CHARACTERIZATION AND CATALYTIC BEHAVIOR OF WATER-SOLUBLE PHOSPHINE RHODIUM (I) COMPLEX*

YAN Yuan -Yong**

ZUO Huan-Pei

JIN Zi-Lin

College of Chemical Engineering, Dalian University of Technology Dalian, Liaoning 116012

Abstract The monosulfonated triphenylphosphine ligand, Ph₂P(m-C₆H₄SO₃K) (abbr. as DPM), and its rhodium complex, HRh(CO)(DPM)₃, have been synthesized and characterized by spectroscopic techniques (IR, NMR). The obtained data showed that the structure of HRh(CO)(DPM)₃ was similar to HRh(CO)(PPh₃)₃. The properties of HRh(CO)(DPM)₃ as an olefin hydroformylation catalyst in aqueous-organic solvent two-phase system are studied.

Keywords aqueous phase, sulphonated phosphine, characterization, hydroformylation

Introduction

In homogeneous catalysis, a recurrent problem is the separation of the organic products from the active catalyst. The application of water soluble transition metal complexes for catalytic reactions has recently attracted considerable attention^[1-3]. The water-soluble ligands are slightly soluble in organic media, allowing the catalysis to be carried out in a two-phase system. Catalyst recovery is thus easily achieved by decantation and separation of the two phases. The tris(sodium *m*-sulfophenyl)-phosphine, P(*m*-C₆H₄SO₃Na)₃ (abbr. as TPPTS), modified rhodium catalyst system, HRh(CO)(TPPTS)₃, has been successfully used in large scale production of *n*-butanol^[4]. On the other hand, the

Current address: Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100080

Received October 22, 1995; revised version received January 22, 1996

^{*}This work was supported by the National Natural Science Foundation of China.

^{**}To whom correspondence should be addressed

monosulfonated triphenyl-phosphine ligand (DPM), the first water soluble phosphine-based ligand, was synthesized in 1958 by Chatt and his group^[5]. To our knowledge, little information is available on the structure of its rhodium complex, HRh(CO)(DPM)₃. In this work, FT-IR, ¹H and ³¹P NMR have been used to characterize the structure of HRh(CO)(DPM)₃. The catalytic properties of HRh(CO)(DPM)₃ in two-phase system were also investigated.

Experimental

Preparation of the catalyst

Potassium diphenylphosphinobenzene-*m*-sulfonate (abbr. as DPM) was prepared by known methods^[5]. HRh(CO)(DPM)₃ was prepared by referring to the literature^[6]. A solution of 580 mg DPM (1.52 mmol) in 1.6 mL of deaerated distilled water was added to 70 mg acetyl-acetonatedicarbonyl-rhodium(I)(Rh(CO)₂(acac), 0.271 mmol) in a 75 mL steel autoclave which was previously purged with a H₂:CO (1:1) mixture. The autoclave was heated to 50°C under 3 MPa of the H₂:CO (1:1) mixture and with magnetic stirring. After 7 h, the autoclave is cooled to room temperature and slowly depressurized. The solution was filtered under nitrogen to remove the small amount of rhodium metal and 8 mL of absolute ethanol saturated with H₂:CO (1:1) was added to yield a yellow precipitate. The solid was collected, washed with absolute ethanol, and vacuum dried. The yield of HRh(CO)(DPM)₃ was 500 mg.

Characterization of the catalyst

Infrared spectra were measured on Nicolet 20DX-B FT-IR spectrometer using Nujol. The ³¹P-NMR spectra were recorded on JEOL FX-90Q spectrometer at 36.2 MHz using H₂O as the solvent. Chemical shifts are expressed based on the chemical shift of H₃PO₄ solution (85%). The ¹H-NMR spectra were recorded on JEOL FX-90Q spectrometer at 89.6 MHz using D₂O as the solvent.

Hydroformylation procedure

Hydroformylation was carried out in a 75 mL steel autoclave. The reaction product analysis was done on a SP-O9 gas chromatograph equipped with a 0.25 mm×50 m capillary column. The products were further identified by GC-MS spectroscopy on an MAT31Q/SS2000 instrument.

Results and discussion

The structure of HRh(CO)(DPM)₃ was established by FT-IR and NMR spectroscopy (see Table 1).

IR (cm ⁻¹)		NMR				
		ıН		31 p		
V(H-Rh)	V(CO)	δ	J _(H-P) .	δ	J _(P-Rh)	
2007	1927	-9.56	14	43.0	155,3	

Table 1 IR and NMR data for HRh(CO)(DPM)₃

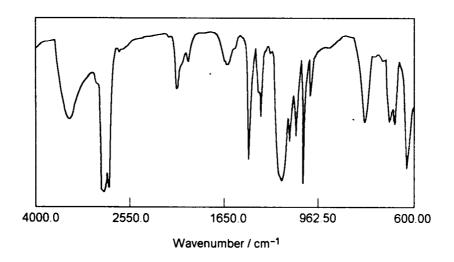


Fig.1 IR spectrum of HRh(CO)(DPM)₃

The FT-IR spectrum of HRh(CO)(DPM)₃ shows two bands at 2007 and 1927 cm⁻¹, which are attributed to rhodium-hydride and terminal carbonyl ligand vibrations. The wavenumber of 1927 cm⁻¹ shows a weak characteristic absorption of the coordinated carbonyl group in the bound complex HRh(CO)(DPM)₃. Comparing with the corresponding IR absorption at 1924 cm⁻¹ of the carbonyl group in the complex HRh(CO)(PPh₃)₃^[7], one can attribute this increase of the wavenumber from 1924 to 1927 cm⁻¹ mainly to a weaker coordination bonding between Rh and CO in the HRh(CO)(DPM)₃ than in the HRh(CO)(PPh₃)₃. This is probably caused by the electron-withdrawing effect of the meta-substituted sulfonate group in one of the benzene rings of

triphenyl-phosphine ligand, which reduces the σ electron donation ability of the phosphorus atom.

The ¹H-NMR spectrum of HRh(CO)(DPM)₃ shows a resonance peak at -9.56 (quartet, $J_{\text{H-P}}=14 \text{ Hz}$).

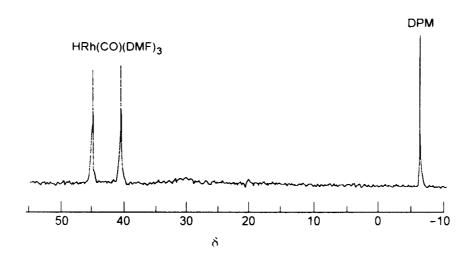


Fig. 2 31P-NMR spectra of DPM and HRh(CO)(DPM)3

In fact, ${}^{31}\text{P-NMR}$ spectroscopy is a highly sensitive technique to elucidate the structures of metal-phosphine complexes. The ${}^{31}\text{P-NMR}$ spectrum of HRh(CO)(DPM)₃ in H₂O shows a sharp doublet at 43.0 ($J_{\text{P-Rh}}=155.3$ Hz), however, the resonance peak of tertiary phosphine ligand, Ph₂P(m-C₆H₄SO₃K), and the phosphine oxide, Ph₂P(O) (m-C₆H₄SO₃K), appeared at -6.7 and 33.9 respectively. Thus, the overall data show that the structure of HRh(CO)(DPM)₃ is very similar to HRh(CO)(PPh₃)₃[7].

Table 2 Hydroformylation of different olefins with HRh(CO)(DPM)₃

Olefin	Reaction time	pН	Conversion %	Aldehyde yield
	h			
1-hexene	2	6.5	99.3	85.7
styrene	3	5.5	99.4	93.6
cyclohexene	3	6.5	88.7	84.2
1-dodecene	4	6.5	74.8	66.3

Conditions: Catalyst, 3.66×10⁻⁶ mol/mL; olefin, 0.013 mol;

 $V(\text{water}): V(\text{olefin}) = 2:1; 100 \,^{\circ}\text{C}; 5.0 \,\text{MPa}; (\text{H}_2:\text{CO}=1:1)$

Table 2 summarizes the hydroformylation results for several olefins in two-phase system using HRh(CO)(DPM)₃ as the catalyst. It can be seen that the catalytic activity decreased in the following order: styrene, 1-hexene > cyclohexene >1-dodecene. The reason for this is that the long-chain olefins have negligible solubility in water.

References

- 1 A.F.Borowski, D.J.Cole-Hamilton, and G.Wilkinson, Novu. J. Chim., 2(1978)137
- 2 P.Kalck, and F.Monteil, Adv. Organomet. Chem., 34(1992)219
- 3 W.A.Herrmann, and C.W.Kohlpaintner, Angew. Chem., 105(1993)1588
- 4 H.Bahrmann, and H.Bach, Phosphorus and Sulfur, 30(1987)611
- 5 S.Ahrland, J.Chatt, N.R.Davies, and A.A.Williams, J.Chem.Soc., (1958)276
- 6 J.P.Arhancet, M.E.Davis, J.S.Merda, and B.E.Hanson, J.Catal., 121(1990)327
- 7 I.T.Horvath, R.V.Kastrup, A.A.Oswald, and E.J.Mozeleski, Catal.Lett., 2(1989)85