论四川盆地奥陶系天然气勘探

陈宗清原四川石油管理局地质勘探开发研究院

陈宗清.论四川盆地奥陶系天然气勘探.天然气工业,2010,30(1):23-30.

摘要 四川盆地奥陶系的天然气勘探一直未取得较好成效。为此,分析了奥陶系2组烃源岩(灯影组、九老洞组)的生油气条件:①灯影组具有生油条件,唯其时代久远,埋藏一般较深,有机质已演化到过成熟阶段(R~2%),所生成的石油皆已裂解为天然气;②九老洞组烃源岩生气强度十分可观,以成都、乐山、自贡与资阳地区为最丰,生气强度为20×10⁸~230×10⁸ m³/km²。通过储层物性、缝洞分析(古岩溶缝、洞穴的发育分布,古岩溶的演化,裂缝作用)及盖层条件分析,结合该区雅安—龙女寺古隆起、天井山古隆起、泸州古隆起与油气的生成关系分析结果,认为在奥陶系找气仍有较好前景,并提出了勘探建议:盆地中、西部的弧形地带,即从广元经南充、华蓥山—乐山,以及加里东期形成的泸州古隆起和威远巨型穹隆背斜构造,皆是奥陶系下一步勘探的有利区块。

关键词 四川盆地 奥陶纪 沉积岩相 生油气条件 古岩溶缝洞 加里东期古隆起 勘探有利区 弧形地带 DOI:10.3787/j.issn.1000-0976.2010.01.007

川黔鄂地区奥陶系的油气显示均普遍存在,特别是在中奥陶统宝塔组龟裂纹石灰岩中更是如此,常见于龟裂纹隙和直角石体腔内,次为下奥陶统红花园组石灰岩和生物灰岩裂缝及晶洞中。然而,从已钻井情况来看,皆未取得较好的成效,目前仅在泸州地区的东山构造宝塔组钻获一口高产气井(东深1井),经测试产气达22×10⁴ m³/d;此外在盆地西北广元的河湾场构造在奥陶系钻河深1井,完钻测试产气3.29×10⁴ m³/d。为推进四川盆地奥陶系油气勘探,谨写此文。

1 早奥陶世沉积相

按理本区奥陶系油气显示,均以中奥陶统宝塔组最为普遍,而且已钻获工业气流的也是宝塔组,但考虑到该组全区皆为龟裂纹石灰岩,岩性很稳定,而且厚度变化也不大,一般介于 10~30 m,最厚达 50 m。为此,鉴于下奥陶统距下伏生油层更近,并有储层,因此相应的把沉积相改作早奥陶世沉积相,以期对奥陶系含油气远景能有更多揭示。

四川盆地早奧陶世海侵,继承了晚震旦世灯影期 以来海侵格局(图 1),即由黔北和鄂西向北西方向侵 入。当时海盆周边,西有康滇古陆,西北有青藏古陆, 秦岭古陆则横亘于北。但由于早期海侵规模相对较小,致使川陕边界及龙门山地区,缺失下奥陶统下部,

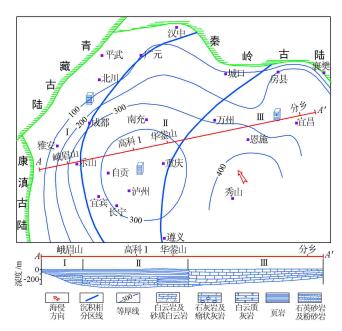


图 1 四川盆地早奥陶世沉积相图

沉积相分区: I. 碎屑岩相; II. 台地碳酸盐岩相向上变为碎屑岩相; III. 台地碳酸盐岩浅缓坡相

作者简介:陈宗清,1931年生,高级工程师;1954年毕业于重庆大学地质系石油与天然气勘探专业;现主要从事石油与天然气勘探和研究工作。地址:(610051)四川省成都市成华区府青路一段3号。电话:(028)83310641。

下奥陶统上部超覆于寒武系之上[1]。盆地东部下奥陶统多为碳酸盐岩,向西碎屑岩逐渐增多,愈往西碎屑岩愈粗且多为红色,其中以红花园组最为明显,在川鄂边境红花园组石灰岩较厚,向西逐渐变薄,上部已为湄潭组页岩下部所代替,到峨眉山一带已变为砂岩夹少许白云岩的高洞口组。沉积厚度由盆地西、北部向东南逐渐增厚,最厚达400 m。

1.1 碎屑岩相

位于四川盆地西部,广元、成都、乐山一宜宾一线以西,呈北东向向西突出的弧形。在南段峨眉山一带,仅存罗汉坡组一大乘寺组,其上缺失,罗汉坡组为红、绿色石英砂岩及紫、灰色页岩,产 Chungkingaspis sinensis 等三叶虫化石,厚 100 m;大乘寺组为灰一灰绿色页岩,产 Taihungshania brevica 等三叶虫及笔石化石^[2]。北段陕南宁强一带,为赵家山组—西梁寺组,主要为灰绿—黄绿色页岩,仅西梁寺组顶部 10 m 为浅灰色瘤状石灰岩,产始两分对笔石、瑞典断笔石及安娜叶笔石等众多笔石^[1],厚 115 m。

1.2 台地碳酸盐岩相向上变为碎屑岩相

该相位于碎屑岩相之东,由房县经万洲、重庆—遵 义一线之西的盆地中部地区,亦呈北东向向西突出的 弧形。南段黔北一带,地层分组名称从下向上为桐梓 组、红花园组、湄潭组及牯牛潭组,下部桐梓组—红花 园组为灰黑—灰色厚层至薄层白云质灰岩及结晶灰岩 夹页岩,产 Tungtzuella 及芬根伯贝等三叶虫及腕足 类化石,厚97 m;中、上部湄潭组—牯牛潭组,为灰 黄—绿色页岩,夹少量砂岩及石灰岩,产断笔石及官昌 三瘤虫三叶虫等化石,厚183 m。中段西部威远一带, 威2井罗汉坡组为砂质白云岩及石英砂岩,厚48 m: 大乘寺组为灰色粉砂岩与灰绿色页岩互层,厚 184 m。 中段东部华蓥山一带,为半河组—扬子贝组,下部半河 组为浅灰至紫、粉红色页岩,底部为15 m灰色薄层泥 质灰岩,产 Chungking aspis、Tungtzuella 等三叶虫化 石,厚86 m;中、上部湄潭组为黄绿色页岩,产Didymograptus 等笔石化石,厚170 m;顶部扬子贝组为黄 色疏软云母质页岩,厚25 m^[2]。北段与碎屑岩相相似, 为赵家坝组一西梁寺组,主要为灰绿一黄绿色页岩。

1.3 台地碳酸盐岩浅缓坡相

位于房县经万州、重庆—遵义—线以东的渝鄂接壤一带,主要在鄂西地区。地层分组名称,自下向上为南津关组、分乡组、红花园组、大湾组及牯牛潭组。鄂西房县—襄樊一带,厚 208~242 m;南津关组为灰

白-深灰色中厚层白云岩或白云质灰岩,常夹燧石结 核或条带:分乡组为灰及灰黑色薄层石灰岩夹少量页 岩:红花园组以黑色薄层至中层粗晶灰岩为主,含 Cameroceras 头足类化石;大湾组为黄绿色瘤状灰岩, 夹紫红色粗晶灰岩,产 Yangtzeella、Isoteloides 等腕 足类及三叶虫化石;牯牛潭组以灰黄色块状石灰岩为 主,常夹黄色薄层瘤状灰岩[3]。鄂西宜昌—恩施一带, 厚 202~367 m:宜昌南津关组为灰白色厚层白云岩夹 少许页岩,产栉壳虫及指纹头虫等三叶虫化石,向西至 恩施变为灰白--深灰色厚层生物灰岩及结晶灰岩,夹 自云质灰岩及页岩,富含 Dacty locephalus 等三叶虫 化石;分乡组在宜昌一带为灰色石灰岩,上部夹少量页 岩,至恩施变为深灰色中至厚层状结晶灰岩及黄绿色 页岩,产 Acathograptus、Tungtzuella 等笔石及三叶 虫化石;红花园组宜昌一带为灰黑色厚层石灰岩,至恩 施一带变为灰及深灰色中—厚层石灰岩,夹生屑灰岩 及黄色页岩:大湾组官昌一带为红色薄层石灰岩,夹页 岩及瘤状灰岩,至恩施一带变为灰绿色页岩为主,夹紫 红色中一厚层瘤状灰岩,富含笔石、腕足类及三叶虫化 石: 牯牛潭组为紫灰色薄层石灰岩与灰色薄层瘤状灰 岩互层,产头足类化石。渝东秀山一带,厚 473 m:南 津关组下部为深灰色厚层及块状石灰岩,夹少许页岩, 石灰岩含燧石结核,中部为灰--深灰色灰质白云岩,顶 部为白云质条带灰岩,含燧石;分乡组为灰色厚层石灰 岩及生物灰岩夹页岩:红花园组为深灰色块状石灰岩, 上、下部富含燧石;大湾组称紫台组,以紫红及黄绿色 中厚层瘤状泥灰岩及黄绿色页岩为主,夹中层石灰岩、 泥灰岩及少量细砂岩,富含多类化石:牯牛潭组为灰及 紫灰色中层石灰岩夹泥质瘤状灰岩,产头足类化石。

2 奥陶系生储盖条件

2.1 生油气条件

奥陶系具有 2 个烃源岩,其一是震旦系灯影组,另一则为下寒武统九老洞组的泥页岩。

2.1.1 灯影组生油气条件

灯影组含有较多藻类、微古植物及古孢子,特别是下段富藻白云岩层,藻类主要为蓝绿藻、似红藻等,这些低等生物遗体便是灯影组生油的物质基础。从岩石结构和构造中可见到藻的黏液质和藻迹残余。据电镜扫描灯影组所含干酪根呈絮状,具明显无定型结构,证实为低等生物演化而成的腐泥型干酪根类型^[4]。

碳酸盐岩有机质丰度,一般认为有机质含量大于或等于0.08%~0.20%,即可认为是生油层^[5-6]。从表1

%

表 1 灯影组有机碳含量简表

	为 炒 组 内 	140	70					
Di. H	有机碳含量							
地 点	平均值(样品数/个)	最小值	最大值					
威远构造威3井	0.16(126)	0.05	0.50					
威远构造威 4 井	0.28(66)	0.04	1.48					
威远构造威 9 井	0.13(55)	0.01	0.72					
威远构造威 10 井	0.10(73)	0.02	0.51					
威远构造威 11 井	0.35(18)	0.08	0.71					
威远构造威 12 井	0.36(12)	0.05	0.96					
威远构造威 13 井	0.13(37)	0.01	0.53					
威远构造威 14 井	0.16(41)	0.01	0.54					
威远构造威 15 井	0.11(79)	0.01	1.34					
威远构造威 22 井	0.19(9)	0.11	0.42					
威远构造威 30 井	0.14(21)	0.05	0.33					
威远构造威基井	0.18(4)	0.08	0.33					
龙女寺构造女基井	0.23(28)	0.03	0.82					
长宁构造宁 1 井	0.11(6)	0.01	0.32					
乐山范店乡	0.03(55)	0.01	0.07					
峨眉山	0.08(8)	0.02	0.26					
绵竹清平	0.05(32)	0.01	0.41					
广元陈家坝	0.07(13)	0.02	0.14					
南江杨坝	0.43(20)	0.03	0.97					
陕南汉中梁山	0.19(13)	0.02	1.17					
陕南宁强胡家坝	0.07(70)	0.01	0.47					
陕南宁强窄峡子	0.15(17)	0.03	0.55					
鄂西威丰2井	0.30(9)	0.08	1.28					
鄂西各井	0.15(38)	0.02	0.69					

可知,灯影组平均有机碳含量除盆地西部乐山范店乡、绵竹清平、广元陈家坝—陕南宁强胡家坝外,其余地区平均有机碳含量一般皆大于 0.13%,最高可达 0.43%,且其残余厚度常常大于 500 m,可见灯影组无疑具有一定的生油条件。

灯影组生油的另一证据是,无论是盆地内或周边露头,都常见黑色沥青或变质沥青,如陕南、黔北及鄂西。氯仿沥青"A"含量除陕南南郑钢厂和南山岭外,一般平均都大于0.01%,甚至汉中梁山最大可达2.558%,女基井最大也达0.35%(表2);与松辽盆地深层主力烃源岩沙河子组氯仿沥青"A"含量为0.026%~0.16%^[7]相比较,也较相近;灯影组井下岩心沥青含量也不低,而且含沥青样品率也较高。

以上均充分说明灯影组具有生油条件,唯其时代 久远,埋藏一般均较深,有机质已演化到过成熟阶段 (R。>2%),所生成的石油皆已裂解为天然气。

2.1.2 九老洞组生油气条件

九老洞组位于奥陶系之下,岩性以黑—深灰色页岩、碳质页岩或砂质页岩为主,表明为强还原环境条件下的沉积,而且厚度大,尤其是在广元—重庆—线以西

lile 57	氯仿沥青"A"含量			井下岩心沥青含量					
地区	平均值(样数/个)/%	最小值 %	最大值 %	构造名称	井号	样品数/个	平均值 /%	含沥青样品 /%	
陕南汉中梁山	0.34(17)	0.001	2.558	资阳古潜台	资 2	298	5.29	66.11	
陕南南郑钢厂	0.007(6)	0.003	0.022	平安店	平安 1	480	4.56	53.54	
陕南南山岭	0.009(5)	0.004	0.019	威远	威 117	357	0.93	39.50	
陕南宁强胡家坝	0.012(14)	0.001	0.038	自流井	自深 1	291	1.13	39.18	
广元陈家坝	0.010(9)	0.004	0.020	大窝顶	窝深 1	437	0.41	46.68	
女基井	0.004~0.35(梢	品数至少7	7 个)[8]						

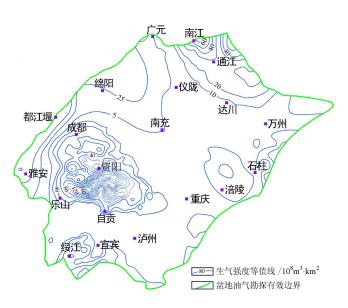
表 2 灯影组氯仿沥青"A"含量及井下岩心沥青含量表

地区,厚度皆大于 100 m,向西逐渐增大,至宜宾西最大可达 400 m。 其次是广元—石柱一线以东,厚度为 60^200 m 。 只有南充、涪陵与石柱间,厚度小于 50 m,生油气条件较差。

有机质丰富,尤其是盆地西部的绵阳、成都、乐山、宜宾和泸州地区,有机质含量皆大于1.0%,在资阳、乐山—自贡之间的威远地区,有机质丰度竞达5.0%。 其次是仪陇、达州—涪陵一线以东地区,有机质含量大于1.0%,南江—带最高可达3.0%。以盆地中部南充、仪陇、达州、重庆—古蔺—带最差,有机质含量仅为0.5%~1.0%。

尽管九老洞组烃源岩的有机质经过漫长时期的演 化已达过成熟阶段,所生成石油均已裂解为天然气,但 其生气强度却十分可观。以成都、乐山、自贡与资阳地 区最丰,生气强度为 $20\times10^8 \sim 230\times10^8 \text{ m}^3/\text{km}^2$,次 为盆地东北南江、通江和达州地区,生气强度为 $10\times10^8 \sim 60\times10^8 \text{ m}^3/\text{km}^2$ (图 $2^{[9]}$,其余地区则皆少。

2.2 储集条件


2.2.1 储层物性

四川盆地奧陶系因岩性致密一般均未取心,仅在 威远构造钻威基井进行了系统取心,奧陶系的2个储 层(宝塔组和罗汉坡组)的连通孔隙度都很低(平均仅 有1.27%和1.92%),必须借助于裂缝和其他缝、洞的 相互沟通,才能成为较好的储层。

2.2.2 古岩溶缝洞

2.2.2.1 古岩溶缝

志留系沉积后产生的加里东造山运动,不仅使四川盆地整体上升为陆,而且在盆地中、西部形成了一个

四川盆地下寒武统九老洞组生气强度图

近东西向的雅安—龙女寺大型古隆起。该古隆起原名 乐山—龙女寺古隆起,是1964年发现威远震旦系灯影 组气藏以后,对该区地震普查资料进行全面研究后,于 20 世纪 70 年代初命名[10]。现据实钻资料编制的古地 质图,高点并不在乐山而是在雅安。因此笔者据实作 了修正(图3)。加里东运动使盆地抬升为陆,经过漫 长地质岁月,志留系岩石遭到了严重剥蚀,在风化剥蚀 进程中露出地表的部分,经日照、风吹、季节变化,以及 昼夜温差等自然力的作用,必然会产生很多上宽下窄 的张裂缝,当剥蚀至奥陶系碳酸盐岩时,遇大气降水, 裂缝中便会充满淡水,有淡水中的 CO2 参与便可对碳



图 3 四川盆地加里东期末古地质图

S3- 韩家店群

S₁—龙马溪组

o — 奥陶系

酸盐岩进行溶解,从而开始了以溶蚀为主的过程。因 此奥陶系中的古岩溶缝一般来说应比较发育。

2.2.2.2 古岩溶洞穴

在形成古岩溶缝向下纵横向扩溶的同时,于不同 层位和岩石中,如遇易溶的鲕粒、生屑、藻屑、藻球粒及 软体动物等多孔地带,最容易首先形成铸模孔[11],或 淡水停留较长久的地段,以及裂缝延伸相互交接处,都 可使奥陶系的碳酸盐岩溶蚀扩大为古溶洞穴。但从整 个盆地油气勘探有效边界内来看,尽管经历了加里东 运动表生期漫长而强烈的剥蚀,但将志留系泥页岩剥 蚀干净的地区并不太多,呈现在古地质图上的只有盆 地西部的广元经南充—威远一线以西的地区,且在广 元、磨溪—乐山一线以西的地区奥陶系已全遭剥蚀。 因此当时尚有奥陶系残存的地区,则仅有该两线之间 向东突出的弧形地带,即由广元向南跨越雅安—龙女 寺古隆起北翼,再经其轴部转向南翼的弧形地带。该 地带奥陶系碳酸盐岩分布较广,经长期的淡水淋溶必 然会产生古岩溶洞穴。从该带已钻井可知,女基井、磨 深1井及高科1井均有南津关组残存,其厚度分别为 39 m、54.5 m 及 22 m,岩性女基并有生物灰岩和鲕粒 灰岩,均是淡水最易干溶蚀的岩石,但该3口井皆未发 现有古溶洞穴存在。威远构造虽然已钻了 100 多口 井,但均无一口井已剥蚀至罗汉坡组(即南津关组),其 上尚有超过 100 m 的大乘寺组砂、页岩存在,甚至有 些井尚有 100~200 m 的志留系泥页岩存在,因此也 未发现有古岩溶洞穴存在。唯长宁构造宁1井钻至罗 汉坡组时,于井深 12.83~13.4 m 钻具放空0.57 m, 漏清水有进无出,但这是现今岩溶,而不是古岩溶,不 过却可说明罗汉坡组是易于形成古岩溶的。因此认为 前述加里东期末尚有奥陶系碳酸盐岩残存的向东突出 的弧形地带,可能有较多古岩溶洞穴存在。

2.2.2.3 古岩溶的演化

1)早期:加里东运动将盆地褶皱并抬升为陆,至中 二叠世海侵到来之前。在志留纪—中二叠世整整2个 多纪,四川盆地仅于青藏古陆前缘龙门山断褶带和盆 地中部华蓥山以东地区,有部分泥盆系和石炭系沉积 外,在这漫长的地质岁月里,盆地其余地区都遇到了严 重的剥溶,特别是当剥蚀到奥陶系碳酸盐岩时,必然会 产生大量的 Mg(HCO3)2 或 Ca(HCO3)2 溶液和少量 杂质(主要为泥质)。它们主要是通过区域潜流带向低 处溢出,仅部分残留在古岩溶缝、洞壁上,形成一世代 胶结,从而造就了众多古岩溶洞穴。因此早期为古岩 溶的形成期。

2)中期:指中二叠世一喜马拉雅山运动前。此期,

当中二叠世海侵到来后,便在奥陶系侵蚀面之上,四川 盆地一般都沉积了中二叠统栖霞组,厚100~150 m 的泥页岩和致密石灰岩,从而停止了继续溶蚀。此时 埋藏水中的泥质首先沉淀,然后淡水和 CO2 消失,再 后 MgCO3 (或 CaCO3)溶液达到饱和浓度而沉淀,于是 便在古岩溶缝、洞壁上,形成了岩石薄片鉴定中常见的 一世代或二世代的泥质或方解石胶结。此期经历的地 质历史时期虽然很长,从古生代直到新生代,其间有多 个地壳运动发生,但对四川盆地而言,有明显影响的虽 有东吴和早印支期运动,它们使四川盆地整体两次上 升为陆,并结束了漫长的海相沉积,但均为造陆运动, 并未形成明显的构造改变。同时,由于该两期运动被 剥溶的地层距奥陶系均甚远,淡水对奥陶系已形成的 古岩溶缝、洞均未造成影响。在志留纪时,震旦系灯影 组和下寒武统九老洞组的烃源岩已达到生油高峰期, 至早、中三叠世已进入成气阶段,石油裂解为天然气。 因此此期也是奧陶系储层油气的生成、运移、聚集和油 变为气的重要时期,天然气已聚集于奥陶系古岩溶缝、 洞和碳酸盐岩原生孔隙中。

3)晚期:强烈的喜马拉雅山造山运动是四川盆地构造的最后定型期,它不仅形成了众多不同类型的构造带和局部构造,而且伴生了更多大小不等、方向不定的断裂。相应的在局部构造轴、顶部、断层沿线、鼻凸、扭曲和陡缓转折处,也会产生较多的张性缝,从而改善储层的相互连通性。

2.2.3 裂缝作用

伴随构造形成的张性缝,具有一定的孔隙空间,早已被人们认为是致密岩层储集油气的重要储集空间。四川盆地的碳酸盐岩一般都很致密,储集油气在很大程度上就是靠裂缝。中奥陶统宝塔组就是一典型的例证,由于含泥质重不容易溶蚀成孔洞,储集油气主要靠龟裂纹灰岩的张性裂缝。裂缝的另一作用,就是连通已形成的古岩溶洞穴和沉积时形成的岩石原生孔隙,特别是古岩溶洞穴,尽管在奥陶系目前尚未发现有其存在,但推测应有较多古岩溶洞穴存在。由于古岩溶洞穴埋藏深度都较深,如中二叠统茅口组储层,一般都发现在距茅口组储层侵蚀顶面以下 50~200 m 之间[12],试想溶蚀如此深,绝不可能是一条垂直单缝,而应有许多分支。当其彼此相互交切连通起来,便可成为一个连通网络空间。因此,裂缝既是储集空间,又是连接孔、洞的通道,对油气的运聚起着重要的作用。

2.3 盖层条件

奥陶系碳酸盐岩储层的盖层有两种情况:①当加 里东运动后的剥溶已无志留系泥页岩残存的地区,其 盖层为中二叠统栖霞组底部,一般有 10~20 m 的泥页岩(即梁山段)和其上 130~140 m 的致密灰岩,封盖良好,早已为川东石炭系气藏所证实^[13];②另一情况是志留系页岩尚有残存,则其盖层为奥陶系中、上部的页岩和志留系的页岩,厚度不定,往往很大,是一套良好的盖层。

3 加里东期古隆起与油气

3.1 雅安-龙女寺古隆起

该古隆起西起雅安之西约 100 km 与康滇古陆相 接,向东经资阳、南充、武胜一华蓥西龙女寺构造倾没 (图 3),西高东低,长约 460 km,实为一个向东倾伏的 巨型鼻状古隆起。在其形成过程中,随着运动的进程 必然会在平行古隆起的轴向产生许多张性缝,此时也 是灯影组和九老洞组的烃源岩达到生油高峰的时期。 当这些裂缝一旦穿达奥陶系储层并进入上寒武统洗象 池群(该群气源层与奥陶系相同,截至2004年于威远 气田已有11口井获工业性气流,其中6口井气产量皆 在 10×10⁴ m³/d 以上),因此很可能此时已有油气聚 集于奥陶系储层中。但由于平行古隆起方向的裂缝, 一般都是断续或疏密不均,以及古隆起轴、顶部储集空 间的多寡等,而导致晚期生成的一些油气滞留于距古 隆起较低或较远的奥陶系储层中。即使喜马拉雅山造 山运动形成了众多不同类型的构造带、局部构造和断 裂,也很难彻底改变这一状态。例如女基井并未钻在 龙女寺构造圈闭内,而是钻在该构造南翼圈闭线外 7 km的向斜中, 当钻到下奥陶统南津关组时, 于井深 4 525~4 530.5 m, 岩性为生物灰岩, 局部为鲕粒灰 岩,发生气侵。同样,位于其南的合川构造合12井,钻 达下奥陶统南津关组时,于井深 4 355~4 358 m 发生 井涌,岩性为石灰岩,泥浆池气泡面积达60%,遗憾的 是对这两口井均未进行测试。

其实,2004年威远气田老井挖潜,用13口震旦系老气井上试寒武统洗象池群,获气井10口,成功率达77%,其中值得关注的是威水2井,当年钻达洗象池群时,仅于井深2231~2232m漏泥浆4.9m³,上试则产气10×10⁴m³/d以上。鉴于此,建议对以下在威远气田钻达奥陶系储层有油气显示的井,都应进行上试:①威基井钻达下奥陶统罗汉坡组,井深1831~1872m严重气侵;②威4井钻达下奥陶统大乘寺组,井深2204~2207m漏浆49.66m³;③威15井钻达下奥陶统大乘寺组,井深2204~2207m漏浆49.66m³;③威15井钻达下奥陶统大乘寺组,井深2204~2207m漏浆49.66m³;④威寒17井钻达下奥陶统罗汉坡组,井深2581~2582.75m井涌,取气可燃;

⑤威 37 井钻达下奥陶统大乘寺组,井深 1 892.2~ 1 898.4 m漏浆 17.6 m³,后效气侵,泥浆池增液 1.3 m³;⑥威 42 井钻达下奥陶统罗汉坡组—上寒武统洗象池群,井深 2 170~2 205.08 m漏浆 155.02 m³,后效气侵;⑦威 65 井钻达下奥陶统罗汉坡组,井深 2 054.65~2 054 m漏浆 175.6 m,堵漏用水泥 28.5 t;⑧威 72 井钻达下奥陶统罗汉坡组,井深 2 122.92 m漏浆 33 m³;⑨威 93 井钻达中奥陶统宝塔组,井深 1 680.17~1 682.38 m漏浆 62.3 m³,堵漏用水泥 5 t。

3.2 天井山古隆起

该古隆起位于盆地西北缘,曾经云贵和冶里两次地壳运动^[14],在青藏古陆与龙门山深大断层接壤处,形成的一北东向盆地边缘古隆起,因于 20 世纪 60 年代在广元—江油间的天井山构造首先发现而命名。清晰可见下寒武统九老洞组(或称筇竹寺组)砂、页岩露头,呈两翼近于对称的标准背斜横剖面,其上为中二叠统石灰岩覆盖。显然,是于志留纪末发生的加里东造山运动造就的古隆起,经严重剥蚀导致,向古隆起外侧

在磨刀垭西北,可见到泥盆系、石炭系覆于奥陶系石灰岩之上,其间缺失志留系。在上寺之西的田坝,于1950~1960年曾开采沥青(最初认为是煤)炼油、炼焦,"采出沥青数万斤,炼出油1000余斤"。笔者有幸前往调查,证实九老洞组页岩夹砂岩内,确有4条巨型沥青脉,最宽者为6~7 m。紧接着地调处便派队前往对其进行了详查(表3、4和图4)^[15]。

不难看出,该古隆起经云贵、冶里和志留纪末的加里东运动,遭强烈剥蚀,从隆起核部向四周已露出了下寒武统九老洞组—奥陶系岩层,部分还残留了少量志留系泥页岩,其后于其上相继沉积了泥盆系、石炭系及其以上地层。尽管从全盆地来看,灯影组和九老洞组烃源岩于志留纪时(也可能是志留纪末,因田坝田1井于九老洞组曾返出原油)已达到生油高峰期,然而对天井山古隆起来说却是例外,因其上覆的岩层已遭到严重剥蚀,地温已大幅下降,其后继续生成的石油,至少至三叠纪地温才能再次达到生油主峰期,而早期生成的油气一部分已从剥露出来的寒武系—奥陶系岩层中

소는 디	/->	层 位	产出方式	沥青脉/m			War THI ALL FE	
编号 位	位置			宽	长	肩	物理性质	
1	矿山梁背斜 核部	下寒武统九老洞组 顶以下约 500 m	高角度断层 裂缝两壁	0.65	_	3.0	褐黑色,固态,硬,砂泥质 含量特重	
2	矿山梁背 斜核部	下寒武统九老洞组 顶以下约 440 m	高角度断 层裂缝	0.39	1.0	1.8	黑色,固态,含砂泥质较重	
3	矿山梁背 斜核部	下寒武统九老洞组 顶以下约 470 m	横裂缝	0.29	0.5	1.0	黑色,固态,似煤,脆,难燃, 风化成碎块	
4	矿山梁背斜 青杠坡断层	下寒武统九老洞组 顶以下约 500 m	低角度逆掩 断层破碎带	1.5	4.6	_	黑色,固态,含泥砂质重并 具泥砂砾	
5	矿山梁背斜青 杠坡断层附近	下寒武统九老洞组 顶以下约 440 m	低角度逆掩断 层上盘横裂缝	0.08	_	2.0	黑色,固态,含泥砂质较重	
6	矿山梁背斜 东北端	志留系	裂缝	0.40	_	0.9	黑色,固态,质纯,性脆, 易燃,具油脂光泽	

表 3 矿山梁背斜沥青脉情况表

表 4 田坝下寒武统九老洞组巨型沥青脉情况表

编号	/ -		主山土土	沥青脉 /m			物田州岳
编号 位置	层 位	产出方式	宽	长	高	物理性质	
1	田坝附近	下寒武统九老洞组 顶以下约 500 m	高角度 纵断层	6.3	25.0	20.5	黑色,固态,油脂光泽,能燃并 有油味及油泡,含泥砂质重, 并有泥砂角砾
2	田坝附近	下寒武统九老洞组 顶以下约 550 m	高角度斜断层 (2条沥青脉)	3.8及 6.9	_	8.6	黑色,因态,能燃,含泥砂并具 角砾
3	田坝附近	下寒武统九老洞组 顶以下约 500 m	高角度 纵断层	1.15	_	2.1	褐黑色,固态,较重,含泥砂最多,并有角砾
4	田坝附近	下寒武统九老洞组 顶以下约 400 m	高角度 纵断层	0.33	_	4.0	黑色,固态,能燃,含泥砂重, 具砂、泥岩角砾

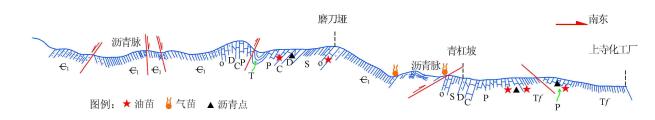


图 4 广元上寺至田坝间横剖面示意图

散去。由于上覆岩一般皆很致密,晚期生成的油气虽于三叠纪已达到生油高峰期,但生成的油气可能仅有一部分已运移入奥陶系、二叠系及三叠系的碳酸盐岩古岩溶缝、洞和沉积原生孔隙中,但绝大部分的油气仍滞留于生油母岩中,并可能于新生代时才开始进入成气阶段,使石油裂解为天然气,而在其尚未完全裂解为气时,喜马拉雅山造山运动便发生了,油气伴随断褶全面向上运移,但遇阻后仍有不少滞留于断带和九老洞组裂缝中,如图 4 和表 4、5 中所见。目前所见到的沥青脉应是喜山期后,经过漫长地质岁月的剥蚀后,裸露出来并遭强烈氧化变成的硬性固体沥青。这已于1967年在田坝从九老洞组向下曾钻田 1 井,于井深134.8 m 放空 0.10 m,井深 220 m、333~335.5 m,曾先后返出原油 2 kg 及 30 kg,井口有潮涌现象,得到了证实。

于三叠纪生成并运移人奥陶系、二叠系及三叠系碳酸盐岩古岩溶缝、洞和沉积时形成的原生孔隙中的油气,以及伴随喜山期断褶上移的油气,则在上移的进程中随机选择完好的构造或圈闭而聚集成藏。而此时,上覆地层尚未遭到剥蚀或剥蚀较轻,地温还较高,使石油继续裂解为天然气,直到全部裂解。因此,该区目前已钻获的奥陶系和二叠系气藏,如河湾场、矿山梁及射箭河等气藏,均全为天然气而无石油[12]。与本文有关的是河湾场构造河深1井即于奥陶系产气,钻厚仅28 m,产气3.29×10⁴ m³/d,表明以上气藏继续向下勘探,皆有可能在奥陶系再获气藏。

3.3 泸州古隆起

位于盆地南部泸州市区稍北,呈北东向,顶部在阳高寺构造阳深2井与东山构造东深1井之间,在古地质图上的地层为下志留统龙马溪组页岩,向四周变为中志留统石牛栏群—上志留统韩家店群的泥灰岩及页岩。该古隆起已钻深井较少,上述2口井加上阳深1井共3口深井,其中仅有东深1井在奥陶系获工业气流。东山构造呈北东向,有一条大逆断层纵贯整个构造,对东深1井奥陶系分两段进行了测试:①中奥陶统宝塔组,井深3497~3542m,产气22×10⁴m³/d;

②下奧陶统湄潭组顶—中奧陶统顶,测试产气 $29 \times 10^4 \text{ m}^3/\text{d}$,产水 $33 \text{ m}^3/\text{d}$ 。说明宝塔组虽然是龟裂纹灰岩,下奥陶统也是致密灰岩,但只要厚度较大和有断裂存在,也有可能获工业气流。

4 勘探建议

4.1 中西部弧形区块

该区块位于盆地中、西部,由广元经南充—乐山,向东呈鼻状突出,面积约2.4×10⁴ km² (图 5)。从古地质图上可明显看出,该区经加里东期后的强烈剥蚀,下奥陶统已全面暴露地表,下奥陶统沉积时为碳酸盐相向上变为碎屑岩相,其底部常为碳酸盐岩,经钻探证实女基井南津关组尚残存有厚39m最容易溶蚀的生物灰岩及鲕粒灰岩,磨深1井和高科1井残厚也分别达54.5m及22m,它们在长期遭受淡水溶蚀的情况下,必然会形成众多古岩溶缝、洞。当其被上覆的中二叠统栖霞组泥页岩及致密灰岩封盖后,皆可成为良好的储层。除已知局部构造外,若区内在古地形上,奥陶

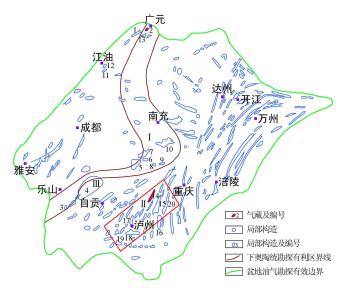


图 5 四川盆地奥陶系天然气勘探有利区块图

1.矿山梁;2.河湾场;3.寿保场;4.威远;5.高石梯;6.柏梓场;7.磨溪;8.王家场;9.合川;10.龙女寺;11.彰明;12.中坝;13.射箭河;14.东山;15.花果山;16.塘河;17.阳高寺;18.纳溪;19.付家庙;20.临峰场

系储层有残丘或隆起,均可能是气聚集的良好场所。 甚至,由于古岩溶缝、洞的形成,并不受构造和地域的 限制,即使向斜内如泸州地区云锦向斜的云锦7井和 云锦8井,在钻入中二叠统茅口组储层均有钻具放空 显示,并获得工业气流,这就进一步提示我们在勘探奥 陶系储层时,不仅要注重背斜圈闭,在一定条件下还要 从非背斜油气藏的角度去考虑,这将更会有益于勘探。 本区块的局部构造,有矿山梁、河湾场、龙女寺、磨溪以 及高石梯等 10 余个构造,可供勘探。尤其是本区块北 段,靠近天井山古隆起一带,如前所述已发现较多巨型 沥青脉,这在全国来说也是罕见,经浅井钻探,于200 m 以下还有液态原油,也许该区地腹还可能有下寒武 统九老洞组油藏存在。因此对该区奥陶系来说,最现 实的是广元河湾场构造河深1井已发现工业气流,与 其相邻的一些构造也可能有奥陶系气藏存在,值得重 视。

4.2 泸州区块

位于川南泸州一带,呈北东向,面积近 1×10⁴ km²,该区在加里东期末已形成古隆起,顶部在阳深2 井与东深1井之间,向四周倾斜。在其后的中二叠世 茅口期末的东吴运动和中三叠世末的早印支运动,皆 有明显的表现。因此该古隆起为继承性古隆起。在数 次上隆的过程中,必然会在隆起上产生许多张性裂缝, 尤其是古隆起顶部,特别是喜马拉雅告山运动,经断褶 在古隆起上形成了众多方向不一的局部构造,这些局 部构造大多皆有断层发生,而在局部构轴、顶部、鼻凸、 断带、扭曲以及陡缓转折处,都产生了不少张锋,沟通 了早期形成的溶洞和裂缝,以及沉积时形成的原生孔 隙,使早期聚集于孔、缝、洞中的油气,通过已连通的裂 缝,择高而聚集于圈闭完好的局部构造中。目前,在该 区块已钻达奥陶系的井还很少,但已在东山构造东深 1井,于中奥陶统宝塔组一下奥陶统顶已发现一个高 产气藏。本区块除东山和阳高寺构造外,尚有纳溪、花 果山、塘河、付家庙以及临峰场等20余个局部构造可 供钻探。

4.3 威远构造

威远构造是一个巨型穹隆背斜构造,震旦系顶面闭合面积850 km²,上三叠统香溪群顶面闭合面积为1761 km²。尽管目前于奥陶系尚未发现气藏,但从前

述威基井等 9 口井均有油气显示,以及与其直接相邻的下伏层上寒武统洗象池群上试的情况来看,获气的几率确实很大,而且鉴于威 15 井位于震旦系构造北翼圈闭线很远,奥陶系仍有严重气侵,泥浆池增液达 1.2~3 m³。因此预测构造相邻较远的地区,奥陶系都很可能有气藏存在,值得关注。

参考文献

- [1]中国科学院南京地质古生物研究所.西南地区地层古生物手册[M].北京:科学出版社,1974:23-30.
- [2] 张文堂.中国的奥陶系——全国地层会议学术报告汇编 [M].北京:科学出版社,1962:58-66.
- [3] 中南地区区域地层表编写组 .中南地区区域地层表[M].北京:地质出版社,1974;104-142.
- [4] 张声瑜,唐创基.四川盆地灯影组区域地质条件及油气远景[J].天然气工业,1986,6(1):3-9.
- [5] 西北大学地质系石油地质教研室.石油地质学[M].北京: 地质出版社,1979.
- [6] 陈作全.石油地质学简明教程[M].北京地质出版社,1987: 36.
- [7] 赵文智, 邹才能, 冯志强, 等. 松辽盆地深层火山岩气藏地质特征及评价技术[J]. 石油勘探与开发, 2008, 35(2):129-142.
- [8] 计德华,岳宏.川西南震旦系油气勘探前景的探讨[J].天然气工业,1986,6(1):10-14.
- [9] 王世谦,陈盛吉,陈宗清,等.四川盆地油气资源评价[R].成都:四川石油管理局,2002.
- [10] 宋文海.对四川盆地加里东期古隆起的新认识[J].天然气工业,1987,7(3):6-11.
- [11] 刘宝珺. 沉积岩石学[M].北京:地质出版社,1980:224.
- [12] 陈宗清.四川盆地中二叠统茅口组天然气勘探[J].中国石油勘探,2007,12(5):1-11.
- [13] 陈宗清.川东石炭系潮坪沉积区地层划分对比与找气意 义[J].地质学报,1985,59(2):87-96.
- [14] 地质部第五普查大队.贵州及邻区地层古生物手册[R]. 贵州:地质部,1962.
- [15] 石油工业部四川石油会战指挥部.四川盆地石油勘探综合数据手册[G].成都:石油工业部四川石油会战指挥部,1966。

(修改回稿日期 2009-11-10 编辑 罗冬梅)