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A fault-tolerant circuit is required for robust quantum computing in the presence of noise. Clifford + T circuits are widely used in
fault-tolerant implementations. As a result, reducing T-depth, T-count, and circuit width has emerged as important optimization
goals. A measure-and-fixup approach yields the best T-count for arithmetic operations, but it requires quantum measurements.
This paper proposes approximate Toffoli, TR, Peres, and Fredkin gates with optimized T-depth and T-count. Following that, we
implement basic arithmetic operations such as quantum modular adder and subtractor using approximate gates that do not require
quantum measurements. Then, taking into account the circuit width, T-depth, and T-count, we design and optimize the circuits
of two multipliers and a divider. According to the comparative analysis, the proposed multiplier and divider circuits have lower
circuit width, T-depth, and T-count than the current works that do not use the measure-and-fixup approach. Significantly, the
proposed second multiplier produces approximately 77% T-depth, 60% T-count, and 25% width reductions when compared to
the existing multipliers without quantum measurements.
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1 Introduction

Quantum principles enable fast quantum algorithms for fac-
torization [1], database search [2], and second-order op-
timization [3]. Furthermore, quantum principles facilitate
quantum communication ensuring the communication’s un-
conditional security. Quantum communication encompasses
topics like quantum key distribution [4], quantum teleporta-
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tion [5], and quantum secure direct communication (QSDC)
[6-8]. QSDC is one of the most important quantum com-
munication modes and attracts much attention because it can
transmit secret messages directly without sharing a key [9].

Rapid progress has been made in quantum computing
hardware and quantum circuit simulation [10]. It is promis-
ing that quantum computing has the potential to be used to
solve problems with practical significance. The realization
of quantum computers is one of the most significant chal-
lenges in quantum computing [11]. The quantum circuit is
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a more practical and realistic model of quantum computers
than the Turing machine [12]. Toffoli, Fredkin, Peres, and TR
gates are common logical gates for quantum circuits [13-15].
Furthermore, clifford + T circuits are widely used for fault-
tolerant implementation [16, 17]. The Hadamard gate H, the
phase gate S, and the non-Clifford gate T are defined by

H =
1
√

2

 1 1

1 −1

 , S =
 1 0

0 i

 ,T =
 1 0

0 eiπ/4

 .
Thus, H, S, T, the controlled-NOT gate (CNOT), and Pauli
matrices

X =

 0 1

1 0

 ,Y =
 0 −i

i 0

 ,Z =
 1 0

0 −1

 , I =
 1 0

0 1

 ,
are elements in the Clifford + T set.

An instruction set {H, S, S†,CNOT,T,T†} is universal for
quantum computation [18]. Quantum circuits with T-depth 3
and T-count 7 for Toffoli, Fredkin, Peres, and TR gates have
been proposed [18-21]. The T-depth one representation of the
Toffoli gate was presented with four ancillae [19, 22]. Fur-
thermore, Jones [23] used quantum measurement to reduce
ancillae. In other words, the T-depth Toffoli gate performs an
ancilla and a quantum measurement. There are two approx-
imate Toffoli gates that are similar to the Toffoli gate except
for relative phases and may be easier to implement [12, 24].
As a result, we design Clifford + T circuits for approximate
Toffoli, TR, Peres, and Fredkin gates using the instruction set
{H, S, S†,CNOT,T,T†} in this study.

Quantum logic gates can realize arithmetic circuits for
a quantum computer’s reversible arithmetic logic unit [25],
which is essential for quantum algorithms such as Shor’s
prime factorization algorithm and quantum exponential con-
gruence [1,26]. The design of quantum circuits for arithmetic
operations has been actively studied over the last decade
[27-37]. Quantum adders for n-bit addition were proposed
with O(log n) T-depth by exact Toffoli gates, requiring a large
number of ancillae and at least 70n T-count [28-30]. As one
of the best previous works for arithmetic circuits, Gidney pre-
sented a logical-AND gate and an uncomputation gate [32].
By using a measure-and-fixup approach, the uncomputation
circuit has a T-count of zero and a measurement-depth of 1
[23]. Using logical-AND gates, Thapliyal et al. [33] pro-
posed a carry-lookahead adder with O(log n) T-depth and 28n
T-count. Furthermore, Gidney [32] demonstrated an adder
for logical-AND and uncomputation gates with a T-count
of 4n − 4. But Gidney’s adder used 2n − 2 measurements
and n − 1 ancillae. With one ancilla at most, quantum cir-
cuits for adders [21, 31, 34], modular adders and subtractors
[21, 25, 31, 35], controlled modular adders and subtractors
[21,25,36], and comparators [21,31] were designed. Despite

the fact that parts of the above circuits have been optimized,
they still require the T-depth 6n−6 and the T-count 14n−7 at
least. Nam et al. [37] proposed automated methods for opti-
mizing quantum circuits to obtain an adder with the T-count
8n − 8 without taking the T-depth into account.

Quantum multipliers were realized with at most one an-
cilla and at least 4n qubits [21, 38, 39]. In other words, their
circuit widths are no less than 4n. In addition, the quantum
Fourier transform [12, 40, 41] was used to realize a quantum
divider with 4n qubits [42]. Furthermore, two division cir-
cuits with fewer qubits (only 3n + 3 and 3n + 2 qubits) were
proposed [43], where n+ 1 denotes the size of the input, rep-
resenting an n-bit positive integer complement.

We designed Clifford + T circuits for basic arithmetic op-
erations using approximate Toffoli, TR, Peres, and Fredkin
gates, taking into account circuit width, T-depth, and T-count.
The adder, modular adder, modular subtractor, and compara-
tor are examples of arithmetic circuits. Then, using basic
arithmetic operations, we proposed two multipliers and a di-
vider that each required only 3n + 1 and 3n qubits. There are
outstanding works such as quantum multipliers with the best
T-count [44, 45]. Our proposed multipliers and dividers are
created by taking into account the circuit width, T-depth, and
T-count. As a result, when compared with previous excellent
works, they have the best circuit width.

The remainder of this paper is structured as follows. Clif-
ford + T circuits for approximate gates are introduced in sect.
2. In sect. 3, we use approximate gates to design basic arith-
metic operators. Sects. 4 and 5 each propose two quantum
multipliers and a quantum divider. Sect. 6 describes the de-
signs of vector and integer arithmetic operations. Sect. 7
provides a comparative analysis, while sect. 8 provides con-
clusions and future work.

2 Clifford + T circuits for approximate Toffoli,
Peres, TR, and Fredkin gates

The implementations for the Toffoli, Fredkin, Peres, and TR
gates are illustrated in Figure 1 [18, 21].

(a) (b)

(c) (d)

Figure 1 Implementation circuits for (a) the Toffoli gate, (b) the Fredkin
gate, (c) the Peres gate, and (d) an inverse-Peres gate named TR in ref. [15].
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T-depth 3 and T-count 7 are assigned to each of the four
gates. TR gates are used to implement

TR : |C⟩ |B⟩ |A⟩ →
∣∣∣A.B ⊕C

⟩
|A ⊕ B⟩ |A⟩ , (1)

where the symbols “.” and “⊕” represents multiplication and
exclusive-or operators, respectively. (1−B) is the value of B.

We use symbols in Figure 2 to gain clarity, also to repre-
sent the controlled S ⊗n and X⊗n gates.

The first approximate Toffoli gate is distinguished by the
fact that it maps |101⟩ to − |101⟩ [11]. We present the approx-
imate Toffoli gate with the first control bit 0 and its variant
using the first approximate Toffoli gate. If the matrix W and
its inverse W† are expressed as:

W =

 0 1

−1 0

 ,W† =

 0 −1

1 0

 . (2)

The controlled W gate can then be considered the second ap-
proximate Toffoli gate because it is identical to the Toffoli
gate except for mapping |111⟩ to − |101⟩ [24]. Since W and
W† can be written as W = S†(−iX)S and W† = S (−iX)S†,
we can obtain the fault-tolerant implementations for the con-
trolled W gate and its inverse using the Clifford + T circuit
for the controlled −iX gate proposed in ref. [22].

We design the fault-tolerant circuit for the first approxi-
mate Toffoli gate in Figure 3(a) by modifying the gates in
Figure 1. The circuit in the top-left corner of Figure 3(a) il-
lustrates that the function of the first approximate Toffoli gate
is equal to the combination of a Toffoli gate and a controlled-
Z gate. The first approximate Toffoli gate’s variants are
shown in Figure 3(b)-(d). The controlled −iX gate [22] is
realized by the dashed box in Figure 3(e). We obtain the
fault-tolerant implementations for the controlled W gate and
its inverse using the controlled −iX gate, as shown in Fig-
ure 3(e) and (f).

The first approximate Toffoli gate is compared with the
two Toffoli gates presented in refs. [32, 46]. The results are
shown in Table 1 and show that complex matrices are used to
express operators for the circuits in refs. [32, 46].

Using the first approximate Toffoli gate, we design the ap-
proximate Peres, TR, and Fredkin gates in Figure 4. Each of
these gates has only T-depth 2 and T-count 4. Because the

Figure 2 Symbols for the controlled S ⊗n and X⊗n gates.

Table 1 Comparisons of approximate Toffoli gates

Approximate Toffoli gates T-depth T-count Width Matrix form

Proposed in Figure 3(a) 2 4 3 real number

[32] 2 4 3 complex number

[46] 4 4 3 complex number

(a)

(b)

(c)

(d)

(e)

(f)

i

Figure 3 Clifford + T circuits for (a) the first approximate Toffoli gate, (b),
(c) the first approximate Toffoli gate’s variants, (e) the second approximate
Toffoli gate (i.e., a controlled W gate), and (f) the inverse of the controlled
W gate, and (d)-(f) the first approximate Toffoli gate’s variants. The quan-
tum symbols of these gates are shown on the lefts (a)-(f). Their Clifford + T
circuits are depicted on the right.

(a)

(b)

(c)

Figure 4 Clifford + T circuits for the approximate Peres (a), TR (b), and
Fredkin (c) gates.

T-depths and T-counts of the Clifford + T circuits without an-
cillae for Toffoli, Peres, and TR gates are 3 and 7 [18-21], the
proposed circuits have lower T-depths and T-counts.
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3 Basic arithmetic operators for approximate
Toffoli, Peres, and TR gates

We describe the designs of basic arithmetic operators and
controlled arithmetic operators in this section. The former
includes a quantum adder, a quantum comparator, a quantum
modular adder, a quantum modular subtractor, and a quantum
adder-subtractor. The latter consists of a controlled modu-
lar adder and a controlled modular subtractor. To be more
specific, the “modular” arithmetic operators described above
should be described as “2’s complement” arithmetic opera-
tors (with/without carry output). However, to facilitate com-
parison with existing works, we continue to refer to these
operators requiring the modulus to be a power of 2 as “mod-
ular” arithmetic operators.

3.1 Designs of basic arithmetic operators

For arithmetic operators, Toffoli, Peres, and TR gates are
typically paired, as shown by the paired Toffoli and Peres
gates in Figure 5(a). We present the following lemma for
implementing paired Toffoli and Peres gates by approximate
gates.

Lemma 1 Paired Toffoli and Peres gates in Figure 5(a)
can be realized by corresponding approximate gates shown
in Figure 5(d).

Proof For any single-qubit state |x⟩, we have Z |x⟩ =
(−1)x |x⟩. As a result, the circuit in Figure 5(b) on the left
can be transformed into the one in the right, where U is a
unitary gate. We eliminate the paired controlled-Z gates in
Figure 5(c) because Z2 = I. As a result, the approximate
gates depicted in Figure 5(d) can realize paired Toffoli and
Peres gates.

Combining the circuits in Figures 3-6, we obtain optimiza-
tion rules for paired gates shown in Figure 7.

When the operation U in Figure 7 is one of the Peres, Tof-
foli, and NOT gates, we further optimize T-depth and total
depth are further optimized to obtain Clifford + T circuits in
Figure 8.

Using the above lemma, we give Corollary 1 as follows.

(a) (b) (c) (d)

Figure 5 Implementation of (a) paired Toffoli and Peres gates, (b), (c)
removing paired controlled-Z gates, and (d) paired approximate Toffoli and
Peres gates.

(a)

(b)

(c)

U U U

U U U

U U U

Figure 6 Implementations of (a) paired TR and Toffoli gates, (b) paired
TR and Peres gates, and (c) paired Toffoli and Toffoli gates.

(a)

(b)

(c)

(d)

U

UU

U

U U

UU

Figure 7 Optimizing rules for paired gates showing rules 1-4 in (a)-(d).

(a)

(b)

(c)

(d)

Figure 8 Further optimizing rules for paired gates showing rules 5-8 in
(a)-(d).
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Corollary 1 Arithmetic operators can be realized with a
maximum of T-depth 2n+1, T-count 8n−4, and circuit width
2n + 1. Quantum adder, comparator, modular adder, modu-
lar subtractor, and adder-subtractor are among the arithmetic
operators presented in ref. [21].

Proof Suppose that |b⟩ = |bn−1bn−2 . . . b0⟩ and |a⟩ =
|an−1an−2 . . . a0⟩ are inputs of these arithmetic operations.
|S A⟩, |S MA⟩, |DMS ⟩, and |CMAS ⟩ are outputs, i.e.,

S A = a + b,

S MA = (a + b) mod 2n,

DMS = (b − a) mod 2n,

CMAS = (b + (−1)ea) mod 2n,

(3)

with |S A⟩ = |snsn−1 . . . s0⟩, |S MA⟩ = |sn−1 . . . s0⟩, |DMS ⟩ =
|dn−1 . . . d0⟩, |CMAS ⟩ = |hn−1 . . . h0⟩, sk, dk, hk, d ∈ {0, 1}, and
k ∈ {0, 1, . . . , n}. By Lemma 1 and Corollary 1, using cor-
responding approximate gates, we implement paired gates in
basic arithmetic operators and design the circuits for these
basic arithmetic operations in Figure 9. Using the compara-
tor presented in Figure 9(b), we obtain |c⟩ = |0⟩ for b ≥ a and
|c⟩ = |1⟩ for b < a. The circuit in Figure 9(e) implements the
modular addition for |e⟩ = |0⟩ and the modular subtraction
for |e⟩ = |1⟩.

We obtain fault-tolerant implementations of these arith-
metic operators with T-depth 2n + 1, T-count 8n − 4, circuit
width 2n + 1 by combining rules in Figures 7 and 8, The
detailed circuits of 3-bit arithmetic operators are shown as
examples in Figure 10.
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Figure 9 Basic arithmetic operator designs for approximate gates, includ-
ing (a) a quantum adder, (b) a quantum comparator denoted as COM, (c) a
quantum modular adder denoted as MA, (d) a quantum modular subtractor
denoted as MS, and (e) a quantum adder-subtractor denoted as MAS.
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Figure 10 Clifford + T circuits for basic arithmetic operators illustrating
(a) the quantum adder, (b) the quantum comparator, (c) the quantum modular
adder, and (d) the quantum modular subtractor.

Due to S†(S |x⟩) = S†(ix |x⟩) = |x⟩, we eliminate the paired
S and S† gates in Clifford + T circuits and give Clifford + T
circuits for the quantum adder, modular adder, modular sub-
tractor, and comparator in Figure 10. We can deduce from
Figure 9(e) infer that the Clifford + T circuit of the quantum
adder-subtractor is made up of the circuit in Figure 10(c) and
2n − 2 CNOT gates.

3.2 Designs of controlled arithmetic operators

Lemma 2 The circuit consisting of paired gates (see Fig-
ures 5 and 6) and Toffoli gates can be realized using cor-
responding approximate gates, controlled −iX gates, and a
controlled S ⊗n gate.

Proof A Toffoli gate can be decomposed into a controlled
−iX gate and a controlled S gate [22]. A circuit made up
of paired gates and Toffoli gates is shown on the left in Fig-
ure 11. Because S |x⟩ = ix |x⟩, we obtain a similar result with
the circuit in Figure 5(b). In other words, the middle circuit
in Figure 11 is provided. Controlled-Z gates and controlled-
S gates are commutable as demonstrated by the equation
S Z = ZS . As a result, the optimized circuit is shown on
the right in Figure 11.

We get similar results when using other paired gates and
Toffoli gates in our circuits. As a result, the lemma holds.

Due to T 2 = S , T 3 = S T , T 4 = Z, T 5 = ZT ,
T 6 = ZS , T 7 = T †, and T 8 = I, we obtain T n ∈
{T, S , S T, Z,ZT, S Z, T †, I} for any integer n. Therefore, the
Clifford + T circuit in Figure 12(a) reveals that the controlled
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S ⊗n gate can be implemented with T-depth 2 and T-count
2n + 1, at most.

Corollary 2 T-depth 3n + 1, T-count 14n − 7, and width
2n + 1 can be used to implement a controlled modular adder
and subtractor.

Proof Let |CMA⟩ and |CMS ⟩ be the outputs of these con-
trolled arithmetic operations, i.e.,CMA = (b + da) mod 2n,

CMS = (b − da) mod 2n,
(4)

with |b⟩ = |bn−1bn−2 . . . b0⟩, |a⟩ = |an−1an−2 . . . a0⟩, |CMA⟩ =
|tn−1 . . . t0⟩, |CMS ⟩ = |ln−1 . . . l0⟩, tk, lk, d ∈ {0, 1}, and k ∈
{0, 1, . . . , n}. By Lemma 2, we design circuits of controlled
arithmetic operations in Figure 13.

We use rules in Figure 12 to create fault-tolerant CMA
and CMS implementations. Clifford + T circuits of 3-bit
controlled arithmetic operators, for example, are shown in
Figure 14. These fault-tolerant implementations demonstrate
that the corollary is correct.

4 Designs for quantum multipliers

We propose two multipliers for the following multiplication
in this section: |1⟩ |b⟩ |0⟩⊗n |a⟩ → |0⟩ |ba⟩ |a⟩ , for a , 0,

|1⟩ |b⟩ |0⟩⊗n |a⟩ → |1⟩ |0⟩⊗2n |b⟩ , for a = 0,
(5)

i

ii

i

Figure 11 Implementation of paired gates and Toffoli gates.

(a) (b)

(c)

(d)

i i

i

i

U U

UU

Figure 12 Optimization rules for controlled arithmetic operators shown
rules 9-12 in (a)-(d).

(a)

(b)

i

i

i

i

i

i

i

i

Figure 13 Controlled arithmetic operator designs for approximate gates
showing (a) a controlled modular adder denoted as CMA and (b) a controlled
modular subtractor denoted as CMS.
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Figure 14 Clifford + T circuits for 3-bit controlled arithmetic operators,
illustrating (a) the controlled modular adder and (b) the controlled modular
subtractor.

where a and b are both n-bit integers.

4.1 First special multiplier for ab with a , 0

We define the following equations for the multiplication of
ba with two n-bit integers a , 0 and b,

s0 = 0,

s1 = s0 + b0 × a,
...

sn = sn−1 + bn−1 × a × 2n−1.

(6)

Due to s =
∑n−1

k=0 2kbka, we obtain sn = s. The iteration cir-
cuit presented in Figure 15(a) realizes∣∣∣sk
⟩
=
∣∣∣sk

n+k−1 . . . s
k
k+1sk

k

⟩ ∣∣∣sk
k−1 . . . sk

1sk
0

⟩
→
∣∣∣sk+1

n+k . . . s
k+1
k+1sk+1

k

⟩ ∣∣∣sk
k−1 . . . s

k
1sk

0

⟩
=
∣∣∣sk+1
⟩
,

(7)

with k = 0, 1, . . . , n − 1. As a result, we can perform n iter-
ations to obtain the multiplication ba with a , 0, and design
its circuit in Figure 15(d). We obtain by applying rules 13
and 14, the Clifford + T circuit of the iteration IM with T-
depth 3n + 2 and T-count 14n − 5. The Clifford + T circuits
of the 3-bit first special multiplier for example, Figure 16 to
realize: |b⟩ |0⟩⊗3 |a⟩ → |ba⟩ |a⟩ .
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4.2 First multiplier

Considering two n-bit integers a and b with ab = 0, and us-
ing the approximate Fredkin gate shown in Figure 4(c), we
design the operator Aswap in Figure 17(a) to implement

|d⟩ |a⟩ |b⟩ → |d⟩
∣∣∣a′⟩ ∣∣∣b′⟩ , (8)

with a′ = da + db, b′ = db + da, d = 1 − d, b = 2n − 1 − b,
and d ∈ {0, 1}.

For a = 0, the iteration IM only transforms |bk⟩ into
∣∣∣∣bk

⟩
.

The executed result is |sn⟩ =
∣∣∣∣b⟩ |0⟩⊗n by the circuit in Fig-

ure 17(a). We use the comparator in Figure 9(b) to give:
|c⟩ = |0⟩ for a , 0 and |c⟩ = |1⟩ for a = 0.
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Figure 15 Design of the first special multiplier for ba with a , 0 showing
(a) an iteration of the first special multiplier, denoted as IM, (b) rule 13, (c)
rule 14, and (d) the circuit of the first special multiplier.
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Analyzing the input |0⟩ |b0⟩ |0⟩ |an−1⟩ . . . |0⟩ |a1⟩ |0⟩ |a0⟩, we
merge the comparator and the first iteration to give the first
iteration, denoted as IM0 in Figure 17(c). Thus, the first iter-
ation IM0 realize |0⟩ |b0⟩ |0⟩⊗n |a⟩ → |0⟩ |b0a⟩ |a⟩ , for a , 0,

|0⟩ |b0⟩ |0⟩⊗n |a⟩ → |1⟩ |b0a⟩ |a⟩ , for a = 0.
(9)

Using operators IM0, IM, and Aswap, we present the first
multiplier in Figure 17(d) to implement the multiplication in
eq. (5).

We obtain the fault-tolerant implementation of the first it-
eration IM0 with T-depth 4n and T-count 20n − 16, by com-
bining the operator ATO in Figure 17(b) and rules in Fig-
ures 7 and 8, Furthermore, we give the Clifford + T cir-
cuit of Aswap in Figure 17(a) with T-depth 2 and T-count
4n. As a result, the T-depth and T-count for the first mul-
tiplier are given by 4n + (3n + 2)(n − 1) + 2 = 3n2 + 3n and
20n−6+ (14n−5)(n−1)+4n = 14n2+5n−11, respectively,
circuits for the 3-bit first multiplier, for example, are shown
in Figure 18.

4.3 Second multiplier

The multiplication ba can be expressed as:

ba = [−b0 + (−1)b1 ]a + 2n−1a +
n−1∑
k=2

(−1)bk 2k−1a, (10)
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Clifford + T circuit of Aswap, and (d) the circuit of the first multiplier.

with bk = 1 − bk. We create an operator denoted as SM in
Figure 19(a) to implement [−b0 + (−1)b1 ]a. As a result, mul-
tiplication is broken down into an operation SM, an addition,
and (n−2) addition-subtractions. We create the second multi-
plier by combining the operators SM, MA, Aswap, and MAS.
Their circuits are shown in Figure 19. We obtain the Clifford
+ T circuit of the operator SM with T-depth 5n − 1 and T-
count 20n − 9 by using rules 16 and 17 in Figure 19. As a
result, the second multiplier is made up of an operator SM,
a modular adder MA, an operator Aswap, and (n − 2) modular
adder-subtractors. The following equations are used to cal-
culate the T-depth and T-count for the second multiplier by
5n− 1+ 2n− 1+ 2+ (2n− 1)(n− 2) = 2n2 + 2n+ 2 whereas,
20n−9+8n−9+4n+ (8n−9)(n−2) = 8n2+7n. The circuits
for the 3-bit second multiplier, for example can be seen in
Figure 20.

5 Design for a quantum divider

We design the circuit ID in Figure 21(a) to implement:

|s⟩ |bn−k⟩ = |sn−1 . . . s1s0⟩ |bn−k⟩
→ |qk−1⟩

∣∣∣s′n−1 . . . s′1s′0
⟩
= |qk−1⟩ |s′⟩ ,

(11)

where |s′⟩ = |s − x⟩, x = a for sn−1 . . . s1s0bk ≥ a, and x = 0
for sn−1 . . . s1s0bk < a. Using rules 18-20 in Figure 21, using

T-depth 3n + 2 and T-count 14n − 5, we obtain the Clifford +
T circuit for the iteration ID. Analyzing the input of the first
iteration |0⟩ |0⟩ |an−1⟩ . . . |0⟩ |a1⟩ |bn−1⟩ |a0⟩, we simplify the it-
eration ID into ID0 in Figure 21(b) . Similarly, we can give
the Clifford + T circuit of ID0 with T-depth 3n+1 and T-count
12n−4. Then, using the iterations ID0 and ID, we provide the
circuit of a quantum divider in Figure 21(f) to implement the
division b/a. It has a quotient and remainder of q = q2q1q0

and r = r2r1r0, respectively. The circuits for the 3-bit divider,
for example, are shown in Figure 22.

6 Implementation of vector-integer operations

A 2m × 1 vector V2m can be stored in the following state
[47-49]:

|ψm⟩ =
1
√

2m

2m−1∑
j=0

|V2m ( j)⟩ | j⟩ , (12)

where | j⟩ = | jm−1 . . . j1 j0⟩ and V2m ( j) denote the jth location
of a vector and the corresponding element value, respectively.

For instance, the state

|ψ2⟩ = (|000⟩ |00⟩ + |100⟩ |01⟩ + |101⟩ |10⟩ + |111⟩ |11⟩)/2

encodes the column vector V4 = [0, 4, 5, 7]†. The vector-
integer multiplication and division can then be implemented
using the proposed multipliers and dividers.
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Set V8 = [0, 1, 2, 3, 4, 5, 6, 7]† and a = a2a1a0 = 101 = 5.
We use the following examples to describe vector-integer
multiplication and division implementations:V8 × a = [0, 5, 10, 15, 20, 25, 30, 35]†,

(Q,R) = V8/a,
(13)

with the quotient Q = [0, 0, 0, 0, 0, 1, 1, 1]† and the remainder
R = [0, 1, 2, 3, 4, 0, 1, 2]†. We can deduce from eq. (12) that
the following state exists.

|ψ3⟩ =
1
√

23

7∑
k=0

|V8(k)⟩ |k⟩

=
1
√

23
(|000⟩ |000⟩+|001⟩ |001⟩+|010⟩ |010⟩+|011⟩ |011⟩

+ |100⟩ |100⟩ + |101⟩ |101⟩ + |110⟩ |110⟩ + |111⟩ |111⟩)

encodes the column vector V8.
We use three perfect shuffle permutations for clarity;

P2n−1,2, and P2,2n−1 , Γ2n , and four quantum black box circuits
I f , I−1

f , Ig, and I−1
g are used to shift quantum lines [50],

where
P2n−1,2 | jn−1 . . . j2 j1 j0⟩ = | j0 jn−1 . . . j2 j1⟩ ,
P2,2n−1 | jn−1 . . . j1 j0⟩ = | jn−2 . . . j1 j0 jn−1⟩ ,
Γ2n | jn−1 . . . j1 j0⟩ = | j0 j1 . . . jn−1⟩ ,

(14)
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Figure 22 Circuits for the 3-bit divider showing (a) the 3-bit iteration ID, (b) the Clifford + T circuit of ID, (c) the 3-bit iteration ID0, (d) the Clifford + T
circuit of ID0, and (e) the circuit of the 3-bit divider.

and

I f |an−1 . . . a1a0⟩ |bnbn−1 . . . b1b0⟩
= |bnbn−1an−1 . . . b1a1b0a0⟩ ,
I−1

f |bnbn−1an−1 . . . b1a1b0a0⟩
= |an−1 . . . a1a0⟩ |bnbn−1 . . . b1b0⟩ ,
Ig |an−1 . . . a1a0⟩ |bn−1 . . . b1b0⟩
= |bn−1an−1 . . . b1a1b0a0⟩ ,
I−1
g |bn−1an−1 . . . b1a1b0a0⟩
= |an−1 . . . a1a0⟩ |bnbn−1 . . . b1b0⟩ ,

(15)

can be implemented by a maximum of n swap gates. We
design the circuit in Figure 23 to realize the vector-integer
division in eq. (13). using the iterations ID0 and ID.

The input in Figure 23 is

|a⟩ |0⟩⊗3 |ψ3⟩ =
1
√

8

7∑
k=0

|101⟩ |000⟩ |V8(k)⟩ |k⟩. (16)

The quantum circuit performs the following operations
in parallel: |101⟩ |000⟩ |V8(k)⟩ |k⟩, k = 0, . . . , 6, 7. Consider
k = 6, i.e., |101⟩ |000⟩ |V8(6)⟩ |6⟩ = |101⟩ |000⟩ |110⟩ |110⟩;

we illustrate the executing process of the vector-integer divi-
sion as follows.

Due to 0001 < 101, we from eq. (11) know that the itera-
tion ID0 keeps the input unchanged, i.e.,

|101⟩ |000⟩ |110⟩ |110⟩ = |101000110⟩ |110⟩
1⇒|001001110⟩ |110⟩ 2⇒|001001110⟩ |110⟩
3⇒|101000110⟩ |110⟩ .

(17)

Performing P2,25 gives

|101000110⟩ |110⟩ 4⇒|101001100⟩ |110⟩ . (18)

Similarly, due to 0011 < 101, tells us that the iteration ID
cannot change the input, i.e.,

|101001100⟩ |110⟩ 5⇒|001101100⟩ |110⟩
6⇒|001101100⟩ |110⟩ 7⇒|101001100⟩ |110⟩ .

(19)

After step 8, we have

|101001100⟩ |110⟩ 8⇒|101011000⟩ |110⟩ . (20)
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For 0110 > 101, the iteration ID gives

|101011000⟩ |110⟩ 9⇒|011100100⟩ |110⟩
10⇒|101001100⟩ |110⟩ 11⇒|101100100⟩ |110⟩ .

(21)

Performing steps 12 and 13, we get the following result:

|101100100⟩ |110⟩ 12⇒|101001100⟩ |110⟩
13⇒|101001001⟩ |110⟩ , (22)

i.e., the remainder |R(6)⟩ and the quotient |Q(6)⟩ are both
|001⟩.

Following the same procedures for k = 0, 1, 2, 3, 4, 5, 7,
we obtain the vector-integer division output as follows:

|ψD⟩ =
1
√

23
|a⟩

7∑
k=0

|R(k)⟩ |Q(k)⟩ |k⟩, (23)

where R(k) and Q(k) are elements of vectors R and Q in eq.
(13), respectively.

We design the circuits in Figure 24 using the proposed
multipliers to realize the vector-integer multiplication in eq.
(13).

The outputs in Figure 24(a) and (b) are both

|ψM⟩ =
1
√

23

7∑
k=0

|c⟩
∣∣∣a′⟩ |aV8(k)⟩ |k⟩ , (24)

with |a′⟩ = |a⟩ for a , 0 and |a′⟩ = |V8(k)⟩ for a = 0, where
V8(k) (k = 0, 1, . . . , 7) are elements of the vector V8 in eq.
(13).

Finally, we only use a multiplier or a divider to perform
the multiplication V2m ×a or the division V2m /a, which neces-
sitates 2m multiplications or divisions by traditional comput-
ers. It demonstrates the efficiency of the proposed arithmetic
operators.

7 Comparative analysis

7.1 Comparisons of basic arithmetic operators

The performance indices of the proposed basic arithmetic op-
erators are shown in Table 2. Because the modular adder and
modular subtractor are conjugate transposes of each other
and no measurements are used in the implementation, the
costs are, of course, identical. As a result, we leave out the
modular subtractor and the controlled modular subtractor in
Table 2.

Because modular adders can perform integer complement
addition, they are also referred to as adders in refs. [32, 37].
The best T-count for the measure-and-fixup approach is 4n−4
for the adder. Because the adder in ref. [32] employs mea-
surement, it cannot be directly compared to the T-count.
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Table 2 Performance indexes of basic arithmetic operators

Basic arithmetic operators T-depth Total depth T-count Total count Width

Adder 2n + 1 12n − 4 8n − 4 25n + 26 2n + 1

Modular adder 2n − 1 12n − 15 8n − 9 25n − 36 2n

Comparator 2n 14n − 13 8n − 4 26n − 12 2n + 1

Modular adder-subtractor 2n − 1 12n − 13 8n − 9 27n − 38 2n + 1

Controlled modular adder 3n + 1 17n − 7 14n − 7 40n − 27 2n + 1

Since the optimizing circuit [37] for the modular adder does
not involve the T-depth optimization, we only compare the
T-count, total count, and width of the modular adders. Ac-
cording to the results in Table 3, the T-count of the modular
adder in ref. [37] is 8n− 8. Take note of the fact that the pro-
posed modular adder has a lower total count than the modular
adder in ref. [37].

We compare the proposed works with the rest of the ba-
sic arithmetic operators in refs. [21, 34, 35, 43] taking into
account the circuit width, T-depth, and T-count. The results
are shown in Table 4. From Table 4, we observe that the pro-
posed basic arithmetic operators have lower T-depths and T-
counts than the corresponding works in refs. [21, 34, 35, 43].

7.2 Comparisons of multipliers and dividers

The measure-and-fixup method was used to implement pre-
vious multipliers with the highest T-count. Gidney, for ex-
ample, used adders to realize a multiplier with 6n2 + O(n)
T gates using the measure-and-fixup method [44]. Simi-
larly, using the logical-AND and uncomputation gates [32],
Munoz-Coreas and Thapliyal proposed a multiplier with T-
count 8n2 − 4n [45]. However, the two multipliers also ne-
cessitate O(n2) quantum measurements.

We compare the proposed arithmetic operations to best-
known works without quantum measurements [21,39,43] be-
cause we design multipliers and dividers not using quantum
measurements. Table 5 displays performance indices and
comparison results, comparisons of quantum multiplication
and division circuits are given in Tables 6 and 7 by increas-

Table 3 Comparison of modular adders

n
Heavy optimization in ref. [37] Proposed modular adder

T-count Total count Width T-count Total count Width

8 56 190 16 55 164 16

16 120 414 32 119 364 32

32 248 862 64 247 764 64

64 504 1758 128 503 1564 128

128 1016 3550 256 1015 3164 256

256 2040 7134 512 2039 6364 512

512 4088 14302 1024 4087 12764 1024

1024 8184 28638 2048 8183 25564 2048

2048 16376 57310 4096 16375 51164 4096

Table 4 Comparisons of basic arithmetic operators

Quantum arithmetic operators T-depth T-count Width

Adder

proposed 2n + 1 8n − 4 2n + 1

[21] 6n − 3 14n − 7 2n + 1

[34] 6n − 3 14n − 7 2n + 1

Modular adder

proposed 2n − 1 8n − 9 2n

[21] 6n − 9 14n − 21 2n

[35] 6n − 6 14n − 14 2n

Controlled
modular adder

proposed 3n + 1 14n − 7 2n + 1

[21] 9n − 6 21n − 14 2n + 1

[43] 9n − 6 21n − 14 2n + 1

Comparator
proposed 2n 8n − 4 2n + 1

[21] 6n − 3 14n − 7 2n + 1

Modular
adder-subtractor

proposed 2n − 1 8n − 9 2n + 1

[35] 6n − 6 14n − 14 2n + 1

Table 5 Comparisons of multipliers and dividers

Quantum arithmetic operators T-depth T-count Width

Multiplier

proposed 1st 3n2 + 3n 14n2 + 5n − 11 3n + 1

proposed 2nd 2n2 + 2n + 2 8n2 + 7n 3n + 1

[21] 9n2 − 2n − 3 21n2 − 9n − 5 4n

[39] 9n2 − 6 21n2 − 14 4n + 1

Divider

proposed 3n2 + 2n − 1 14n2 − 7n + 1 3n

restoring[43] 15n2 + 18n + 3 35n2 + 42n + 7 3n + 3

non-restoring [43] 6n2 + 9n − 3 14n2 + 21n − 7 3n + 2

ing n from 8 to 2048 for clarity. The proposed divider and
multipliers outperform the previous works in refs. [21,39,43]
for the three performance indicators as shown in Tables 5-7.
The second multiplier, in particular, reduces T-depth by ap-
proximately 77%, T-count by 60%, and width by 25% when
compared with the existing works [21, 39].

Note: To implement the positive 2’s complement divi-
sion, two dividers (restoring and non-restoring) were pro-
posed [43]. The complement of a n-bit integer requires
m = n + 1 bits. As a result, their T-depths and T-counts are
15m2 − 12m = 15n2 + 18n+ 3, 35m2 − 28m = 35n2 + 42n+ 7,
6m2 + 3m − 6 = 6n2 + 9n − 3, and 14m2 + 7m − 14 =
14n2 + 21n − 7, respectively. In addition, their widths are
3m = 3n + 3 and 3m − 1 = 3n + 2.
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Table 6 Comparison of multipliers

n
Multiplier in ref. [39] Proposed 2nd multiplier Improvement (%)

T-depth T-count Width T-depth T-count Width T-depth T-count Width

8 570 1330 33 146 568 25 74.39 57.29 24.24

16 2298 5362 65 546 2160 49 76.24 59.72 24.62

32 9210 21490 129 2114 8416 97 77.05 60.84 24.81

64 36858 86002 257 8322 33216 193 77.42 61.38 24.90

128 147450 344050 513 33026 131968 385 77.60 61.64 24.95

256 589818 1376242 1025 131586 526080 769 77.69 61.77 24.98

512 2359290 5505010 2049 525314 2100736 1537 77.73 61.84 24.99

1024 9437178 22020082 4097 2099202 8395776 3073 77.76 61.87 24.99

2048 37748730 88080370 8193 8392706 33568768 6145 77.77 61.89 25.00

Average 77.07 60.92 24.83

Table 7 Comparison of dividers

n
Divider in ref. [43] Proposed divider Improvement (%)

T-depth T-count Width T-depth T-count Width T-depth T-count Width

8 453 1057 26 207 841 24 54.30 20.44 7.69

16 1677 3913 50 799 3473 48 52.36 11.24 4.00

32 6429 15001 98 3135 14113 96 51.24 5.92 2.04

64 25149 58681 194 12415 56897 192 50.63 3.04 1.03

128 99453 232057 386 49407 228481 384 50.32 1.54 0.52

256 395517 922873 770 197119 915713 768 50.16 0.78 0.26

512 1577469 3680761 1538 787455 3666433 1536 50.08 0.39 0.13

1024 6300669 14701561 3074 3147775 14672897 3072 50.04 0.20 0.07

2048 25184253 58763257 6146 12587007 58705921 6144 50.02 0.10 0.03

Average 51.02 4.85 1.75

8 Conclusions and future work

This paper proposed Clifford + T circuits for approximate
Toffoli, Peres, TR, and Fredkin gates. Then, using these
approximate gates, we designed circuits of basic arithmetic
operators with lower T-depths and T-counts. We presented
two multipliers and a divider while taking into account the
circuit width, T-depth, and T-count. According to the com-
parative analysis, the proposed multipliers and dividers have
the greatest width compared with the existing works. Specif-
ically, the proposed multipliers and dividers require only
3n + 1 and 3n qubits to perform n-bit integer multiplica-
tions and divisions. Furthermore, the proposed multipli-
ers and divider have lower T-depth and T-count than previ-
ous works that do not use quantum measurements. Further-
more, the proposed multiplier and divider can be used to per-
form vector-integer operations. Quantum algorithms, such
as quantum chemistry, are likely to be implemented in these
noisy intermediate-scale quantum (NISQ) devices [51]. The
results will be extended and applied in practical information
processing in NISQ devices in future works. Analyzing a
system’s overall performance (e.g., scalability and fault tol-

erance percentages) in noisy environments will also be an
interesting topic.
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and Technology Project of Guangxi (Grant No. 2020GXNSFDA238023).
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