂t

= eαx+βη ∂W2

∂τ
, AV2 = A[eαx+βηW2(τ, x, η)],

∂V2
∂ξ

= −βeαx+βηW2(τ, x, η) + eαx+βη

[
∂W2

∂τ
− ∂W2

∂η

]
.

(2.5)

Substituting (2.2)–(2.5) into (1.1) and (1.2), we derive the following transformed equations that will be

easier to apply the Laplace transform methods:

∂W1

∂τ
=

1

2
σ2 ∂

2W1

∂x2
+ βW1, 0 < τ <∞, −∞ < x < x̄,

W1(0, x) = e−αxVBS(T̄ , S̄e
x), −∞ < x < x̄,

W1(τ, x̄) = eβT̄W2(τ, x̄, T̄ ), 0 < τ <∞,

lim
x↑x̄

∂W1(τ, x)

∂x
= eβT̄ lim

x↓x̄

∂W2(τ, x, T̄ )

∂x
, 0 < τ <∞,

lim
x↓−∞

eαxW1(τ, x) = 0, 0 < τ <∞

(2.6)

and 

∂W2

∂η
=

1

2
σ2 ∂

2W2

∂x2
, 0 < τ <∞, x̄ < x <∞, 0 < η 6 T̄ ,

W2(0, x, η) = e−αx−βηVBS(η, S̄e
x), x̄ < x <∞, 0 < η 6 T̄ ,

W2(τ, x̄, η) = e−βηW1(τ − T̄ + η, x̄), 0 < τ <∞, x̄ < x <∞,

lim
x↓x̄

∂W2(τ, x, T̄ )

∂x
= e−βT̄ lim

x↑x̄

∂W1(τ, x)

∂x
, 0 < τ <∞, x̄ < x <∞,

lim
x↑+∞

eαx+βηW2(τ, x, η) = 0, 0 < τ <∞, 0 < η 6 T̄ ,

eαxW2(τ, x, 0) = 0, 0 < τ <∞, x̄ < x <∞.

(2.7)

It is noted that eαx̄W1(τ − T̄ + η, x̄) = V1(τ − T̄ + η, x̄) = VBS(τ + η, S̄) is a supplemental definition for

−T̄ 6 τ − T̄ + η < 0. The third equation in (2.7) is derived as

eαx̄+βηW2(τ, x̄, η) = V2(τ + T̄ − ξ, x̄, ξ) = V2((τ − ξ) + T̄ , x̄, 0)

= eαx̄+βηW2(τ − ξ, x̄, T̄ ) = eαx̄W1(τ − ξ, x̄) = eαx̄W1(τ − T̄ + η, x̄).

To apply LTMs to price Parisian options, we first introduce two transformations, under which the

coupled PDE system of the Parisian option can be further simplified into a form that is easier for finding

the analytical solutions in Laplace domain. Taking Laplace transforms

Ŵ1(z, x) =

∫ ∞

0

e−zτW1(τ, x)dτ, Ŵ2(z, x, η) =

∫ ∞

0

e−zτW2(τ, x, η)dτ

to both sides of the PDEs (2.6) and (2.7) (the smooth pasting conditions between W1 and W2 will be

discussed separately), respectively, we have
(z − β)Ŵ1 −

1

2
σ2 ∂

2Ŵ1

∂x2
= e−αxVBS(T̄ , S̄e

x), −∞ < x < x̄,

Ŵ1(z, x̄) = eβT̄ Ŵ2(z, x̄, T̄ ) =: Ŵ ∗
1 (z),

lim
x↓−∞

eαxŴ1(z, x) = 0

(2.8)
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and 

∂Ŵ2

∂η
− 1

2
σ2 ∂

2Ŵ2

∂x2
= 0, x̄ < x <∞, 0 < η 6 T̄ ,

Ŵ2(z, x̄, η) = f(z, η)Ŵ ∗
1 (z) + g(z, η), 0 < η 6 T̄ ,

lim
x↑∞

eαx+βηŴ2(z, x, η) = 0, 0 < η 6 T̄ ,

eαxŴ2(z, x, 0) = 0, x̄ < x <∞,

(2.9)

where the functions f and g are defined by

f(z, η) = e−βη−z(T̄−η), g(z, η) = e−βη−z(T̄−η)

∫ T̄

η

ez(T̄−y)VBS(y, S̄)dy.

The second equation in (2.9) is derived as

Ŵ2(z, x̄, η) = e−βη

∫ ∞

0

W1(τ − T̄ + η, x̄)e−zτdτ = e−βη−z(T̄−η)

∫ ∞

−T̄+η

W1(s, x̄)e
−zsds

= e−βη−z(T̄−η)

∫ ∞

0

W1(s, x̄)e
−zsds+ e−βη−z(T̄−η)

∫ 0

−T̄+η

W1(s, x̄)e
−zsds

= f(z, η)Ŵ1(z, x̄) + e−βη−z(T̄−η)

∫ 0

−T̄+η

VBS(s+ T̄ , S̄)e−zsds

= f(z, η)Ŵ1(z, x̄) + g(z, η) = f(z, η)Ŵ ∗
1 (z) + g(z, η).

In addition the smooth pasting at barrier x̄ is set as

lim
x↓x̄

∂Ŵ2(z, x, T̄ )

∂x
= e−βT̄ lim

x↑x̄

∂Ŵ1(z, x)

∂x
. (2.10)

From the coupled pricing system (2.8)–(2.10), it can be observed that once Ŵ ∗
1 (z) is found, the PDEs (2.8)

and (2.9) can be solved separately. It seems quite natural to treat the determination of Ŵ ∗
1 (z) as a key

step for solving the PDE system (2.8)–(2.10).

In the following Lemma 1, we give the analytical solution of Ŵ1(z, x) using constant variation methods.

But it is not an easy task to deal with the zero-boundary limx↓−∞eαxŴ1(z, x) = 0 for the ODE (2.8)

because of the presence of the exponential function eαx. To remove this difficulty, we introduce a new

technique. Firstly, we replace the above zero-boundary condition by limx↓−∞Ŵ1(z, x) = 0. Then an

alternative ODE (2.15) is established, which can be solved more easily and we verify that this analytical

solution also solves the original ODE (2.8) with the restriction on the parabola contour defined by (2.17).

In the subsequent analysis, we will need the following two integral functions:

ϕ(z, x, η) = − 2

σ2

∫ x

−∞
e−2γ(z)y

(∫ y

−∞
e(γ(z)−α)ζVBS(η, S̄e

ζ)dζ

)
dy, (2.11)

ψ(z, x, η) =
∂

∂x
ϕ(z, x, η) = − 2

σ2
e−2γ(z)x

∫ x

−∞
e(γ(z)−α)ζVBS(η, S̄e

ζ)dζ, (2.12)

where γ(z) = 1
σ

√
2(z − β) with Re(

√
2(z − β)) > 0 and z falls on the parabola contour Γ defined

by (2.17). We do not worry about the integrability of ϕ(z, x, η) and ψ(z, x, η), since

lim
x→−∞

VBS(η, S̄e
x) = O(N(x)) as x→ −∞,

and the accumulation normal distribution function N(x) is convergent to zero with much higher order

than e2γ(z)x as x→ −∞.

Lemma 1. Let γ(z) = 1
σ

√
2(z − β) with Re(

√
2(z − β)) > 0 and

C(z, x, T̄ ) = Ŵ ∗
1 (z) + ϕ(z, x, T̄ )− ϕ(z, x̄, T̄ ). (2.13)
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Then

Ŵ1(z, x) = C(z, x, T̄ )eγ(z)x (2.14)

solves the following auxiliary ODE:
(z − β)Ŵ1 −

1

2
σ2 ∂

2Ŵ1

∂x2
= e−αxVBS(T̄ , S̄e

x),

Ŵ1(z, x̄) = Ŵ ∗
1 (z),

lim
x↓−∞

Ŵ1(z, x) = 0.

(2.15)

Moreover,

∂Ŵ1(z, x)

∂x

∣∣∣∣
x=x̄

= ψ(z, x̄, T̄ ) + γ(z)Ŵ ∗
1 (z). (2.16)

In addition, let µ > 1
2α

2σ2 and z fall on a parabola contour defined by

Γ : z(ζ) = β + µ(iζ + 1)2, −∞ < ζ <∞. (2.17)

Assume γ(z) = 1
σ

√
2(z − β) with Re(

√
2(z − β)) > 0. Then Ŵ1(z, x) = C(z, x, T̄ )eγ(z)x in (2.14)

satisfies

lim
x→−∞

eαxŴ1(z(ζ), x) = 0, for all ζ ∈ (−∞,+∞), (2.18)

and thus Ŵ1(z, x) with z on the contour Γ in (2.17) solves the ODE (2.8).

Proof. Assuming Ŵ1(z, x) = eγ(z)x is a solution satisfying the homogeneous form corresponding to

the ODE in (2.15), we obtain γ(z) = ± 1
σ

√
2(z − β). Since limx↓−∞Ŵ1(z, x) = 0, we select γ(z)

= 1
σ

√
2(z − β) with the restriction Re(

√
2(z − β)) > 0. With this choice of z, we see that limx→−∞eγ(z)x

= 0.

Now, we find the solution to the non-homogeneous ODE (2.15) using the constant variation method.

To this end, assume that (2.15) has a solution of the form

Ŵ1(z, x) = C(z, x, T̄ )eγ(z)x. (2.19)

Substituting (2.19) into (2.15) gives

∂2C(z, x, T̄ )

∂x2
+ 2γ(z)

∂C(z, x, T̄ )

∂x
= − 2

σ2
e−(γ(z)+α)xVBS(T̄ , S̄e

x).

Solving the above ODE, we get

C(z, x, T̄ ) = − 2

σ2

∫ x

−∞
e−2γ(z)y

(∫ y

−∞
e(γ(z)−α)ζVBS(T̄ , S̄e

ζ)dζ + C̃1(z)

)
dy + C̃(z). (2.20)

Noting
∫ x

−∞ e−2γ(z)ydy is not integrable for any real number −∞ < x 6 0, we set C̃1(z) ≡ 0. If

Ŵ1(z, x̄) = C(z, x̄, T̄ )eγ(z)x̄ = Ŵ ∗
1 (z), from (2.20) we can easily obtain C̃(z) = Ŵ ∗

1 (z)− ϕ(z, x̄) and thus

C(z, x, T̄ ) = Ŵ ∗
1 (z) + ϕ(z, x, T̄ )− ϕ(z, x̄, T̄ ).

From the expression of C(z, x, T̄ ) in (2.13), we have ∂C(z,x,T̄ )
∂x = ∂

∂xϕ(z, x, T̄ ) = ψ(z, x, T̄ ). Therefore,

∂Ŵ1(z, x)

∂x

∣∣∣∣
x=x̄

= ψ(z, x̄, T̄ )eγ(z)x̄ + γ(z)C(z, x̄, T̄ )eγ(z)x̄ = ψ(z, x̄, T̄ ) + γ(z)Ŵ ∗
1 (z),

which is just the statement (2.16).

From the definition of γ(z), we have γ(z) = 1
σ

√
2(z(ζ)− β) =

√
2µ
σ (iζ + 1), which implies

Re(γ(z)) + α =

√
2µ

σ
+ α >

√
2

σ

|α|σ√
2

+ α = |α|+ α > 0. (2.21)
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Since limx→−∞ |C(z, x, T̄ )| = |Ŵ ∗
1 (z)− ϕ(z, x̄, T̄ )| <∞ and |eIm(γ(z))xi| = 1, we have

lim
x→−∞

|eαxŴ1(z, x)| = lim
x→−∞

|C(z, x, T̄ )eαx+γ(z)x|

= lim
x→−∞

|C(z, x, T̄ )| lim
x→−∞

e(α+Re(γ(z)))x lim
x→−∞

|eIm(γ(z))xi|

= |Ŵ ∗
1 (z)− ϕ(z, x̄, T̄ )| lim

x→−∞
e(α+Re(γ(z)))x = 0,

which is just the statement of (2.18). The last equality is obtained by applying the estimation (2.21).

The proof is thus completed.

Remark 2. From Lemma 1, we take µ > 1
2α

2σ2 to ensure limx→−∞ eαxŴ1(z, x) = 0. To this purpose,

it is sufficient to set

L >
2

π
α2σ2τ1

√
8Λ + 1 =

2τ1
πσ2

(
σ2

2
+ δ − r

)2√
8Λ + 1 (2.22)

in (2.40) of the numerical Laplace inversion. In other words, how large L should be taken depends on

the parameter σ, δ, r, τ1 and Λ. In practical computation, the above restriction is not strong because the

quantity of α2σ2 is always small. For example, under the choices of parameters r = 0.05, τ1 = 1, Λ = 3

and σ = 0.3, σ = 0.5, σ = 0.8, it should be satisfied that L > 0.0028, 0.2250, 1.1391, respectively.

We now compute the solution Ŵ2(z, x, η) to the PDE (2.9). First of all, we need to carefully deal with

the conditions limx↑∞eαx+βηŴ2(z, x, η) = 0 and eαxŴ2(z, x, 0) = 0. To this end, we divide the problem

into two cases: α > 0 and α < 0.

Case 1. α > 0.

For this case, we cannot find the exact solution to the PDE (2.9) on the semi-infinite domain [x̄,∞);

instead we find the approximate solution on the truncated domain [x̄, X̄] with X̄ being taken as a large

enough positive number such that Ŵ2(z, X̄, η) ≈ 0, i.e., the PDE (2.9) is re-written approximately as

∂Ŵ2

∂η
− 1

2
σ2 ∂

2Ŵ2

∂x2
= 0, x̄ < x < X̄, 0 < η 6 T̄ ,

Ŵ2(z, x̄, η) = f(z, η)Ŵ ∗
1 (z) + g(z, η), 0 < η 6 T̄ ,

Ŵ2(z, X̄, η) = 0, 0 < η 6 T̄ ,

Ŵ2(z, x, 0) = 0, x̄ < x < X̄.

(2.23)

To solve (2.23), we define a new function W 2(z, x, η) such that it is governed by a corresponding PDE

with homogeneous boundary conditions. Let

W 2(z, x, η) = Ŵ2(z, x, η) + F (z, x, η), F (z, x, η) = −
(
1− x

X̄

)
[f(z, η)W ∗

1 (z) + g(z, η)].

Then we have a new PDE with zero boundary conditions:

∂W 2

∂η
− 1

2
σ2 ∂

2W 2

∂x2
=
∂F

∂η
,

W 2(z, x̄, η) = 0,

W 2(z, X̄, η) = 0,

W 2(z, x, 0) = F (z, x, 0).

(2.24)

The PDE (2.24) can be solved analytically by using the standard variable separation techniques (see [7])

and then the solution Ŵ2(z, x, η) is expressed as follows:

Ŵ2(z, x, η) = Gf (z, x, η)Ŵ ∗
1 (z) +Gg(z, x, η) (2.25)

and
∂Ŵ2(z, x, T̄ )

∂x

∣∣∣∣
x=x̄

= Af (z, T̄ )Ŵ ∗
1 (z) +Ag(z, T̄ ), (2.26)
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where

Gφ(z, x, η) = − 2

π
φ(z, 0)ρ(x, η; 0)− 2

π

∫ η

0

ρ(x, η − ζ; 0)
∂φ(z, ζ)

∂ζ
dζ +

(
1− x

X̄

)
φ(z, η), (2.27)

Aφ(z, η) = − 2

X̄
φ(z, 0)θ(η; 0)− 2

X̄

∫ η

0

θ(η − ζ; 0)
∂φ(z, ζ)

∂ζ
dζ − 1

X̄
φ(z, η) (2.28)

for φ equal to f or g. Here, ρ(x, η;m) and θ(η;m) are defined by

ρ(x, η;m) =
∞∑

n=1

(
1

qmnm+1
e−q2n2η sin

nπ

X̄
x

)
, m = 0, 1, 2, (2.29)

θ(η;m) =

∞∑
n=1

(
1

qmnm
e−q2n2η

)
, m = 0, 1, 2, (2.30)

where q = πσ√
2X̄

. (2.27) and (2.28) with φ equal to f or g are expressed by the infinite series (2.29)

and (2.30). The convergence of the expression is given by the following lemma.

Lemma 3. For any complex value z and real number 0 < η 6 T̄ , Gf (z, η), Gg(z, η), Af (z, η) and

Ag(z, η) are convergent for x̄ < x < X̄.

Proof. From the notations Gφ and Aφ (see (2.27) and (2.28)), it is sufficient to prove the convergence

of ρ(x, η;m), θ(η;m) and their integrals with respect to η. In fact, we have

|ρ(x, η;m)| 6
∞∑

n=1

∣∣∣∣ 1

qmnm+1
e−q2n2η sin

nπ

X̄
x

∣∣∣∣ 6


∞∑
n=1

e−q2n2η <
e−q2η

(1− e−q2η)
<∞, m = 0,

1

q2

∞∑
n=1

1

n2
=

π2

6q2
, m = 2

and ∫ η

0

|ρ(x, η − ζ; 0)|dζ 6
∞∑

n=1

1

n

∫ η

0

e−q2n2(η−ζ)dζ 6 π2

6q2

for x ∈ (x̄, X̄), η ∈ (0, T̄ ]. It is similar to prove the convergence of θ(η;m) defined by (2.30) as

|θ(η;m)| 6


e−q2η

(1− e−q2η)
, m = 0,

π2

6q2
, m = 2

and

∫ η

0

|θ(ζ; 0)|dζ 6 π2

6q2

for x ∈ (x̄, X̄), η ∈ (0, T̄ ].

Case 2. α < 0.

For this case, the PDE (2.9) is equivalent to
∂Ŵ2

∂η
− 1

2
σ2 ∂

2Ŵ2

∂x2
= 0, x̄ < x <∞, 0 < η 6 T̄ ,

Ŵ2(z, x̄, η) = f(z, η)Ŵ ∗
1 (z) + g(z, η), 0 < η 6 T̄ ,

Ŵ2(z, x, 0) = 0, x̄ < x <∞.

(2.31)

The solution to the PDE (2.31) can be formulated by Green’s formula (see [7]) as

Ŵ2(z, x, η) = G̃f (z, x, η)Ŵ ∗
1 (z) + G̃g(z, x, η), (2.32)

where

G̃φ(z, x, η) = φ(z, η)− φ(z, 0)

∫ ∞

x̄

G̃(x, η; ζ, 0)dζ −
∫ η

0

[
∂φ(z, y)

∂y

∫ ∞

x̄

G̃(x, η; ζ, y)dζ

]
dy (2.33)
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for φ equal to f or g, and

G̃(x, η; ζ, y) = Γ(x, η; ζ, y)− Γ(x, η;−ζ, y), (2.34)

Γ(x, η; ζ, y) =


1

σ
√
2π(η − y)

e−(x−ζ)2/(2σ2(η−y)), η > y,

0, η 6 y.

(2.35)

We are now ready to present the formula for the value functions in the Laplace space in the following

theorem.

Theorem 4. Assume α > 0, µ > 1
2α

2σ2 and z falls on a parabola Γ defined by (2.17). Let γ(z) =
1
σ

√
2(z − β) with Re(

√
2(z − β)) > 0. Assume that Ŵ1(z, x) and Ŵ2(z, x, η) solve the coupled PDE

systems (2.8) and (2.9), respectively. Then Ŵ1(z, x̄) = Ŵ ∗
1 (z) has the analytical formula

Ŵ ∗
1 (z) =

ψ(z, x̄, T̄ )− eβT̄Ag(z, T̄ )

eβT̄Af (z, T̄ )− γ(z)
(2.36)

with Af and Ag defined by (2.28).

Moreover, Ŵ1(z, x) can be expressed as Ŵ1(z, x) = C(z, x, T̄ )eγ(z)x with C(z, x, T̄ ) = Ŵ ∗(z)+ϕ(z, x, T̄ )

− ϕ(z, x̄, T̄ ) and Ŵ2(z, x, η) can be computed by formula (2.25), i.e., Ŵ2(z, x, η) = Gf (z, x, η)Ŵ ∗
1 (z)

+Gg(z, x, η) with Gf and Gg defined by (2.27).

Proof. From the smooth pasting condition ∂
∂xŴ1(z, x̄) = eβT̄ ∂

∂xŴ2(z, x̄, T̄ ) (see (2.10)), and the for-

mulas (2.16) and (2.26), we have ψ(z, x̄, T̄ ) + γ(z)Ŵ ∗
1 (z) = eβT̄ (Af (z, T̄ )Ŵ ∗

1 (z) +Ag(z, T̄ )), which leads

to (2.36). The remainder has been illustrated previously.

Remark 5. For the case where α < 0, it only needs to take the following substitution:

Gf (z, x, η) = G̃f (z, x, η), Gg(z, x, η) = G̃g(z, x, η)

and

Af (z, η) =
∂G̃f (z, x, η)

∂x

∣∣∣∣
x=x̄

, Ag(z, η) =
∂G̃g(z, x, η)

∂x

∣∣∣∣
x=x̄

in Theorem 4, since Ŵ2(z, x, η) can be calculated by Green’s formula (2.32). Functions G̃f (z, x, η) and

G̃g(z, x, η) are defined by (2.33).

We now discuss the Laplace inversion. The method for inverting the Laplace transform is based on

numerical integration of the Bromwich complex contour integral

W (τ ;x, ξ) =
1

2πi

∫ s+i∞

s−i∞
ezτŴ (z;x, ξ)dz, s > s0. (2.37)

Here, i2 = −1, Ŵ (z;x, ξ) is the value of Parisian or Parasian options in the Laplace time domain z ∈ C,
and s0 is the convergence abscissa. This means that all the singularities of Ŵ (z;x, ξ) lie in the open

half-plane Re(z) < s. Since the exponential factor is highly oscillatory on the Bromwich line, z = s+ iy,

and Ŵ (z;x, η) typically decays slowly as |y| → ∞, the integral (2.37) is not well suited for numerical

integration and the Laplace inversion formulas derived from it are not stable.

Talbot [9] suggested the Bromwich line be deformed into a contour that begins and ends in the left

half-plane and Re(z) → −∞ at each end. Talbot’s original contour has a cotangent shape, and is rather

complicated to analyze. Two simpler types of contours have been proposed, recently, namely parabolas

and hyperbolas (see [9, 10]). For pricing Parisian and Parasian options, the parabola is chosen by (2.17)

on which the ODE (2.8) has the analytical form of the solution (see Lemma 1). On the contour (2.17)

the Bromwich integral (2.37) becomes

W (τ ;x, ξ) =
1

2πi

∫ ∞

−∞
ez(ζ)τŴ (z(ζ);x, ξ)z′(ζ)dζ. (2.38)
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In Sections 2 and 3, we will analyze how to choose µ such that the integrand in (2.38) exponentially

decays as Re(z) → −∞. Therefore, the integral (2.38) is approximated by the trapezoidal rule with the

uniform mesh size h, as Wh,L(τ ;x, ξ) ≈W (τ ;x, ξ), where

Wh,L(τ ;x, ξ) =
h

2πi

L∑
k=−L

ez(ζk)τŴ (z(ζk);x, ξ)z
′(ζk), ζk = kh. (2.39)

The quantity

DE ≡ ∥W (τ ;x, ξ)−Wh,L(τ ;x, ξ)∥∞

is often referred to as the discretization error, whereas

TE ≡ ∥Wh,L=∞(τ ;x, ξ)−Wh,L(τ ;x, ξ)∥∞

is the truncation error. By matching the discretization error (DE) and truncation error (TE), appropriate

parameters h and µ should be determined. If we wish to maintain a small absolute error on an interval

τ0 < τ < τ1, the parameters h and µ are selected by

h =
1

L

√
8Λ + 1, µ =

π

4
√
8Λ + 1

L

τ1
, Λ =

τ1
τ0
. (2.40)

Under these choices of parameters, the corresponding convergence rate of the Laplace inversion is

EL = O(e−(2π/
√
8Λ+1)L), L→ ∞. (2.41)

The Parisian and Parasian options require L in (2.40) to satisfy a certain condition (see (2.22)).

After getting Ŵ1(z, x) and Ŵ2(z, x, η), the original option price can be restored by using the numerical

Laplace inversion formula (2.39). Since both Ŵ1(z, x) and Ŵ2(z, x, η) are analytical on the parabola Γ

and their values are zeros at x = −∞ and x = X̄, they should be bounded for any z ∈ Γ. A lot of

numerical examples show that |Ŵ ∗
1 (z)|, |Ŵ1(z, x)| and |Ŵ2(z, x, η)| are uniformly bounded with respect

to z. Figure 2 plots the trajectories of Parisian option solutions in the Laplace domain, from which we

see that the option prices tend to zero as Re(z) → −∞. The uniform boundedness of option solutions

Ŵ1(z, x) and Ŵ2(z, x, η) ensures that the integrand (2.38) decays as Re(z) → −∞, so the Laplace

inversion formula (2.39) has the exponential convergence rate with respect to the number of Laplace

parameters. Therefore, this kind of Laplace inversion is stable and fast.
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Figure 2 (Color online) Trajectories of Parisian option solutions in the Laplace time domain with parameters T̄ = 0.2,

σ = 0.1, r = 0.05, K = 10, S̄ = 12, δ = 0 and X̄ = 1
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In the end of this section, we give the computational procedure of LTMs for solving Parisian option

PDE systems as Algorithm 1.

Algorithm 1 LTMs for solving Parisian options

Step 1. Compute Ŵ ∗
1 (z) by using the formula (2.36).

Step 2. If x < x̄, compute Ŵ1(z, x) = C(z, x, T̄ )eγ(z)x for any z falling on the parabola Γ with C(z, x, T̄ ) being defined

by (2.13).

Step 3. If x > x̄, compute Ŵ2(z, x, η) by using the formula (2.25).

Step 4. Apply the Laplace inversion formula (2.39) to restore option values W1(τ, x) and W2(τ, x, η), respectively.

Step 5. Output original option values by transforming V1(t, x) = eαxW1(τ, x) and V2(t, x, ξ) = eαx+βηW2(τ, x, η) with

t = τ + T̄ − ξ and η = T̄ − ξ.

3 LTMs for pricing Parasian options

Let t = τ + T̄ − ξ, eαxW1(τ, x, η) = V1(t, x, ξ) and eαx+βηW2(τ, x, η) = V2(t, x, ξ), where α, β and η are

defined by (2.1). Then
∂V1
∂t

= eαx
∂W1

∂τ
, AV1 = A[eαxW1(τ, x, η)], AV2 = A[eαx+βηW2(τ, x, η)],

∂V2
∂t

= eαx+βη ∂W2

∂τ
,

∂V2
∂ξ

= −βeαx+βηW2(τ, x, η) + eαx+βη

[
∂W2

∂τ
− ∂W2

∂η

]
.

(3.1)

Substituting (3.1) into (1.3) and (1.4), we get the following PDE systems:

∂W1

∂τ
=

1

2
σ2 ∂

2W1

∂x2
+ βW1, 0 < τ <∞, −∞ < x < x̄, 0 < η 6 T̄ ,

W1(0, x, η) = e−αxVBS(η, S̄e
x), −∞ < x < x̄, 0 < η 6 T̄ ,

W1(τ, x̄, η) = eβηW2(τ, x̄, η), 0 < τ <∞, 0 < η 6 T̄ ,

lim
x↑x̄

∂W1(τ, x, η)

∂x
= eβη lim

x↓x̄

∂W2(τ, x, η)

∂x
, 0 < τ <∞, 0 < η 6 T̄ ,

lim
x↓−∞

eαxW1(τ, x, η) = 0, 0 < τ <∞, 0 < η 6 T̄ ,

eαxW1(τ, x, 0) = 0, 0 < τ <∞, −∞ < x < x̄

(3.2)

and 

∂W2

∂η
=

1

2
σ2 ∂

2W2

∂x2
, 0 < τ <∞, x̄ < x <∞, 0 < η 6 T̄ ,

W2(0, x, η) = e−αx−βηVBS(η, S̄e
x), x̄ < x <∞, 0 < η 6 T̄ ,

W2(τ, x̄, η) = e−βηW1(τ, x̄, η), 0 < τ <∞, 0 < η 6 T̄ ,

lim
x↓x̄

∂W2(τ, x, η)

∂x
= e−βη lim

x↑x̄

∂W1(τ, x, η)

∂x
, 0 < τ <∞, 0 < η 6 T̄ ,

lim
x↑+∞

eαx+βηW2(τ, x, η) = 0, 0 < τ <∞, 0 < η 6 T̄ ,

eαxW2(τ, x, 0) = 0, 0 < τ <∞, x̄ < x <∞.

(3.3)

Taking Laplace transforms to both sides of (3.2) and (3.3), respectively, we have an ODE
(z − β)Ŵ1 −

1

2
σ2 ∂

2Ŵ1

∂x2
= e−αxVBS(η, S̄e

x), −∞ < x < x̄, 0 < η 6 T̄ ,

Ŵ1(z, x̄, η) = eβηŴ2(z, x̄, η), 0 < η 6 T̄ ,

lim
x↓−∞

eαxŴ1(z, x, η) = 0, 0 < η 6 T̄

(3.4)
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and a PDE 

∂Ŵ2

∂η
− 1

2
σ2 ∂

2Ŵ2

∂x2
= 0, x̄ < x <∞, 0 < η 6 T̄ ,

Ŵ2(z, x̄, η) = e−βηŴ1(z, x̄, η), 0 < η 6 T̄ ,

lim
x→∞

eαx+βηŴ2(z, x, η) = 0, 0 < η 6 T̄ ,

eαxŴ2(z, x, 0) = 0, x̄ < x <∞.

(3.5)

Additionally, the “smooth pasting condition” at barrier x̄ is set as

lim
x↓x̄

∂Ŵ2(z, x, η)

∂x
= e−βη lim

x↑x̄

∂Ŵ1(z, x, η)

∂x
, 0 < η 6 T̄ . (3.6)

If we regard Ŵ1(z, x̄, η) = Ŵ ∗
1 (z, η) as a known function, then the PDE systems (3.4) and (3.5) can be

analytically solved, separately. Lemma 6 gives the formal solution of Ŵ1(z, x, η).

Lemma 6. Let γ(z) = 1
σ

√
2(z − β) with Re(

√
2(z − β)) > 0 and z fall on a parabola defined by

(2.17). Assume that µ > 1
2α

2σ2 and Ŵ1(z, x̄, η) = Ŵ ∗
1 (z, η) are given. Then the analytical solution to

the ODE (3.4) has the expression Ŵ1(z, x, η) = C(z, x, η)eγ(z)x, where

C(z, x, η) = Ŵ ∗
1 (z, η) + ϕ(z, x, η)− ϕ(z, x̄, η) (3.7)

with ϕ(z, x, η) defined by (2.11). Furthermore,

∂Ŵ1(z, x, η)

∂x

∣∣∣∣
x=x̄

= ψ(z, x̄, η) + γ(z)Ŵ ∗
1 (z, η) (3.8)

with ψ(z, x, η) given by (2.12).

Proof. Since the proof is very similar to that of Lemma 1, we omit the details.

We derive the analytical solution to (3.5) by two cases: α < 0 and α > 0.

Case 1. α < 0.

For this case, (3.5) is equivalent to
∂Ŵ2

∂η
− 1

2
σ2 ∂

2Ŵ2

∂x2
= 0, x̄ < x <∞, 0 < η 6 T̄ ,

Ŵ2(z, x̄, η) = e−βηŴ ∗
1 (z, η), 0 < η 6 T̄ ,

Ŵ2(z, x, 0) = 0, x̄ < x <∞.

(3.9)

The solution to the PDE (3.9) can be formulated by Green’s function, i.e.,

Ŵ2(z, x, η) = e−βηŴ ∗
1 (z, η)−

∫ η

0

[
∂(e−βyŴ ∗

1 (z, y))

∂y

∫ ∞

x̄

G̃(x, η; ζ, y)dζ

]
dy, (3.10)

where G̃(x, η; ζ, y) is defined by (2.34).

We now calculate Ŵ ∗
1 . To this end, we first calculate∫ ∞

x̄

∂G̃(x, η; ζ, y)

∂x

∣∣∣∣
x=x̄

dζ = − 1

σ
√
2π(η − y)

,

and then the derivative

∂Ŵ2(z, x, η)

∂x

∣∣∣∣
x=x̄

=

∫ η

0

∂(e−βτŴ ∗
1 (z, y))

∂y

1

σ
√

2π(η − y)
dy. (3.11)

Combining (3.8) and (3.11), we get the following integro-differential equation (denoted by IDE-I):

γ(z)Ŵ ∗
1 (z, η) =

∫ η

0

∂(e−βyŴ ∗
1 (z, y))

∂y

1

σ
√
2π(η − y)

dy − ψ(z, x̄, η). (3.12)
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The IDE-I can be solved by the FDMs. After numerically computing Ŵ ∗
1 (z, η), we can calculate

Ŵ1(z, x, η) and Ŵ2(z, x, η).

Case 2. α > 0.

Similar to (2.23), we find the approximate solution to (3.5) as follows. For a large positive number X̄,

the solution to (3.5) is approximated by Ŵ2(z, x, η) =W 2(z, x, η)− F̄ (z, x, η) with W 2(z, x, η) solving

∂W 2(z, x, η)

∂η
− 1

2
σ2 ∂

2W 2(z, x, η)

∂x2
=
∂F̄

∂η
,

W 2(z, x̄, η) = 0,

W 2(z, X̄, η) = 0,

W 2(z, x, 0) = F̄ (z, x, 0)

(3.13)

and F̄ (z, x, η) = −(1− x
X̄
)e−βηŴ ∗

1 (z, η). The solution to (3.13) is given by the standard Fourier expansion

method (see [7]) and then

Ŵ2(z, x, η) = − 2

π

∫ η

0

∂

∂ζ
(e−βζŴ ∗

1 (z, ζ))ρ(x, η − ζ; 0)dζ +

(
1− x

X̄

)
e−βηŴ ∗

1 (z, η),

where ρ(x, η; 0) is given by (2.29) and

Ŵ2(z, x, η)

∂x

∣∣∣∣
x=x̄

= − 2

X̄

∫ η

0

[
∂

∂ζ
(e−βζŴ ∗

1 (z, ζ))

∞∑
n=1

e−q2n2(η−ζ)

]
dζ − 1

X̄
e−βηŴ ∗

1 (z, η). (3.14)

Using the “smooth pasting condition” (3.6), we get

Ŵ2(z, x, η)

∂x

∣∣∣∣
x=x̄

= e−βη ∂Ŵ1(z, x, η)

∂x

∣∣∣∣
x=x̄

= e−βη(ψ(z, x̄, η) + γ(z)Ŵ1(z, x̄, η))

= e−βη(γ(z)Ŵ ∗
1 (z, η) + ψ(z, x̄, η)). (3.15)

Combining (3.14) with (3.15) yields the 1-dimensional integro-differential equation (denoted by IDE-II):(
γ(z) +

1

X̄

)
e−βηŴ ∗

1 (z, η) = − 2

X̄

∫ η

0

[
∂

∂ζ
(e−βζŴ ∗

1 (z, ζ))θ(η − ζ; 0)

]
dζ − ψ(z, x̄, η)e−βη (3.16)

with γ(z) = 1
σ

√
2(z − β), q = πσ√

2X̄
and θ(η; 0) =

∑∞
n=1 e

−q2n2η.

The solutions to (3.4) and (3.5) are summarized in the following theorem.

Theorem 7. Assume that µ > 1
2α

2σ2 and z falls on a parabola Γ : z(ζ) = β+µ(iζ+1)2, −∞ < ζ <∞.

Let γ(z) = 1
σ

√
2(z − β) with Re(

√
2(z − β)) > 0, and Ŵ1(z, x, η) and Ŵ2(z, x, η) solve the coupled PDE

systems (3.4)–(3.6). Then we have

(i) Ŵ ∗
2 (z, η) satisfies IDE-I (3.12) for α < 0 and IDE-II (3.16) for α > 0, respectively;

(ii) Ŵ1(z, x, η) can be expressed as Ŵ1(z, x, η) = C(z, x, η)eγ(z)x, where

C(z, x, η) = Ŵ ∗
1 (z, η) + ϕ(z, x, η)− ϕ(z, x̄, η) (3.17)

with ϕ(z, x, η) being defined by (2.11);

(iii) for α < 0, Ŵ2(z, x, η) is given by Green’s formula (3.10) and for α > 0 by the formula

Ŵ2(z, x, η) = − 2

π

∫ η

0

∂

∂ζ
(e−βζŴ ∗

1 (z, ζ))ρ(x, η − ζ; 0)dζ +

(
1− x

X̄

)
e−βηŴ ∗

1 (z, η) (3.18)

with ρ(x, η; 0) =
∑∞

n=1
1
ne

−q2n2η sin nπ
X̄
x and q = πσ√

2X̄
.
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Proof. The proof has been given in the previous lines.

From Theorem 7, we have a general procedure to calculate Parasian options. Firstly, Ŵ ∗
1 (z, η) should

be computed by solving IDE-I (3.12) or IDE-II (3.16) numerically. Secondly, Ŵ1(z, x, η) and Ŵ2(z, x, η)

can be calculated by (3.17) and (3.18). Thirdly, applying the inverse Laplace transform we get the values

of W1(τ, x, η) and W2(τ, x, η). Finally, the option prices are obtained by the variable transformations.

In the end of this section, we give the computational procedure of LTMs for solving Parasian options in

Algorithm 2.

Algorithm 2 LTMs for solving Parasian options

Step 1. Compute Ŵ ∗
1 (z, η) by solving IDE-I (3.12) for α < 0 and IDE-II (3.16) for α > 0.

Step 2. If x 6 x̄, compute Ŵ1(z, x, η) = C(z, x, η)eγ(z)x for any z falling on the parabola with C(z, x, η) being defined

by (3.7).

Step 3. If x > x̄, compute Ŵ2(z, x, η) using Green’s formula (3.10) for α < 0 and the integral formula (3.18) for α > 0,

respectively.

Step 4. Apply the Laplace inversion formula (2.39) to restore option values W1(τ, x, η) and W2(τ, x, η), respectively.

Step 5. Output option values by transforming V1(t, x, ξ) = eαxW1(τ, x, η) and V2(t, x, ξ) = eαx+βηW2(τ, x, η) with

t = τ + T̄ − ξ and η = T̄ − ξ.

4 Numerical examples

In this section, we illustrate the accuracy and efficiency of LTMs for pricing Parisian and Parasian options.

The results of LTMs are compared with the implicit finite difference methods (IFDMs), Monte Carlo

simulations (MCSs) and the moving window methods (MWMs) in [14]. All the numerical experiments

are run in MATLAB 8.0 (R2012b) on a PC with the configuration: Intel(R) Core(TM) i5-4200 CPU @

2.5 GHz and 4.00 GB RAM. This PC configuration is comparable with that of [14].

For the implicit FDMs, the temporal mesh is given by τm = m∆τ , ∆τ = T/Nτ , m = 0, 1, 2, . . . , Nτ ,

and spatial meshes

x′i = x̄− (x̄+ X̄)

(
Nx′ + 1− i

Nx′ + 1

)ν

, ∆x′i = x′i+1 − x′i, i = 0, 1, . . . , Nx′ + 1,

x′′j = x̄+ (X̄ − x̄)

(
j

Nx′′ + 1

)ν

, ∆x′′j = x′′j+1 − x′′j , j = 0, 1, . . . , Nx′′ + 1,

ξℓ = ℓ∆ξ, ∆ξ = T̄ /Nξ, ℓ = 0, 1, 2, . . . , Nξ,

where Nτ , Nx′ , Nx′′ and Nξ are given positive numbers, and ν > 1 is a parameter to control the mesh

distribution. If ν = 1, then {x′i} and {x′′j } are uniform meshes, whereas ν > 1, and there are more

grid points near the barrier price x̄. In the computation of this example, the mesh sizes are taken as

∆τ = ∆ξ = 0.0005 and the non-uniform meshes {x′i} and {x′′j } are produced with Nx′ = Nx′′ = 500 and

ν = 1.5 . The algorithm of Monte Carlo simulations is referred to Bernard and Boyle [1]. For each Monte

Carlo simulation, we set ∆t = 2.5 × 10−6 and produce 2,000,000 stock price paths. The option values

computed by moving window methods are copied directly from the paper [14]. We set the number L = 5

for the Laplace inversion formula (2.39) and take the mesh size ∆η = 0.0005 for solving IDE-I (3.12) and

IDE-II (3.16) by using the standard FDMs.

The main workload of the LTMs includes the computing of integrals ϕ(z, x, η) and ψ(z, x, η), and the

sums (2.29) and (2.30). We use the MATLAB function “quadgk”, an adaptive Gauss-Kronrod quadrature,

to numerically compute ϕ(z, x, η) and ψ(z, x, η). To efficiently compute the sums (2.29) and (2.30), we

define

Πρ,m,x,η(k) =

kNs∑
j=(k−1)Ns+1

(
1

qmnm+1
e−q2n2η sin

nπ

X̄
x

)
, k = 1, 2, . . . ,

Πθ,m,η(k) =

kNs∑
j=(k−1)Ns+1

(
1

qmnm
e−q2n2η

)
, k = 1, 2, . . . ,
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with Ns = 400. The terms Πρ,m,x,η(k) and Πθ,m,η(k) mean the k-th summation block (each summation

block includes Ns terms) of series ρ(x, η;m) and θ(η;m), respectively. If a certain integer k satisfies

|Πρ,m,x,η(k)|
|
∑k

j=1 Πρ,m,x,η(j)|
6 10−8 or

|Πθ,m,η(k)|
|
∑k

j=1 Πρ,m,η(j)|
6 10−8,

then we take the approximation

ρ(x, η;m) ≈
k∑

j=1

Πρ,m,x,η(j) or θ(η;m) ≈
k∑

j=1

Πθ,m,η(j).

For the convenience of comparison, all the values of Parisian and Parasian options listed in this section

are the original prices, for example,

V1

(
t, log

S

S̄

)
= V1(t, x) = U1(τ, x) = eαxW1(τ, x),

V2

(
t, log

S

S̄
, ξ

)
= V2(t, x, ξ) = U2(τ, x, ξ) = eαx+βηW2(τ, x, η)

with t = τ + T̄ − ξ, ξ = T̄ − η and S = S̄ex.

Example 8. In this example, we calculate the Parisian up-and-out call options across the barrier with

η = T̄ (i.e., ξ = 0) with parameters: σ = 0.1, r = 0.05, δ = 0, T̄ = 0.2, S̄ = 12 and K = 10.

Table 1 presents the values of the Parisian up-and-out call options computed by MWMs, MCSs, IFDM

and LTMs at S = S̄ and η = T̄ . Numbers in the parentheses are the CPU times (seconds) in Table 1.

It is shown that the results by LTMs have little difference to those calculated by other methods and the

CPU times of the LTMs are much less than that of FDMs, MCSs and MWMs. Moreover, IFDMs, MCSs

and MWMs take more CPU time as the time to maturity τ increases, whereas the CPU time remains

unchanged for LTMs. Although MWM is an analytical method for the pricing Parisian-type option,

it requires much more computational time when T ≫ T̄ . This is because the number of moving time

windows grows larger with T increasing. However the CPU time for LTMs is independent of τ and T .

So the LTMs are more efficient than the MWMs in this regard.

In Figure 3, we plot the errors of the Laplace inversion formula (2.39). Here, the values of Parisian

options computed by setting L = 20 are regarded as the reference solutions, and the actual errors are

measured by L2 norm. From Figure 3, we see that the actual errors agree well with the theoretical

estimation, i.e., the exponential convergence rate (2.41).

Example 9. In this example, we calculate the Parasian up-and-out call options across the barrier with

η = T̄ with the same values of parameters as Example 8.

Table 2 gives the values of the Parasian up-and-out call options at S = S̄ and η = T̄ . Table 2 shows

that the results of the LTMs agree with those calculated by using IFDMs and MCSs. Also the CPU

times listed in Table 2 show that the LTMs spend much less time than the other methods. Also the

error plot in Figure 4 exhibits the exponential convergence rate which is consistent with the theoretical

result (2.41).

Table 1 The price of the Parisian up-and-out call options

t = τ + T̄ MWM (s) MCS (s) IFDM (s) LTM (s)

0.3 1.3883 (1) 1.3582 (791) 1.3862 (234) 1.3686 (0.7)

0.4 1.0934 (1) 1.0744 (976) 1.1003 (445) 1.0796 (0.6)

0.5 0.8858 (2) 0.8766 (1,209) 0.9005 (682) 0.8825 (0.6)

1.0 0.4296 (3) 0.4212 (1,880) 0.4337 (1,821) 0.4239 (0.6)
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Figure 3 (Color online) Log-scale plots of the errors for Parisian option values using LTMs. The solid curves represent

the actual errors, and the dash-dot lines the theoretical convergence estimate (2.41)

Table 2 The price of the Parasian up-and-out call options

t = τ + T̄ MWM (s) MCS (s) IFDM (s) LTM (s)

0.3 0.9991 (23) 0.9234 (721) 0.9097 (135) 0.9361 (0.9)

0.4 0.7312 (23) 0.6556 (935) 0.6465 (272) 0.6609 (0.9)

0.5 0.5762 (23) 0.4995 (1,202) 0.5055 (408) 0.5085 (0.8)

1.0 0.2462 (23) 0.2198 (2,538) 0.2129 (1,159) 0.2152 (0.8)
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Figure 4 (Color online) Log-scale plots of the errors for Parasian option values using LTMs. The solid curves represent

the actual errors, and the dash-dot lines the theoretical convergence estimate (2.41)

5 Concluding remarks

In this paper, the fast Laplace transform methods are derived to solve the complex PDE system arising

from Parisian and Parasian option pricing. The key contribution of this paper is that it technically solves

the system of ODEs and PDEs derived from the Laplace transform to the original pricing PDE system

with respect to the calendar time to maturity. In solving the system of ODEs and PDEs on the Laplace

space, the analytical solution to the ODEs is derived on a specific parabola contour which is used in the

fast Laplace inversion. Numerical examples show that the Laplace transform methods have exponential

convergence rates and are much more efficient than the existing methods in the literature. In the future

it will be interesting to extend the Laplace transform methods to the moving window Parisian options

which are widely used in the field of convertible bonds in recent years (see [3]).
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2 Chesney M, Cornwall J, Jeanblanc-Picqué M, et al. Brownian excursion and Parisian barrier options. Adv in Appl

Probab, 1997, 29: 165–184

3 Guo D M, Song B, Wang S Y, et al. Pricing moving window Parisian option and applications in convertible bonds.

Procedia Comput Sci, 2013, 18: 1674–1683
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