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Artificial intelligence (AI) systems surpass certain human intelligence abilities in a statistical sense as a whole, but are not yet the
true realization of these human intelligence abilities and behaviors. There are differences, and even contradictions, between the
cognition and behavior of AI systems and humans. With the goal of achieving general AI, this study contains a review of the role
of cognitive science in inspiring the development of the three mainstream academic branches of AI based on the three-layer
framework proposed by David Marr, and the limitations of the current development of AI are explored and analyzed. The
differences and inconsistencies between the cognition mechanisms of the human brain and the computation mechanisms of AI
systems are analyzed. They are found to be the cause of the differences and contradictions between the cognition and behavior of
AI systems and humans. Additionally, eight important research directions and their scientific issues that need to focus on brain-
inspired AI research are proposed: highly imitated bionic information processing, a large-scale deep learning model that balances
structure and function, multi-granularity joint problem solving bidirectionally driven by data and knowledge, AI models that
simulate specific brain structures, a collaborative processing mechanism with the physical separation of perceptual processing
and interpretive analysis, embodied intelligence that integrates the brain cognitive mechanism and AI computation mechanisms,
intelligence simulation from individual intelligence to group intelligence (social intelligence), and AI-assisted brain cognitive
intelligence.
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1 Introduction

Building machines that can think and infer like humans has
been a human endeavor for centuries. The birth of artificial
intelligence (AI) is regarded to have occurred at the 1956
Dartmouth Conference [1]. Since then, AI has undergone
numerous fluctuations and advancements to reach its current
state [2,3], surpassing human capabilities in numerous spe-
cific aspects [4–6]. In this process, cognitive science has
repeatedly inspired the progress of AI. Cognitive science is a
cutting-edge, interdisciplinary field that emerged in the mid-
1970s [7]. Its primary objective is to investigate the nature
and laws of human cognition and intelligence, and it focuses
on studying how information is formed, represented, and
recognized by the brain. The prevailing viewpoint maintains
that current AI algorithms are different from human cogni-
tive functions because they are still constructed by statistical
learning that depends on massive data [8]. Leveraging in-
sights from cognitive science research to enhance AI models
and algorithms may be a promising avenue for the future
development of AI.
Although some breakthroughs, such as ResNet [9], Al-

phaGo [10], ChatGPT [11], and Sora [12], represent the
statistical surpassing of certain single human intelligence
capabilities, AI systems do not truly achieve human in-
telligence. Most of them pay more attention to “fitting” ra-
ther than “cognition” by designing loss functions.
Contemporary AI is beleaguered by a plethora of issues,
including its black-box nature [13] and vulnerability [14]. It
is very important and urgent to understand what the in-
telligence of the human brain is. After conducting a full study
and understanding the cognitive intelligence of the brain, we
may know what intelligence should be provided to machines.
Currently, there is a scarcity of papers in which authors
systematically analyze the intersection of cognitive science
and AI, particularly a lack of analysis from the perspective of
cognitive science on the limitations of AI. In this study, we
analyze the challenges of existing AI systems using the
three-layer framework proposed by Marr [15].
The consensus within the academic community suggests

that inspiration derived from cognitive science may serve as
a crucial opportunity for the next leap forward in the de-
velopment of AI. Prof. Chen [16] posited that the core fun-
damental science problem of the new generation of AI is
building the relationship between cognition and computa-
tion, specifically, the relationship between “global-first” and
“local-first”. Recently, Ohki et al. [17] reviewed the ad-
vantages that the human brain possessed in terms of learning
efficiency, continuity, and generalization over AI. The pur-
suit of a novel machine learning methodology inspired by
brain cognition is a promising approach to addressing the
challenges of AI. It is also an inevitable development trend of
future AI technology. In response to this, we begin by ana-

lyzing the limitations of brain-inspired AI at three levels and
then propose our perspectives on future AI from two aspects.
First, given that the historical development of AI has gen-
erally been inspired by cognitive science, based on the lim-
itations analysis mentioned previously, we propose seven
future research directions based on Marr’s three-layer fra-
mework. Second, just as AI is increasingly being combined
with other areas of research, AI increasingly inspires cog-
nitive science. In this study, we provide a preliminary sum-
mary of AI-assisted brain intelligence (AI4BI).
This study is organized as follows: In Section 2, we pri-

marily introduce the developmental history of AI. In Section
3, we primarily analyze the limitations of AI systems from
the three layers framework. In Section 4, we address the
limitations of existing brain-inspired AI and propose eight
research directions from the perspectives of both brain in-
telligence-assisted AI (BI4AI) and AI4BI. Finally, we draw
conclusions in Section 5. Table 1 summarizes the abbrevia-
tions frequently used in this study.

2 Inspiration for AI from brain cognition

Generally, AI is categorized into three primary schools:
symbolism AI, behaviorism AI, and connectionism AI. The
representative achievements include expert systems, re-
inforcement learning (RL), and deep neural networks
(DNNs), which have played a pivotal role in the advance-
ment of AI. Next, we review the histories of these three
schools inspired by brain cognition in the context of cogni-
tive science.

2.1 Inspiration for symbolism AI

Symbolism AI was one of the most active schools in the early
stages of the development of AI. Its fundamental concept is
that cognition is a type of symbolic processing and the

Table 1 Abbreviation definitions

Abbreviation Definition

AI Artificial intelligence

ANNs Artificial neural networks

SNNs Spiking neural networks

LLMs Large language models

AI4BI Artificial intelligence assisted brain intelligence

DNNs Deep neural networks

RL Reinforcement learning

CNNs Convolutional neural networks

GAI Generative artificial intelligence

RT-2 Robotics transformer 2
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processes of human thinking can be computed by symbols.
Hence, computers can simulate human intelligence through
the operation of various symbolic rules.
Much of the early researches on symbolism AI came from

cognitive psychology. In the 1950s, researchers proposed
computational theory [18,19]. In 1976, Newell and Simon
[20] proposed the physical symbol system hypothesis, which
posited that the fundamental building blocks of knowledge
are symbols and intelligence is contingent on knowledge.
They believed that computer software and cognitive psy-
chology methods could be used to imitate the functioning of
the human brain at a macro level [21,22].
Logic theorist is a significant milestone in the history of

AI. It is primarily a computer program based on symbolism
that specializes in imitating human cognition processes
[23,24]. In 1958, Prof. Hao [25] proved over 350 theorems in
the first-order logic section of Principia Mathematica in only
9 min on an IBM 704 computer. Wu Wenjun proposed the
Wu method in 1977. This method is a groundbreaking ap-
proach to geometric theorem proving using computers that
inherited and developed the algorithm-based tradition of
ancient Chinese mathematics, and revolutionized the field of
automatic reasoning. In 2024, a new state-of-the-art ap-
proach for automated theorem proving was achieved by
combining the Wu method and neuro-symbolic models1).
Machine learning algorithms based on symbolism AI have

the advantage of strong interpretability, traceable inference
processes, and flexible knowledge representation. However,
as the problems to be solved have become increasingly
complex, symbolism AI algorithms have been not up to the
task. Although some researchers have found that human and
AI cognitive behaviors have a symbolic nature2), the com-
plexity and abstraction of cognitive intelligence expressed by
the brain are much higher than that of machine intelligence
based on symbolism AI.

2.2 Inspiration for behaviorism AI

Behaviorism AI, also known as evolutionism AI, is a “per-
ception-action”-based behavioral intelligence imitation
methodology derived from evolutionary and cybernetic
theory. Behaviorism AI researchers believe that intelligence
depends on perception and behavior. Intelligence may not
require knowledge, knowledge representation, and knowl-
edge reasoning. Hence, perception and control are the core
issues of behaviorism AI.
In 1950, Turing [26] first proposed embodied intelligence

in his paper “Computing machinery and intelligence,” that is,

robots or simulators that can perceive and interact with the
environment, autonomously plan, make decisions, act, and
have the ability to execute tasks like a human. This is the
ultimate form of AI. Embodied intelligence has a physical
body, collects environmental information through sensors,
uses mechanical actuators to perform physical operations, or
interacts with humans and the environment in real time
through specific entities, such as robots [27]. In the 1980s,
Brooks’ [28] hexapod walking robot (Genghis) was a control
system based on a perception-action model that simulated
insect behavior. In July 2023, the team of DeepMind released
the vision-language-action model called Robotics Transfor-
mer 2 (RT-2). RT-2 is regarded as an initial exploration of
representing embodied multimodal large models with three
major capabilities: symbolic understanding, inference, and
human recognition3),4).
In recent years, RL has gained increasing attention because

of the development of general AI. Many core ideas in RL
were inspired by imitating animal behavior, cognitive psy-
chology, and cognitive neuroscience [29].
RL is the core technology of AlphaGo that sparked global

attention and discussion. It uses Q-learning algorithms to
estimate the expected payoff of each state-action pair and
select the optimal action. Additionally, RL plays a crucial
role in large language models (LMMs) [10]. In 2020, the pre-
training process of GPT-3 incorporated RL learning techni-
ques that enabled the model to optimize its parameters based
on the specific requirements of the task. This innovation
aims to make natural language processing technology more
powerful and accurate [11].
Although the behaviorism AI breaks the traditional cog-

nitive psychology sandwich model of “perception-thinking-
acting” in traditional cognitive science, it still has significant
shortcomings in mimicking human cognition and learning.
We analyze this in detail in the subsequent sections.

2.3 Inspiration for connectionism AI

Some researchers believe that AI should be derived from
bionics, particularly emphasizing the imitation of human
brain models.
In 1943, psychologist McCulloch and mathematician Pitts

[30] first proposed the M-P model. It assumed that the
membrane potential of a neuron had different states at dif-
ferent times. When the membrane potential exceeds a certain
threshold, the neuron generates a pulse signal. In 1958,
Rosenblatt [31] proposed a neural network consisting of two
layers of neurons called Perception. In 1962, Hubel and

1) https://arxiv.org/abs/2404.06405
2) https://arxiv.org/abs/2305.01939
3) https://arxiv.org/abs/2212.06817
4) https://arxiv.org/abs/2307.15818
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Wiesel [32] proposed the concept of receptive field in their
research on the visual cortical cells of cats and monkeys.
They were the first to suggest that neural networks in the
visual cortex have a hierarchical structure. Inspired by this
research, the Neocognitron was developed by Fukushima
[33] in 1980. It is a hierarchical multilayer neural network.
The model consists of several layers, each containing a set of
convolution filters and pooling operations. In 1986, Ru-
melhart et al. [34] successfully solved the parameter opti-
mization of multilayer perceptual neural networks using the
back propagation algorithm. Another important development
during this period was the LeNet-5 model developed by
LeCun et al. [35] in 1998. LeNet-5 was the first convolu-
tional neural network (CNN) to achieve significant success
in image classification tasks. Since the advent of the 21st
century, with the advancement of hardware and massive data
[36], the performance of artificial neural networks (ANNs)
has improved rapidly. In 2014, Inception Net won the
ILSVRC-2014 image classification competition [37]. This
model was inspired by Hebbian theory derived from cogni-
tive science. A squeeze-and-excitation network was the
winner of the last ILSVRC competition. Its performance
improved greatly as a result of the introduction of the at-
tention mechanism. The attention mechanism was mainly
inspired by research on visual attention in cognitive neu-
roscience [38,39]. The visual attention mechanism allows the
brain to focus on specific visual information while ignoring
irrelevant stimuli. Visual cognition consists of two pathways:
“bottom-up” and “top-down”. Figure 1 illustrates the re-
lationship between the two pathways in detail. Both of them
interact and work together to facilitate effective visual pro-
cessing and attention allocation. By mimicking the cognitive
attention allocation mechanism, many types of attention
mechanisms have been extended gradually in DNNs, such as
self-attention mechanisms, channel attention mechanisms,
and spatial attention mechanisms. These mechanisms aim to
emphasize important parts of information and minimize ir-
relevant parts.
As AI application domains have become more complex,

deep learning based on connectionism has achieved great
success in areas such as vision and language because of its
superb function-fitting capabilities. However, the debate that
started 50 years ago about whether AI should mimic the
structure of the nervous system is ongoing [40]. Current AI,
represented by deep learning, is becoming increasingly less
like the nervous system. Many AI experts no longer insist
that “machines need to think like humans to be intelligent”.
However, as research progresses, deep learning models
cannot be adapted to critical and sensitive applications, and
cannot replicate human cognition and integrative inference.
Current AI models only exceed some of the capabilities of
human intelligence in a statistical sense rather than achieving
the true realization of individual intelligence.

In conclusion, cognitive science provides important theo-
retical support and practical guidance for the development of
AI models. These guidelines have strongly promoted the
continuous innovation of AI technology and the expansion of
AI applications.

3 Limitations of current brain cognition-in-
spired AI

Marr [15] believed that “most of the phenomena that are
central to us as human beings—the mysteries of life and
evolution, of perception and feeling and thought—are pri-
marily phenomena of information processing. One of the
fascinating features of information-processing machines is
that to understand them completely, one has to be satisfied
with one’s explanations at many different levels”. He de-
scribed an information processing system as a loosely con-
nected three-layer structure, that is, the hardware
implementation layer, the representation and algorithm layer,
and the computational theory layer.
Marr mentioned that the study of the mechanism of human

intelligence by cognitive scientists can be summarized in the
following three stages. Take the study of visual mechanisms
as an example. First, researchers have studied human visual
mechanisms primarily from the perspective of the cellular
function. This field is often referred to as neuroanatomy.
Although these researchers identified mechanisms behind
some low-level visual cognitive behaviors, they failed to
explain the role of visual centers in higher-level visual
cognition [41]. Second, in the 1970s, cognitive scientists
studied some higher-level visual cognitive behaviors in
terms of representing image features [42,43]. These studies
were usually categorized under psychophysics. Despite nu-
merous research results, these studies still did not clarify the
connection between vision and cognitive processes. Finally,
researchers have concluded that the description of cognitive
behavior requires a level of abstraction that captures beha-
viors and motivations at a higher level. For example, the

Figure 1 (Color online) Attention mechanism inspired by brain cognition
[38].
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visual system of spiders is very sensitive to “V”-shaped
textures. To fully explain this mechanism, it is necessary to
incorporate the spider’s courtship behavior as a motivating
factor.
Collectively, these three stages illustrate the scholars’

evolving comprehension of cognitive mechanisms. Marr also
summarized the content and research logic of these three
stages into a three-layer model. The hardware implementa-
tion layer centers on the physical computation infrastructure.
The representation and algorithm layer focus on information
depiction and articulation. The computational theory layer
offers a philosophical abstraction of cognitive processes that
is crucial for understanding information processing systems.
Figure 2 illustrates three corresponding layers between

brain intelligence and AI. In the following sections, we
analyze the shortcomings of brain-inspired AI in the three
layers.

3.1 Limitations in the hardware implementation layer

The hardware implementation layer primarily involves the
physical realization of an intelligence system. In the brain,
this corresponds to neural structures and biochemical pro-
cesses. In AI systems, it corresponds to the infrastructure of
the model.
The fundamental building block of the brain is the biolo-

gical neuron, which comprises a cell body, dendrites, and an
axon. The cell body contains the nucleus and cytoplasm, and
provides structure and support to the neuron. Dendrites are
extensions of the cell body that receive signals from other
neurons. The axon is a long extension that carries outgoing
signals to other neurons or effector organs. Neuroscientists
have mapped the hemispheric subdivisions of the brain and
defined four regions. The parietal lobe is responsible for the

senses of touch, pain, and temperature. It is located just after
the central sulcus. The occipital lobe, which processes visual
information, is located at the back of the head. The temporal
lobe is responsible for auditory processing and is located in
the lower part of the lateral fissure. The frontal lobe takes
part in motor control and cognitive activities, such as plan-
ning, decision-making, and goal-setting, and is located above
the lateral sulcus and before the central sulcus. Complex
cross-regional connections exist between these areas, which
are necessary for advanced brain function.
The ANN is a digital analog of a biological neural network

and the basic unit is an artificial neuron. The artificial neuron
of first and second-generation ANNs is a mathematical
function, which typically involves a weighted sum and
nonlinear function. Another common type of ANN is the
spiking neural network (SNN), which is considered to be the
third generation of neural network models and is a detailed
imitation of the brain. Unlike traditional ANNs, SNNs pro-
duce a series of discrete impulse signals rather than con-
tinuous values. They mimic the way that biological neurons
emit pulses at specific moments [44,45].
The first two generations of neural networks and SNNs

represent two different ideas for the imitation of the brain
structure. The former focuses more on abstracting the me-
chanisms of the brain rather than replicating its physical
mechanisms in detail. Such neural networks do not fully
mimic the details of neurons, but rather learn the structure
and function of the brain at a macroscopic layer. This
structure is more in line with the way computers process
signals and is more suitable for stacking. Hence, these neural
networks are very large and achieve strong cognitive per-
formance. The latter focuses more on a detailed simulation of
the physical mechanisms of the brain. The physical structure
of the neurons and neuronal organization are very similar to

Figure 2 (Color online) Relationship between Marr’s three-layer theory and the brain intelligence, artificial intelligence.
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the biological neural structure. These neural networks re-
plicate the way brain neurons interact with each other, and
reproduce the working principle of the brain by imitating the
activation and inhibition states of brain neurons, in addition
to the connection and communication between them. Com-
pared with second-generation ANNs, SNNs are character-
ized by low power consumption, robustness, and strong
temporal processing capability.
However, they all have limitations. First, SNNs imitate the

central nervous system at a fine granularity; however, they
struggle to do this at a coarser granularity because of the
difficulty in scaling up. This results in a significant perfor-
mance gap between SNNs and traditional ANNs. Under-
taking further in-depth research on the intricate workings of
the nervous system and gaining a profound comprehension
of its elaborate mechanisms that underlie the execution of
advanced cognitive and physical functions has the immense
potential to help us to solve this complex problem. When the
brain is tasked with processing a significant volume of in-
formation, inhibitory neurons effectively attenuate or sup-
press unwanted or interfering connections, thereby enabling
the brain to process pertinent information with greater pre-
cision and evade distraction from irrelevant data. This in-
tricate mechanism may significantly help the SNN to process
increasingly complex cognitive tasks. Second, traditional
ANNs only mimic brain mechanisms without considering
the physical processes of biological neurons. They place
greater emphasis on fitting not cognition, and only pay at-
tention to how to set the loss function to achieve the best
fitting performance. Traditional artificial neurons are more
simple than biological neurons, and less flexible. With the
same performance, ANNs not only have far more neurons
than biological neural systems [46] but also consume far
more power [47]. Spiking neurons have an advantage in
terms of their ability to accrue and retain more historical state
information. They have a capability that is immensely va-
luable for investigating the network’s short-term memory,
working memory, and related functions. Conversely, tradi-
tional artificial neurons excel in the simplicity of their
structure and ease of stacking. The fusion of these two types
of neurons has the potential to propel ANNs toward a
broader transition from mere function fitting to compre-
hensive cognitive computation. This integration is antici-
pated to empower AI systems with enhanced robustness and
adaptability, thereby making them more resilient to noise and
adversarial attacks.

3.2 Limitations in the representation and algorithm
layer

This layer concerns the process of solving a problem from

input to output. It bridges the gap between abstract goals and
specific implementations. Although both human brains and
AI systems can perform similar functions, their information-
processing mechanisms are fundamentally distinct. A sig-
nificant number of studies in the field of AI have been
dedicated to addressing this discrepancy.
Along with breakthroughs in AI systems, many mind-

boggling phenomena have emerged. In the recognition task,
the adversarial attack is a typical phenomenon that results
from this discrepancy [48‒50]5). In the field of visual cog-
nition, researchers discovered that ResNet-50, which was
trained on ImageNet, primarily relied on texture to recognize
images [13], as shown in Figure 3(b). Adversarial attacks,
which introduce small perturbations into input data, cause
deep learning models to make incorrect decisions, as shown
in Figure 3(c). This differs significantly from human cog-
nitive habits, which prioritize shape when recognizing ob-
jects. In the generation task, OpenAI’s Sora, a highly
advanced AI system, generates content that does not adhere
to the laws of physics. Sora created a four-legged ant,
whereas all known ants on Earth have six legs.
The fundamental reason for these problems is the differ-

ence in the visual cognition mechanisms between human
brains and ANNs. Because of the structural differences
mentioned regarding the previous layer, brain cognition ex-
hibits a multimodal and multilevel characteristic. From a
macroscopic perspective, human brains prioritize global-first
properties in visual perception, also known as the global-first
topological nature theory of perception [51,52]. This theory
posits that the visual process begins with a broad range of
topological properties, which can be described in terms of
global topological invariants. Cognitive scientists have
found that the perception of topological properties is rooted
in the intrinsically photosensitive retinal ganglion cells. In
terms of processing, the brain receives raw image data from
photoreceptor cells in the retina and further deals with the
information to extract higher-layer features. These features
are abstracted and integrated in various layers, ultimately
resulting in our understanding and perception of the image.
However, ANNs are more akin to powerful fitting functions.
Although they possess a multi-layered structure, their in-
formation processing mechanisms differ significantly from
those of the brain. The adversarial attack phenomenon
mentioned previously is believed by some researchers to
stem from the complexity of decision boundaries [49]. The
texture bias phenomenon is attributed to the inability of
CNNs to effectively abstract low-level features into high-
level representations [53].
Taking large models and generative AI (GAI) as examples,

we believe that the above limitations can be specifically
manifested in the following points: (1) Because of disparities

5) https://arxiv.org/abs/1312.6199
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in cognitive mechanisms, they differ from human training
and learning methods. LLMs with extensive parameter scales
are exposed to much more text during pre-training than
people would encounter in a lifetime of reading. Prof. Yo-
natan Bisk described these models as “primarily memory
engines” [54]. (2) They fail to learn the highly abstract nature
of knowledge. LLMs can mimic language domains, but they
cannot learn human mental language. Prof. Jacob Browning
and Prof. Yann Lecun presented:“A system trained on lan-
guage alone will never approximate human intelligence,
even if trained from now until the heat death of the universe”,
and “it is clear that these systems are doomed to a shallow
understanding that will never approximate the full-bodied
thinking we see in humans” [55]. (3) Unlike humans, they
lack the ability to judge the plausibility of generated content,
for instance, the repetitive sentences in Figure 4. The model
produced such obvious mistakes, but could not assess them.
The processing of mental language in the brain involves

the coordinated work of multiple brain regions. In particular,
Wernicke’s area and Broca’s complex play pivotal roles in
language production, comprehension, memory, and expres-
sion, thereby enabling individuals to engage in complex
mental activities using mental language [56]. Notably, the
brain regions involved in language learning do not exist in
isolation; instead, they are intricately interconnected and
interact with other cognitive functions. By contrast, LLMs
primarily rely on probability to predict the next word. LLMs
do not share the common mental language that human brains
use.
Researchers posited that contemporary AI research com-

partmentalizes cognitive functions into distinct domains,
such as speech, vision, and natural language, which results in
isolated information and the sparse integration of data.
Conversely, the human brain is an integrated cognitive sys-
tem. Deep learning-based image recognition models ne-

cessitate the collection and categorization of millions of
photos to enable machines to “recognize” cats, whereas the
human brain excels at capturing and recognizing the flow of
information without requiring the backing of big data. We
believe that the fundamental approach to address these issues
lies in imitation, which allows AI systems to simulate the
cognitive mechanisms of the nervous system from various
perspectives, potentially resolving numerous challenges en-
countered in the representation and algorithm layer.

3.3 Limitations in the computational theory layer

This layer concerns the theory of abstract computation, and
focuses on the goals of computation and the strategies for
performing computation.
The learning process of the brain is complex neural activity

that involves collaboration and interaction among multiple
brain regions. Researchers have indicated that the brain’s
learning primarily involves four processes: (1) information
input and perception, where the brain receives information
from the external world through various sensory organs, such
as vision, hearing, and touch, which is converted into neural
signals and transmitted to different regions of the brain for
processing; (2) information processing and storage, where
different regions of the brain analyze, integrate, classify, and
store the received information; (3) memory formation, where
the brain forms memories by consolidating and reinforcing
the connections between neurons that are strengthened
through continuous learning and repeated practice, which
enables the brain to better extract and recall stored in-
formation; (4) outputting knowledge, where the brain ex-
tracts and processes stored information as needed and
transmits commands to effectors through motor neurons.
Ohki et al. [17] discovered that the human brain maximizes
its learning efficiency through a self-organizing mechanism.
The brain has cognitive neural mechanisms for lifelong
continuous learning, which is accomplished through memory
playback during sleep [33]. Therefore, it is inaccurate to
describe the brain’s learning behavior using a single fixed
loss function. Additionally, in studies on human brain cog-

Figure 3 (Color online) Phenomena inconsistent with human cognitive
machinery [13,48].

Figure 4 (Color online) Sentence repetition problems of GPT3.5. The
two red boxes contain two repeated sentences.
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nitive intelligence [57], researchers have shown that the
generation of human brain cognition can be based not only
on individual units but also the mutual influence between
groups, and the survival of the fittest in an open environment
makes the objective function of the human brain cognitive
mechanism constantly change and evolve.
By contrast, taking DNN training as an example, the

learning process of AI can be viewed as an optimization of a
complex function, typically involving the following steps:
(1) data collection; (2) forward, the neural network uses the
current parameters and inputs data to calculate a predicted
output; (3) loss calculation: the difference between the pre-
dicted output and ground truth is measured; (4) backward:
with the aim to optimize the parameters, the gradient of each
parameter is calculated using a backward algorithm;
(5) parameter updating: based on the calculated gradient,
optimization algorithms (e.g., gradient descent optimization
method) are used to adjust the network parameters and it-
erated until convergence.
Computational logic is also different for AI systems and

the human brain. For instance, they are completely different
in the way they process uncertain information. AI systems
express uncertain information as data and then use mathe-
matical tools, such as rough sets [58] and fuzzy sets [59]. The
brain processes uncertain information through inhibitory
filtering mechanisms. It has specific brain regions to process
this information. In 2021, Mukherjee et al. [60] indicated that
two types of midback projection exist in the prefrontal cor-
tex.
The exponential increase in data has led to the develop-

ment of deep learning models to achieve higher performance.
However, AI systems still fall short in terms of continuous
learning and new concept discovery in unfamiliar environ-
ments compared with the human brain. The primary limita-
tion of AI systems’ learning ability is that they can only
imitate human cognition methods to a certain extent. We
believe that the investigation of factors that contribute to the
emergence of intelligence and the processes involved in its
implementation can be used to overcome the limitations
associated with this layer. Further research into biological
behavior and survival goals will be beneficial for the de-
velopment of more realistic AI models. Specifically, adap-
tive loss functions and continuous learning capabilities are
potential future solutions.

4 Future trends and insights into the integra-
tion of AI and cognitive science

The achievements of cognitive science have inspired much
of the development of AI and provided important theoretical
foundations and insights. Based on the analysis presented in
Section 3, it is evident that AI merely mimics the manner in

which the human brain processes information. These simu-
lations are not entirely accurate, resulting in the numerous
limitations discussed in Section 3. To achieve this, we pro-
pose mutual inspiration between cognitive science and AI.
Inspiration from cognitive science to AI can be categorized
into three levels and seven points based on Marr’s three-layer
model, whereas inspiration from AI to cognitive science
comprises a single, standalone point.

4.1 Brain cognition-inspired hardware implementation
layer

ANN models can be regarded as imitations of the nervous
system. As discussed in Section 3.1, the two most notable
limitations at this level are the difficulty of achieving high
performance through the large-scale implementation of
SNNs and the challenge of mimicking the cognitive me-
chanisms of biological neural systems using traditional ar-
tificial neurons. We believe that the following two paths may
inspire future research in AI in the hardware implementation
layer.

4.1.1 Highly imitated bionic information processing model
We believe that the physical mechanisms of neurons should
be imitated more realistically. Some biological neuron
structures have not been well used in ANNs. For example,
brain neurons have different functions and include excitatory
(E) neurons and inhibitory (I) neurons [61]. Inhibitory me-
chanisms play a very important role in central nervous sys-
tems and are not easily mimicked by traditional artificial
neurons.
Existing brain-inspired computing is an initial attempt in

this direction. Brain-inspired computing, also known as
neuromorphic computing, is a comprehensive term that en-
compasses computing theories, architectures, chip designs,
application models, and algorithms that draw inspiration
from the information-processing modes and structures of
biological neural systems. Neuromorphic computing uses
neurons and synapses as the basic units, and simulates the
central nervous system in terms of its structure and function
[45]. Huang’s group [62] proposed a novel spike sampling
method that mimics the retina’s signal processing to support
high-speed photography. By adopting this method, a high-
speed camera was developed, which reconstructs visual
images at 40000 frames per second in both normal and high-
speed scenes. Additionally, SNNs have gained widespread
attention because of their low power consumption and fast
inference capabilities when implemented on neuromorphic
hardware [47]. These achievements demonstrate the super-
iority of SNNs over traditional neural networks in specific
tasks.
We believe two issues exist for SNNs that are worthy of

further study. First, they still lack widely used machine
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learning algorithms because of the intricate discontinuities
and implicit nonlinear mechanisms inherent in SNNs.
Huang’s group [63‒66] proposed a series of ANN-SNN
conversing algorithms with the aim of developing effective
machine learning algorithms for SNNs. Additionally, opti-
mizing the network structure of SNNs with multi-scale
plasticity is a promising research direction. The traditional
spike timing dependent plasticity learning rule requires
measuring and storing the entire population activity state of
synapses when calculating individual synaptic changes,
which is computationally intensive and challenging to im-
plement, thus limiting the construction of large-scale deep
network models [44].

4.1.2 Large-scale deep learning model balancing struc-
ture and function
The central nervous system is a carbon-based intelligence
system, whereas AI is a silicon-based intelligence system.
Their physical and chemical properties are fundamentally
different. Thus, detailed imitation is no substitute for macro
imitation. Traditional ANNs are better suited to imitate some
brain cognitive mechanisms. For example, neurons and
neural connections can develop and expand under favorable
conditions, thereby increasing the complexity of the neural
network by forming new synaptic connections [44]. Re-
searchers have made initial attempts to mimic the structure of
central nervous systems.
Zhang et al. [67] used task-specific neural unit search and

architectural growth to continuously learn new scenes,
thereby addressing issues that exist in online learning. He
proposed “Reusable Architecture Growth” and “Scene
Router” to divide the neural network architecture search into
cellular and layer-layer means, thereby forming a con-
tinuously changing network structure. This strategy has been
applied favorably in the field of autonomous driving. Gong
introduced a CNN design called the cognitive-inspired net-
work (CogNet), which mimics the structure of visual cog-
nitive mechanisms. This innovative architecture incorporates
three distinct components: global paths, local paths, and top-
down modulators. The local features extracted by the local
paths are modulated by the global features from the global
paths, which simulates the brain’s hierarchical modulation
mechanism. This network combines global and local in-
formation and avoids texture bias by mimicking the brain
structure [53]. Furthermore, some researchers have directly
emulated the neural systems of lower organisms to achieve
balanced intelligence. For example, the nematode, which
measures approximately 1 mm in length, possesses a total of
302 neurons in its body, which enables it to exhibit complex
intelligent behaviors, including sensing, foraging, escaping,
and mating. It has been demonstrated that the computational
complexity exhibited by a single neuron in the nematode life
model can be analogous to that of five to eight layers of

DNNs [68]. Researchers designed a network for autopilot
functionality which composed of 19 fine neurons by simu-
lating the neurons of the nematode [46]. Therefore, the
imitation of biological mechanisms can significantly affect
the realization of general intelligence.
These research findings demonstrate the advantages de-

rived from a balanced structure and function. Recently, in
new neuroscience studies, researchers have shown that
hierarchical cortical processing is integrated with a mas-
sively parallel process to which subcortical areas sub-
stantially contribute and proposed the shallow brain
hypothesis [69,70]. Inspired by these achievements, it is
helpful to construct new high-efficiency structures of DNNs.
In particular, the architecture discovered in [69,70] could
inspire new frameworks of AI models, such as modular deep
learning architectures and width learning [71].

4.2 Brain cognition-inspired representation and algo-
rithm layer

Based on the analysis in Section 3.2, we propose that si-
mulating the information processing mechanisms of the
human brain could serve as the primary approach to address
limitations in the representation and algorithm layer. This
simulation can be categorized into three distinct types. First,
simulating the hierarchical structure of the biological neural
system [72], which can be summarized as Section 4.2.1.
Second, mimicking specific brain information processing
mechanisms, encompassed by Section 4.2.2. Finally,
achieving a balanced simulation that combines performance
and interpretability, can be described as a Section 4.3.3.

4.2.1 Multi-granularity joint problem solving bidir-
ectionally driven by data and knowledge
Granular computing constitutes a theoretical framework that
investigates cognitive methodologies, problem-solving
techniques, and information-processing paradigms depend-
ing on multi-granularity structures. As is commonly under-
stood, humans can integrate information at multiple
granularities to facilitate more exhaustive and precise cog-
nitive computations. Conversely, most AI models undergo a
unidirectional transformation from fine-grained to coarse-
grained in their progression from data to knowledge, which
violates the “global-first” principle.
Wang [73,74] proposed an innovative cognitive computing

framework called data-driven granular cognitive computing
(DGCC). For DGCC, data represent the finest granularity
layer and knowledge is the abstraction of data in different
granularity layers. The DGCC model provides a new idea for
research on cognitive computing and lays the foundation for
solving the problem of the “separation of knowledge and
data”. Based on this framework, Prof. Xia et al. [75‒77]
proposed a granular ball framework that can be applicable to
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diverse machine learning models. This framework segre-
gates the dataset into distinct subsets with different granu-
larities and improves predictive efficacy. It also exhibits
robust generalization ability and interpretability, which can
effectively process large-scale datasets. This idea has a wide
range of applications. Prof. Dai et al. [78] proposed a method
called “sketch less face image retrieval”, which endeavors to
retrieve the desired facial photograph in a minimal number of
strokes. This method was built based on multi-granularity
concepts and divided into two stages, from coarse-grained to
fine-grained. The joint embedding space of the complete
sketch and photo is learned in the first stage and the em-
beddings of the partial sketch are optimized in the second
stage.
The success of the DGCC model and other multi-granu-

larity models [79] demonstrated that simulating the multi-
granularity cognitive mechanisms of the human brain can
significantly enhance the performance of AI models. How-
ever, the current integration of these mechanisms is limited
to certain tasks and the exploration of broader applications
remains a promising research direction.

4.2.2 AI models that simulate specific brain structures
As mentioned previously, the cognitive mechanisms of AI
and the human brain are very different. Directly using ANNs
to simulate brain cognitive mechanisms represents a pro-
mising research direction to address these limitations.
In recognition tasks, several researchers have already

emulated the cognitive mechanisms discovered by cognitive
science, thereby addressing the limitations of existing AI
systems. Prof. Chen [51] posited that the fundamental sci-
entific issue of the next generation of AI is “the interplay
between cognition and computation”, specifically the com-
putational theories of “global-first” versus “local-first”. He
first discovered that human visual cognition followed the
“global-first” theory. Borrowing the “global-first” mechan-
ism, Dong et al. [53] proposed a novel CNN architecture
known as the CogNet, which comprises global paths, local
paths, and top-down modulators. This architecture solves the
phenomenon of texture bias well. Additionally, visual per-
ception mechanisms in the retina have received extensive
attention. There are many types of cells in the retina, such as
optic rod cells and optic cone cells; hence, the retina has a
strong ability to detect targets at different scales. To address
the problem of the poor detection of multi-scale targets by
traditional neural networks, Zhang’s [80] proposed a method
called TridentNet for target detection. It constructs a parallel
multi-branch architecture in which each branch shares the
same parameters, but has different receptive fields. The
different branches are trained by sampling object instances at
appropriate scales. TridentNet can achieve fast convergence
without any additional parameters and computational costs.
The concept of “global-first” effectively characterizes how

the brain manages the relationship between local and global
processing. Similar attempts have been made in other fields,
such as federated machine learning [81].
In language generation tasks, cognitive science findings

are potentially helpful. For example, Elizabeth Spelke, a
psychologist at Harvard University, proposed the theory of
core knowledge. She believed that humans are born with a
small, mutually independent system of core knowledge.
Pinker [82] proposed the mental language, which refers to
the process by which humans use and understand language in
a mental layer. Because humans essentially have the same
neural structure, everyone has inborn grammar knowledge.
For GAI, adding such an interpretable structure is likely to
address many of the aforementioned limitations [83]. At-
tempts have been made to integrate physical rules into AI
systems for some cognitive tasks, and we anticipate that this
area will become a focal point of research endeavors.
Currently, a number of cognitive science research findings

are challenging the rationality of existing deep learning ar-
chitectures [69,70]. We believe that these findings may in-
spire new AI model structures that better simulate human
intelligence.

4.2.3 Collaborative processing mechanism with the phy-
sical separation of perceptual processing and interpretive
analysis
The black-box nature of deep learning has been a challenge
that has plagued connectionism AI. Although numerous at-
tempts have been made to enhance the interpretability of
deep learning, few have imitated the interpretation me-
chanisms of the human brain. In the human brain, perception
and its interpretation occur in different regions. The brain’s
perception and interpretation processes are separate, yet sy-
nergistic. Investigations have been conducted to address this
challenge.
Local interpretable model-agnostic explanations is re-

presentative work based on this idea. It uses an under-
standable linear model to simulate the original model in a
local classification hyperplane and analyzes the contribution
of each feature using the feature weights of the linear model
[84]. Based on the bi-directional cognitive ability of the
cloud model (data→concept and concept→data), Liu et al.
[85] proposed a Cloud-VAE model that embeds under-
standable concepts. First, the cloud model-based clustering
algorithm transforms the initial constraint of latent space into
a prior distribution of the concept. Second, the repar-
ameterization trick based on the forward cloud transforma-
tion algorithm is designed to estimate the latent space
concept by increasing the randomness of latent variables.
This model decouples the feature space for deep learning and
enhances the interpretability of the model using interpretable
concepts obtained from decoupling. Zhang et al. [86] pro-
posed an explainer of graph neural networks. Two pathways
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are designed: one is a predictor to predict the category of the
graph, and the other is an explainer to provide the critical
subgraph and nodes for this prediction. Each of these pre-
viously mentioned methods uses an additional structure that
explains the unexplained prediction mechanism, which ef-
fectively reduces the black-box nature of the models.
This separation mechanism satisfies the interpretation

needs of most model users, and achieves a balance between
model performance and interpretability. Applying this in-
terpretation mechanism to more domains is a goal for further
research.

4.3 Brain cognition-inspired computational theory
layer

As described in Section 3.3, both the environment and be-
havior of other individuals affect the decisions of intelligent
individuals. From the perspectives of factors that influence
intelligence and the specific implementation process of in-
telligence, we propose two research directions for brain-in-
spired AI.

4.3.1 Embodied intelligence that integrates the brain
cognitive mechanism and AI computation mechanisms
According to Prof. Yao Qizhi, the next challenge in the field
of AI is to realize “embodied general AI”6). With the de-
velopment of deep learning, particularly LLMs and visual
models, the development of embodied intelligence has ac-
celerated greatly. However, there is no consensus on the main
scientific issues and technical routes of embodied in-
telligence. Prof. Lu Cewu proposed the following directions
that may help the development of embodied intelligence.
(1) Computer vision models can detect and recognize objects
effectively, whereas the objects that agents encounter or
operate in the real environment are still not recognized ac-
curately. How to obtain this type of data on a large scale with
the corresponding large model is still being explored.
(2) Embodied intelligence needs to integrate the senses of
sight, audition, and even smell, and combine with LLMs to
form a new multimodal large model. Although RT-2 re-
presents the initial exploration of embodied multimodal
micromodels, it still has great difficulties in building a the-
oretically complete and practically feasible technological
framework. (3) Imitation learning and augmentation learning
are regarded as two major tools for embodied intelligence.
Imitation learning records real human operations, but it
cannot traverse all feasible human operations and has poor
scalability. Augmented learning has strong self-exploration
capability, but still relies on the imitation engine. Further
research is needed on how to integrate both of them to make
embodied intelligence learning realistic and scalable. (4) The

imitation engine is a fundamental tool of embodied in-
telligence. How to build an efficient and physically realistic
imitation engine involves the promising intersection research
direction. This is a complex and difficult challenge.
Additionally, the learning objectives of existing AI sys-

tems are mainly determined by loss functions or reward
functions. These functions are usually designed manually
and remain fixed during the training process. The computa-
tional objectives required by embodied intelligence are more
complex. Hence, the design of loss functions inspired by
biological evolution or biological perception can enhance the
demand for AI models for complex tasks. For example, the
gradual maturation of the human brain is the result of the
interaction between genes and the environment that obeys
the law of use and disuse. Researchers have made initial
explorations in this area [87‒89].

4.3.2 Intelligence imitation from individual intelligence to
group intelligence (social intelligence)
Human intelligent behavior is related not only to individuals
but also groups. Swarm intelligence is an intelligence system
that consists of many simple individuals, which realizes in-
telligent behavior through interaction and collaboration be-
tween individuals. In an ecosystem, the relationships
between populations or individuals are more complex. Ma-
slow’s [57] hierarchy of needs suggests that human purposes
can be divided into five levels, including basic survival and
social culture. In most studies, researchers pay more atten-
tion to how to improve the performance of individuals.
However, the relationships of interaction and collaboration
between different AI models have been ignored.
Studies have been conducted that are inspired by natural

phenomena, such as evolution and biological behavior [90‒
92]. However, with the aim of next-generation AI, the fol-
lowing two research directions still deserve further study.
(1) The emergence mechanism of swarm intelligence re-
mains an important topic [93]. How do groups generate in-
telligence? (2) It is worth studying how to model the tasks
and decompose them into small tasks when solving large-
scale and complex problems with human-machine hybrid
swarm intelligence [93]. This also relates to the relationship
between global and local, as mentioned previously.

4.4 AI4BI

The research directions discussed previously are all in-
spirations from cognitive science to AI. Furthermore, as AI
advances, it also has numerous beneficial reciprocal influ-
ences on cognitive science.
The application of AI methods in the field of cognitive

science is mainly divided into two levels. The first is the use

6) https://www.reemanrobot.com/info/towards-embodied-general-artificial-intelligen-87258676.html
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of AI models to replace traditional methods to aid cognitive
science research. Prof. Dai Qionghai et al. [78] proposed an
ultra-wide, ultra-resolution, and ultra-fast microscope ima-
ging instrument called RUSH-I. RUSH-I is a multi-
dimensional and multi-scale high-resolution computational
camera that can be used to observe the cellular activity of the
brain. It provides a new tool to study the structure and
function of subshells, cells, tissues, and organs from an in
vivo study, and solve the conflict between the field of view
and resolution [94,95]. Second, AI as a tool to advance brain
science. In 2016, Huth et al. [96] investigated the language
processing mechanisms in the brain. They visualized active
areas of the brain using a data-driven approach. Specifically,
they used word embedding to build relationships between
words and brain regions, and then used a regression algo-
rithm to obtain semantic maps. Developed in 2022 to explore
the relationship between language understanding and deep
language representation, Caucheteux et al. [97] uses a linear
model to predict brain activity based on GPT-2 activation.
Because LLMs have strong interactive abilities and their
responses are very similar to those of humans, these large
models are replacing the human to become the objects of
study for cognitive psychologists. This approach avoids is-
sues such as environmental variables and ethics, and is
beneficial for the development of psychology. Wu in-
vestigated the biological neural information processing me-
chanism using a continuous attractor neural network, and
proposed a series of original models and mathematical tools.
This network is used to explain various brain functions [98‒
103]. Moreover, BrainPy, which is an international leading
programming platform for neural modeling and brain-like
computation, has been further developed [104].
Additionally, certain ideas from AI are shaping the de-

velopment of cognitive science. The prevailing concept in AI
is the data-driven strategy, which relies on large datasets to
acquire knowledge. However, there is a lack of such datasets
in cognitive science research. The construction of datasets
consistent with brain cognition is a very important future
task. Prof. Wu Si believes that the future construction of
cognition-compliant datasets encompasses the following
aspects: (1) memory research-related datasets: to study the
mechanisms of short-term and long-term memory, in addi-
tion to the process of information encoding, storage, and
retrieval, datasets should include the results of memory ex-
periments, such as recall tasks and recognition tasks; (2)
decision-making and problem-solving related datasets: to
study how people make decisions, in addition to problem-
solving strategies and processes, these datasets should in-
clude information about choices, inference processes, and
results in different decision-making scenarios; (3) social
cognition-related datasets: to study how humans understand
and process social information, including understanding the
intentions, emotions, and behaviors of others, the datasets

should include the experimental results of social interactions,
such as imitation and emotional contagion; (4) cognitive
science-related datasets: to focus on the cognitive develop-
ment of children and adolescents, the datasets should cover,
for example, language acquisition, conceptual development,
and moral judgment; (5) mental health and cognitive dis-
order-related datasets: to study the changes of cognitive
function in mental illness and neurodegenerative diseases,
the datasets should cover the results of cognitive assessments
and clinical diagnostic information.

5 Conclusions

In this study, we presented a comprehensive analysis of the
current state, limitations, and research directions of brain-
inspired AI. From the day it was born, the goal of AI re-
searchers has been to develop machines that can emulate
human thinking. However, despite significant progress in
various areas of AI, current data-driven AI differs funda-
mentally from the intricate cognitive processes of humans.
Cognitive science, specifically cognitive psychology and
cognitive neuroscience, has provided valuable inspiration for
the development of AI. Currently, both generalized AI and
GAI have made significant progress and yielded unforeseen
outcomes. Some researchers even believe that they can de-
velop independently from cognitive science. However, we
believe that to imbue machines with intelligence, it is ne-
cessary to understand brain intelligence first. Only with a
deep understanding of this can we effectively implement
intelligence using machines.
Based on the three-layer structure proposed by Marr, in

this review, we discussed and analyzed the limitations of the
current development of brain-inspired AI regarding posses-
sing the cognitive ability and cognitive behavior of a human.
We proposed eight research directions, exploring both brain-
inspired AI and AI-assisted brain intelligence, with a focus
on future AI research.
In conclusion, interdisciplinary research between AI and

brain cognitive science is an important scientific research
direction. More intelligent, efficient, and humanized AI
systems are expected to be developed by understanding the
working mechanism of the human brain and integrating it
with advanced AI algorithms. For instance, could novel
cognitive insights such as the shallow brain hypothesis in-
spire the creation of innovative artificial neural architectures
that address limitations, such as a lack of interpretability and
inadequate robustness? Furthermore, could cutting-edge
large-scale models, for example, assist cognitive scientists in
advancing our understanding of the interaction patterns be-
tween different brain regions across multiple modalities?
The integration of these two fields has immense potential for
future research.
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