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River Basins (RBs) are the cradle of human civilization, provid-
ing diversified ecosystem services and sustaining fundamental
hydrological and biogeochemical cycles on our planet. However,
the loss of these ecosystem services from RBs has persisted, e.g.,
nearly 80% of the world’s population faces serious water crisis
[1]; and one in three people globally lacks access to safe drinking
water. Furthermore, without large-scale structural adaptations,
the economic losses and deterioration of river water quality due
to extreme hydrological events are projected to escalate signifi-
cantly at the global level [2].

Human activities, such as land development and hydraulic engi-
neering projects, have profoundly altered RBs, causing severe eco-
logical degradation and environmental pollution [3]. These
changes have critically undermined the effectiveness of River Basin
Governance (RBG) in achieving the Sustainable Development Goals
(SDGs) by the United Nations.

Effective policy-making for sustainable development necessi-
tates balancing trade-offs and considering interactions among
SDGs. However, the progresses in achieving these goals remain
insufficient. For example, SDG 6 highlights the urgency of achiev-
ing sustainable water resource management globally by 2030
and addressing the ongoing water crisis [4]. Research and policy
require integrated approaches to the design, implementation, and
monitoring of RBs across sectors, actors, and borders [5].

As coupled human-nature systems, RBs embody the interac-
tions among land, biosphere, atmosphere, and noosphere systems.
These interactions are characterized by high complexities across
temporal and spatial scales, facing unprecedented rates of change
and diverse stressors [6,7]. These complexities and uncertainties
are, nevertheless, difficult to perceive via traditional RBGs. This,
in turn, has led to segregated RBG as ecosystem services trade-
offs, deficiencies in pre-governance of RBs adapting climate change
and insufficient intergovernmental cooperation.

Traditional RBG involves three main aspects: monitoring, fore-
casting, and decision-making based on RB observations and mod-
els. Together, these three components constitute an integrated
paradigm for RBG. Although each aspect has experienced rapid
development, the RBG paradigm remains constrained by limited
observations, insufficient representation of human systems in RB
models, and dysfunctional RB governance.

niques, such as penetrating Earth-observing techniques. Simulta-

(i) Limited RB observation. Observation of RBs relies either on
in-situ borehole or gauge measurements or data from remote sens-
ing. However, current in situ and remote sensing methods face key
limitations in characterizing the spatiotemporal dynamics of many
river systems. River scientists and managers are often hindered by
data scarcity and system complexity. In addition, data sources for
RB monitoring come from diverse spatiotemporal scales, including
ground and underground measurements, as well as remote sensing
from air or space. Integrating these diverse sources into a standard-
ized product for RB analysis poses significant challenges.

As highly intricate human-natural systems, RBs present unique
difficulties for the application of cutting-edge remote sensing tech-

neously, the rapid evolution of information technology,
exemplified by the Internet of Things (IoT), poses substantial hur-
dles for achieving higher-quality RB monitoring. To ensure effec-
tive and high-quality RB management, the strategic integration
of human agents as sensing units within the geographical and
social context, a concept known as social sensing, must be seam-
lessly integrated with the intrinsic natural attributes of RBs.

(ii) Insufficient representation of human system in RB models.
Since the 1950s, human activities have increasingly shaped the
Earth’s system, leading to what is now called the Anthropocene,
where humans are the main forces driving environmental changes
[7]. Human activities play a pivotal role in RB systems. Although RB
models have started to incorporate human influences, such as land
use changes, water infrastructure, irrigation systems, and urban-
ization, these influences are often represented in overly simplistic
ways [8]. Current RB models struggle to accurately represent the
bidirectional feedbacks between human activities and natural pro-
cesses, leading to limited predictive capabilities.

First, unlike natural processes, the intensity of human activities,
a complex and dynamic variable, is challenging to quantify using
purely physical models. Human activities encompass a wide range
of actions, including water withdrawals, agriculture and industry
consumption, urbanization, irrigation, and dam operations. These
activities involve diverse decision-making and behaviors that can-
not be easily captured by a single physical model, greatly affecting
the accuracy of simulation. This challenge is particularly pro-
ing, and

https://doi.org/10.1016/j.scib.2024.12.044
mailto:lizhe.wang@gmail.com
https://doi.org/10.1016/j.scib.2024.12.044
http://www.sciencedirect.com/science/journal/20959273
http://www.elsevier.com/locate/scib


L. Wang et al. Science Bulletin 70 (2025) 1564–1567
nounced in large RBs, where human activities exert a dominant
influence. Furthermore, human activities are influenced by poli-
cies, regulations, economic development, and other socioeconomic
factors, which are often difficult to quantify due to their indirect or
nonlinear nature.

Most RB models still treat human activities as external influ-
ences rather than integral components of the system. The effects
of human activities are usually incorporated through scenarios or
external forcing functions, such as land use or climate change,
which impact model outputs without altering the model’s funda-
mental structure. This distinction arises from the traditional struc-
ture of these models, which are primarily focused on simulating
natural processes like precipitation, evaporation and infiltration.
Human activities are often considered as modifying factors, repre-
sented by relatively independent source-sink terms. For instance,
urbanization alters surface runoff patterns but is not treated as
an intrinsic part of the hydrological cycle. This results in a weak
consideration of the dynamic feedback between natural systems
and human activities, despite the fact that this feedback is highly
complex and influenced by a broad range of socioeconomic, polit-
ical, and cultural factors.

Moreover, RB models frequently simplify or use parameteriza-
tions to represent human processes and their interactions with nat-
ural system. However, accurately estimating these parameters,
particularly when direct measurements are unavailable, introduces
significant uncertainties. This lack of precise quantification poses a
key challenge to fully integrating human systems into RBmodeling.

(iii) Dysfunctional RB governance. Effective RBG is essential for
addressing the global water crisis [9]. Historical management
strategies are the key references for decision-makers to modify
the operating rules. However, this path dependency constrains
addressing adaption for climate change. Climate change is intensi-
fying the hydrologic cycle [10], leading to an increase in floods and
droughts, and therefore increasing the complexity of RBG. Robust
design of hydrologic infrastructure could be a formidable challenge
in a changing climate. Furthermore, in a large RB, implementation
of a management policy may result in heterogeneous impacts in
different regions. Moreover, the lack of strong connections
between decision-makers and RB science analyses reduces the
timeliness and effectiveness of RBG [11].

RBG involves multiple stakeholders, necessitating the delicate
balancing of multiple interests and demands. Striking an equilib-
rium between economic development and ecosystem restoration
remains a critical challenge. However, in the context of model-
based RBG, the efficacy of current multi-scenario simulations in
supporting robust RBG remains uncertain.

Limitations arising from recent observations, modeling, and
governance pose significant challenges to RBG, hindering the
achievement of the SDGs. Thankfully, in this era, advancements
in earth science observation methods have unleashed an abun-
dance of data, empowering earth scientists like never before, espe-
cially with the aid of rapidly advancing Artificial Intelligence (AI)
technology. AI is anticipated to reshape the paradigm of RBGs from
observation to modeling and decision-making. This paradigm
encompasses three key aspects: holographic observation, hybrid
modeling, and intelligent decision-making, as illustrated in Fig. 1.
Among these three components, holographic observation serves
as the cornerstone, offering substantial 4D spatiotemporally con-
tinuous dataset for hybrid models that integrate physical-based
and data-driven approaches. Large Language Models (LLM) syner-
gize with Reinforcement Learning (RF), providing a resilient scien-
tific underpinning for intelligent RBG. This, in turn, informs
observations and models with essential requirements and con-
structive suggestions for refinement, thereby facilitating iterative
enhancements to both observational methodologies and model
frameworks.
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(i) The AI-powered holographic observation network. The RB
involves the entire water-soil-air-plant-human nexus with high
complexity, necessitating an IoT-connected holographic observa-
tion of RBs. This system integrates in-situ or ground-based obser-
vations, wells, space-borne remote sensing, and air-borne
measurements. In-situ or ground-based stations allow the precise
measurement of land properties and atmospheric physics. Space-
borne video, optical, or microwave satellites can capture the phys-
ical properties of RB on a large scale. Air-borne measurements car-
ried by unmanned airship and unmanned aerial vehicle can be
exploited to obtain additional information on ungauged river sys-
tems, collecting RB information with high spatial and spectral
resolution.

Even specified RBs are monitored at numerous gauges, data
remains sparse in both space and time, limiting its use for global
hydrology analysis [12]. Deep learning approaches have emerged
as promising tools for hydrological prediction, particularly in
data-scarce regions, where they can outperform traditional meth-
ods. Their ability to analyze large datasets and integrate diverse
data types across scales is a significant advantage. Advanced deep
learning architectures like Transformers enable the transfer of
prior hydrological knowledge between basins, enhancing predic-
tive accuracy and generalizability. This transfer learning capability
holds significant promise for improving hydrological modeling in
data-sparse regions (e.g., Ref. [13]). Moreover, integrating deep
learning with computer vision technologies has significantly
enhanced the ability to perform tasks such as identification and
analysis of hydrological features from remotely sensed imagery,
particularly in the context of river and flood extent patterns. The
capacity of AI to integrate diverse data sources across multiple spa-
tial and temporal scales presents a unique opportunity to over-
come the limitations of traditional hydrological monitoring. An
AI-powered platform, capable of synthesizing data from multiple
sources, would enable the creation of a comprehensive, holo-
graphic representation of RBs. This integrated approach, by captur-
ing the complex interactions within the water-soil-air-plant-
human nexus, holds the potential to advance our understanding
of RBs from an Earth system perspective. Multiple time scales, from
sub-hour to decades, multiple spatial scales, from millimeters to
hundreds of kilometers, and multi parameters, from groundwater
to precipitation, to name a few, are characterized. To achieve this,
modern AI architectures reconstruct data acquired from the holo-
graphic observation network to a continuous 4D dataset, providing
insights into many processes such as carbon emission, water cycle,
water quality, river biodiversity, anthropogenic invention and nat-
ural hazard. Eventually, the holographic gridded RB database can
act as an important input for hybrid models.

(ii) Hybrid models integrating data-driven and physical processes.
The integration of data-driven and physical process-based model-
ing, known as hybrid models, has garnered considerable attention
[14]. These models aim to improve the understanding and accuracy
of complex systems by combining observational data with simula-
tions rooted in physical processes. By merging data-driven analysis
with process-based simulation, hybrid models aim to overcome
the limitations of each approach, offering a more comprehensive
and precise depiction and prediction of complex system behaviors.
Since data-driven methods are at the core of AI, they offer inherent
advantages in capturing and modeling the complex interactions
between human and natural systems that are difficult to describe
using traditional physical models.

Human activities and their interactions with natural systems
involve complex, nonlinear relationships that are challenging to
represent accurately with conventional physical models. AI, by
learning from historical data patterns and trends, can construct
sophisticated, data-driven models that better capture and simulate
these intricate interactions. For example, deep learning networks
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Fig. 1. Flow diagram of the paradigm for the intelligent RBG. The holographic observation network (top) provides a 4D spatiotemporally continuous gridded RB dataset for
the hybrid model (middle), which acts as the science fundamental for intelligent RBG (bottom). In return, intelligent RBG enhances the holographic observation and hybrid
modelling of RBs.
can be trained to model the complex impacts of urbanization on
hydrological cycles.

AI also facilitates the integration of knowledge from various dis-
ciplines—such as hydrology, ecology, economics, and sociology—to
develop comprehensive RB models. These interdisciplinary models
are better equipped to represent the complex interactions between
human activities and natural processes. For example, Natural Lan-
guage Processing (NLP) can analyze large volumes of policy docu-
ments, extract critical information, and incorporate it into RB
models, thereby improving simulations of how policy changes
influence human activities and natural system.

Moreover, AI is powerful in determining model parameters.
Hybrid models involve numerous parameters, and their accuracy
is crucial for reliable simulation results. Relying on the key
assumption of inherent connections between hard-to-determine
model parameters and observable elements, core technologies
are developed from parameter calibration to parameter learning
using big data and deep learning methods. This significantly
reduces computational costs and uncertainties associated with
manual parameter tuning, enhancing the model’s simulation and
prediction capabilities [15]. As the holistic monitoring platform
accumulates more data, continuous optimization of parameter
learning becomes achievable, imparting partial evolutionary capa-
bilities to the model.

In addition, RB models involve highly complex processes with
unclear underlying mechanisms. Data-driven models, which build
relationships between dependent variables and numerous envi-
ronmental factors, can effectively characterize these complex pro-
cesses and thereby reduce uncertainties in RB model simulations.
As observational data improves and grows, data-driven modules
1566
within hybrid models can be progressively optimized, transform-
ing the RB hybrid model into an evolving RB integrated model,
achieving the goal of RB intelligent simulation.

(iii) Intelligent RBG. For RB managers and decision-makers, the
complexity and uncertainties of RB systems pose significant chal-
lenge to comprehensive understanding of RBG. An easy-to-use
interface is essential. With the rapid development of LLMs like
the Generative Pre-trained Transformer (GPT), outputs from obser-
vations and hybrid model can be seamlessly integrated with LLM.
These systems convert observation or prediction data into struc-
tured natural language enriched with scientific data. Subsequently,
this transformed data can be encoded into dense vectors through
sentence transformers. Pre-trained or fine-tuned LLMs are adapt-
able for a range of tasks, including Question-Answer (Q&A) or even
generating images and videos using their knowledge of historical
records. Additionally, relevant industry data, research reports,
social sensing data, and academic papers can be incorporated into
the LLM corpus to enhance its richness. Consequently, the Q&A sys-
tem can complete the tasks such as (1) evaluating the potential
impact of a RB policy, such as a planned dam, to human-nature sys-
tems, (2) historical or current summary reports on the comprehen-
sive status of RB systems, (3) quantitatively assessments of the
impact of emergency or extreme events, and (4) diagnosing and
pre-warning the future statuses of river basins responding to
climate-related environmental changes. Eventually, this system
collectively reduce climate risks, support climate-resilient econ-
omy, and facilitate the establishment of sustainable RBs.

Effective RBG requires adaptive planning based on the socio-
ecological and socio-economic relationship between human and
RB, thereby reducing risks associated with path dependency. More-
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over, transnational RB consolidation projects involving balancing
water resource exploitation rights, ecological restoration, and ter-
ritorial space consolidation should be planned and acknowledged
from the global to the local. To reduce transaction costs and
enhance efficiency, RBG models are necessary to be capable of
automatically identifying optimal strategies. The RF model possess
remarkable abilities in finding the optimal strategies, providing
valuable suggestions for effective natural resource management,
not only improving the knowledge of the behaviors of the
decision-makers but also assisting them in identifying better man-
agement strategies. Through carefully designed prompts, LLMs can
utilize their extensive knowledge of observed patterns and data,
combined with RF models, to identify the most effective strategy
within specific limitations. By integrating LLM, RF, predictions
from hybrid model, and observation data, the optimizing system
can achieve the following functions: (1) optimizing the current
or scheduled RB policies, (2) integrated planning for transboundary
RBs or inter-sectoral demands, (3) strategies for regulated or
unregulated natural resource allocation, (4) providing potential
pathways to achieve one or more SDG goals.

The rapid advancement of AI technology, particularly the poten-
tial for Artificial General Intelligence (AGI), offers novel prospects
for RBG. Deep learning has demonstrated remarkable achieve-
ments in data reconstruction and hydrological modeling, and
LLM has exhibited substantial capabilities across diverse domains,
enabling a transformative approach to reshaping RBG. While AI
technologies offer promising advancements for RGB, several limi-
tations must be acknowledged. They include but not limited to:
(1) Challenges in predicting untrained hydrological variables; (2)
Ensuring the physical feasibility of process-based models; (3)
Dependence on extensive high-quality training data; (4) Reliability
concerns due to the lack of human intervention data; (5) Difficulty
in transferring a regionally trained model to other fluvial contexts;
(6) Complexity in implementing AI for RB managers without deep
learning expertise. Despite these challenges, AI can facilitate seam-
less integration among RB observation, modeling, and governance.
Specifically, holographic observations yield continuous 4D data,
informing hybrid models for more comprehensive and precise pre-
diction of RB system. Outputs from these models feed into LLMs,
which, in conjunction with RL, provide scientifically grounded
insights to policymakers. This iterative feedback loop fosters
improvements in observation, modeling, and governance frame-
works, streamlining complexity and enhancing decision-making
for intelligent RBG.
1567
with Jian Zhang, Yunquan Wang, Xiaoqing Song, and Ziyong Sun.

References

2023;4:687–702.

Sci Bull 2022;67:1636–40.
Cheng G, Li X. Integrated research methods in watershed science. Sci China

Li Y, Sang S, Mote S, et al. Challenges and opportunities for modeling coupled

[8]
in the transformation of hydrologic science. Hydrol Earth Syst Sci

[9]
elites’ unsustainable consumption. Nat Sustain 2023;6:929–40.

[10]
world’s large rivers. Sci Bull 2020;65:62–9.

[11]
sustainable management of river basins. Sci China Earth Sci 2021;64:677–90.

[12]
example of the Heihe River basin. Earth Future 2022;10:e2022EF002966.

[13]
environment: explaining the influence of deep learning architecture. Water

[14]
understanding for data-driven Earth system science. Nature

Tsai WP, Feng D, Pan M, et al. From calibration to parameter learning:

Commun 2021;12:5988.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported by the National Natural Science Foun-
dation of China (41925007).

Author contributions

Lizhe Wang conceptualized this perspective and led the writing

Yunquan Wang and Jian Zhang produced the figures.

[1] Vörösmarty CJ, McIntyre PB, Gessner MO, et al. Global threats to human water
security and river biodiversity. Nature 2010;467:555–61.

[2] van Vliet MTH, Thorslund J, Strokal M, et al. Global river water quality under
climate change and hydroclimatic extremes. Nat Rev Earth Environ

[3] Dethier EN, Shannon LS, David AL. Heightened levels and seasonal inversion of
riverine suspended sediment in a tropical biodiversity hot spot due to artisanal
gold mining. Proc Natl Acad Sci USA 2019;116:23936–41.

[4] UN-Water. Summary Progress Update 2021: SDG 6—Water and sanitation for
all. Geneva. 2021.

[5] Ge Y, Li X, Cheng G, et al. What dominates sustainability in endorheic regions?

[6]
Earth Sci 2015;58:1159–68.

[7]
human and natural systems. Natl Sci Rev 2023;10:nwad054.
Sivapalan M. From engineering hydrology to Earth system science: milestones

2018;22:1665–93.
Savelli E, Mazzoleni M, Di Baldassarre G, et al. Urban water crises driven by

Li L, Ni J, Chang F, et al. Global trends in water and sediment fluxes of the

He C, James LA. Watershed science: linking hydrological science with

Li X, Cheng G, Fu B, et al. Linking critical zone with watershed science: the

Topp SN, Barclay J, Diaz J, et al. Stream temperature prediction in a shifting

Resour Res 2023;59:e2022WR033880.
Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process

2019;566:195–204.
[15]

harnessing the scaling effects of big data in geoscientific modeling. Nat

http://refhub.elsevier.com/S2095-9273(24)00954-X/h0005
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0005
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0010
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0010
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0010
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0015
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0015
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0015
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0025
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0025
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0030
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0030
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0035
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0035
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0040
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0040
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0040
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0045
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0045
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0050
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0050
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0055
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0055
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0060
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0060
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0065
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0065
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0065
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0070
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0070
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0070
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0075
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0075
http://refhub.elsevier.com/S2095-9273(24)00954-X/h0075

	Artificial intelligence reshapes river basin governance
	Conflict of interest
	Acknowledgments
	Author contributions
	References




