Vol. 23 No. 1

Ian 2006

水杨醛缩 5-氨基水杨酸 Schiff 碱及其稀土配合物 合成、表征和抑菌活性

高书燕^{a b} 张秀英^a 雷雪峰^a

("河南师范大学化学与环境科学学院 新乡 453007;

^b中国科学院长春应用化学研究所稀土化学与物理重点实验室 长春 130022)

摘 要 以水杨醛和 5-氨基水杨酸为原料合成了水杨醛缩 5-氨基水杨酸 并以其为配体合成了 3 种新的 Schiff 碱稀土配合物/ 分别为轻 Nd、中 Gd 和重 Yb 稀土配合物)通过 IR、「H NMR、TG-DTA 和摩尔电导等测 试技术表征其结构 配体以四齿形式参与配位 配位数分别为 7(Nd)和 9(Gd和Yb)。抑菌活性测定结果表 明 所合成的配体和配合物对金黄色葡萄球菌、大肠杆菌和枯草杆菌均表现出不同程度的抑菌效果 其中对大 肠杆菌的抑菌效果最好。从整体看,无论是配体还是配合物,它们的抑菌作用都随着浓度的增大而增强。在 较低浓度下 中稀土和重稀土配合物的抑菌作用比氢稀土好 在高浓度条件下 轻稀土配合物的抑菌效果好。 关键词 水杨醛缩氨基水杨酸 Schiff 碱 稀土配合物 合成 抑菌活性

中图分类号:0614;0622

文献标识码 :A

文章编号:1000-0518(2006)01-0074-05

近 20 年来,由于稀土在生命科学、材料科学及化学过程中应用的可能性,人们对稀土含氮化合物的 兴趣日益增加。已有大量的 Schiff 碱稀土配合物被合成出来。Forsberg[1]对 1981 年以前的工作进行了 全面的综述 2002 年我们²¹对 Schiff 碱稀土配合物的国内研究也作了综述。研究表明,已有多种金属 Schiff 碱配合物用作自由基抑制剂[3,4]、催化剂[5]和氧载体[6]等。5-氨基水杨酸 Schiff 碱原料易得,制备 简单 结构中含有羧基、羟基、亚甲胺基等活性基团 很容易与稀土离子形成稳定的配合物 :而且 5-氨基 水杨酸 Schiff 碱具有优于临床药物美莎拉嗪和阿司匹林的抗菌消炎、解热镇疼等药理活性[7]。事实上, 稀土及其配合物的药用及药理学研究已经有相当长的历史 具有很好的生物活性的磺胺类水杨酸的 Schiff 碱的生物活性的研究也已有报道 ,而 5-氨基水杨酸是具有多种药理活性的临床药物 ,它与水杨醛 形成的 Schiff 碱及其稀土配合物的研究尚无报道。本文试图通过考察 5-氨基水杨酸与水杨醛形成的 Schiff 碱的稀土配合物的生物活性来丰富稀土的应用。因此,我们合成了水杨醛缩 5-氨基水杨酸 Schiff 碱晶体,以其为配体与稀土(Ⅲ)氯化物反应,合成了3种代表性的轻、中和重稀土的水杨醛缩5-氨基水 杨酸 Schiff 碱稀土配合物 .并通过元素分析、IR、'H NMR、TG-DTA、摩尔电导等分析手段表征其结构。 采 用平板滤纸法,在不同浓度下测定所合成的 Schiff 碱配体及其稀土配合物对金黄色葡萄球菌、大肠杆菌 和枯草杆菌的抑菌性能。

1 实验部分

1.1 试剂和仪器

水杨醛为分析纯试剂 使用前进行减压蒸馏 5-氨基水杨酸 提纯后使用 无水乙醇 精制脱水后使 用 稀土氯化物依据文献 8 1方法制备。其余试剂均为分析纯。

美国 Perkin-Elmer 2400 型元素分析仪;上海大普仪器厂 DDS-12A 型数字电导率仪,以 DMSO 和 DMF 为溶剂 电导池常数为 1.028 电极为铂黑电极 溶液浓度为 1.0 mmol/L 温度为 25 ℃ 采用 EDTA 配位滴定法测定稀土含量 :采用 V(HClO4): V(HNO4)=1:1 混合液破坏有机配体后 ,以六次甲基四胺作

²⁰⁰⁵⁻⁰⁴⁻⁰¹ 收稿 2005-09-15 修回

国家高技术发展与规划"八六三")项目(2002AA302105 2002AA324080) 国家自然科学基金委员会批准资助对外交流与合作项 目(20340420326)和河南省自然科学基金项目(0511022000)资助课题

缓冲溶液、二甲酚橙为指示剂 ,用 EDTA 滴定稀土的含量 ;XT5A 型纤维熔点仪(北京科仪光电仪器厂);在德国 Bio-Rad FTS-40 型红外光谱仪上采用 KBr 压片方法在 4 000 ~ 400 cm $^{-1}$ 范围内扫谱进行红外光谱分析 瑞士 Bruker Avane 400 型傅立叶变换核磁共振仪,以 DMSO-d₆作溶剂;日本岛津 DT-40 热天平、以 Al₂O₃作参比,空气气氛,升温速度为 10~C/min。

1.2 合成方法

- 1.2.1 水杨醛缩 5-氨基水杨酸配体的合成 将 10 mmol 5-氨基水杨酸加到 30 mL 无水乙醇中 ,搅拌均匀后 加入等摩尔新蒸水杨醛的无水乙醇溶液。室温下避光搅拌 3 h ,有黄色无定型沉淀产生。将沉淀滤出 ,用无水乙醇洗涤 3 次 ,滤饼置真空干燥箱中于 30 ℃干燥至恒重 ,产率为 94.7%。用无水乙醇重结晶 ,得到黄色针状结晶水杨醛缩 5-氨基水杨酸配体(HL) ,熔点为 278 ~ 279 $\,$ ℃。
- 1.2.2 水杨醛缩 5-氨基水杨酸稀土配合物的合成 取 3 mmol HL ,用 70 mL 热的无水乙醇溶解 ,逐滴加入水合稀土(Nd、Gd 和 Yb)氯化物的无水乙醇溶液 10 mL ,逐渐产生黄色无定型沉淀 ,将混合物在 70 ~80 ℃回流搅拌 3 h 后 ,冷却 ,静置 ,过滤 ,滤饼用无水乙醇洗涤 ,用 $AgNO_3$ 检验滤液 ,直至无 Cl^- 检出。产品置真空干燥箱中 30 ℃干燥至恒重 ,得水杨醛缩 5-氨基水杨酸稀土配合物。

1.3 抑菌性能测试

以金黄色葡萄球菌、大肠杆菌和枯草杆菌作为测试对象,采用平板滤纸法测试配体及配合物的抑菌性能。

2 结果与讨论

2.1 配合物的组成

配合物的 C、H、N 含量(见表 1)及稀土含量滴定结果证实配合物的化学式可分为 2 种形式 , $NdL_1Cl_2 \cdot nC_2H_5OH \cdot mH_2O$ 和 $REL_2Cl \cdot nH_2O$ (RE 为 Gd 和 Yb)。溶解性测试表明 ,所有的配合物均不溶于四氯化碳、氯仿、乙氰、丙酮、乙醚、石油醚、1 2-二氯乙烷等溶剂 ,微溶于甲醇和乙醇 ,而易溶于 DMF 和 DMSO。在 DMF 中测得 25 C 时配合物的摩尔电导(见表 1),其中 ,钕配合物的摩尔电导数值为 73.0 $S \cdot cm^2/mol$ 表明该配合物为 1:1 型电解质 ;钆和镱的摩尔电导为 59.0 和 37.0 $S \cdot cm^2/mol$ 表明为非电解质 C0 为 C1 为 C2 和 C3 和 C4 和 C5 和 C6 和 C7 和 C8 和 C9 和 C9

表 1 配体和配合物的元素分析数据和摩尔电导

Compound	$\Lambda_{ m m}/$		Elemental analy		
	($S \cdot cm^2 \cdot mol^{-1}$)	C	Н	N	RE
HL	-	65.40(65.36)	4.60(4.31)	5.42(5.45)	-
$\mathrm{NdLCl_2} \cdot 0. 5\mathrm{C_2H_5OH} \cdot 4\mathrm{H_2O}$	73.0	31.86(31.80)	3.36(3.70)	2.26(2.47)	26.27(25.46)
$GdL_2Cl \cdot 2.5H_2O$	59.0	44.88(44.83)	3.12(3.36)	3.46(3.73)	19.65(20.96)
$YbL_2Cl \cdot 3H_2O$	37.0	43.62(43.39)	3.17(3.38)	3.56(3.62)	21.79(22.32)

Table 2 Elemental analysis data and molar conductances of the ligand and complexes

2.2 IR 光谱

表 2 列出了配体和配合物红外光谱的主要吸收带。

表 2 配体和配合物的红外特征吸收

Table 2 IR data for the ligand and complexes

Compound			σ/cm	n - 1			
	$ u_{ m OH}$	$ u_{\rm asCOO}$ -	$\nu_{ m sCOO}$ –	$\delta_{ m OH}$	$\nu_{\rm C=N}$	ν_{C0}	$\nu_{ ext{RE}=0}$
HL	3 440 2 800 ~3 100	1 600	1 427	1 363	1 661		
$\mathrm{NdLCl_2} \cdot 0. 5\mathrm{C_2H_5OH} \cdot 4\mathrm{H_2O}$	3 367(sharp s)	1 537	1 451	1 384	1 637		527
$GdL_2Cl \cdot 2.5H_2O$	3 390(w) 3 068(s)	1 539	1 453	1 387	1 639	1 246	527
$YbL_2Cl \cdot 3H_2O$	3 375(w) 3 068(s)	1 540	1 452	1 386	1 636		529

由表 2 可见 配体在 3 440 cm⁻¹出现缔合羟基的吸收峰 在 2 800~3 100 cm⁻¹出现的吸收峰为分子

内氢键的振动吸收[10]。由于分子内氢键的形成、体系的共轭作用加强、使羧基 C=O 双键振动减弱,而 С—О 单键增强致使具有部分双键的性质 ,所以配体中没有出现 С—О 特征峰 ,而出现羧基的不对称伸 缩振动 $\nu_{\rm ascoo}$ - 和对称伸缩振动 $\nu_{\rm scoo}$ - (10) 。 $\nu_{\rm C=N}$ 振动峰位于 $(1.661~{
m cm}^{-1})$ $\nu_{\rm C=O}$ $\nu_{\rm O=H}$ 和 $\delta_{\rm OH}$ 分别出现在 1 225、1 296 和 1 363 cm⁻¹。

形成配合物以后,分子内氢键的吸收峰消失 Nd 配合物在 $3.367~cm^{-1}$ 处出现 1 尖而强的吸收包 Gd和 Yb 配合物中 该位置的吸收包强度消弱 但峰形变宽 在 3 068 cm - 1 附近仍有较强的吸收 这说明配 合物中有水分子^[12]。与配体相比 ν_{C-N} 在 1 661 cm⁻¹的强吸收峰向低频区移动 20 ~ 25 cm⁻¹ 表明配体 通过亚甲胺基上氮原子与中心离子发生了配位作用。配体和配合物羧酸根离子的 ٧٠٠٠٠٠ 与 ٧٠٠٠٠٠ 频率 之差分别为 173 和 82 ~ 88 cm^{-1} ,说明羧酸根以双齿螯合形式参与配位 $^{[13]}$ 。1 225 cm^{-1} 处的 $_{\nu_{c}=0}$ 伸缩振 动峰向高波数移动 ,而 $1~296~{
m cm}^{-1}$ 处的 $\nu_{c=0}$ 吸收峰变化不大 ,说明配体中仅有 1~个羟基参与配位 $^{[11]}$,由 此可推测,该配位羟基为水杨酸上的羟基。位于 $1~363~{
m cm}^{-1}$ 处的 $\delta_{
m cm}$ 吸收峰在形成配合物后向高波数 移动 表明—OH 以未去质子化的形式配位[5]。配合物在低波数区 $524 \sim 529~\mathrm{cm}^{-1}$ 出现的新的吸收可归 属为 RE—0 吸收 表明 RE3+参与了配位。

2.3 ¹H NMR 谱

自由配体 1 H NMR 中 δ 9.41 的单峰为—OH 中质子的化学位移。由于分子内存在较强的氢键作 用,使得羟基质子峰变得较弱。形成配合物以后,该峰移至δ13.38,说明酚羟基以未去质子化的形式参 与配位 这与红外分析结果一致。配体 δ 8.13 的单峰归属为—HC=N—的 H 化学位移^[5] 形成配合物 后移向低场。 这是由于亚甲胺基氮原子参与配位 使氮原子的电子云密度降低 对质子产生强的去屏蔽 效应所致[14]。配体中 δ 6.99~6.10 范围内的苯环氢的化学位移在形成配合物后,由于配体中大共轭体 系的化学环境发生了变化,也向低场位移。配体 H NMR 谱图中没有出现羧基质子信号,这可能是因为 强的分子内氢键作用削弱了 0—H 键 使羧基质子信号难以检出。

2.4 TG-DTA

配体及配合物的 TG-DTA 曲线有很大差别 其热分析数据见表 3。

表 3 配体及配合物的热分析数据

Compounds	$t/^{\circ}\!$	$t/^{\circ}\mathbb{C}$ (exothermic peak)	Dehydration mass loss(calcd.)/%	Overall mass loss(calcd.)/%
HL	252.4	584.0	6.5	97.73(100.00)
$\mathrm{NdLCl_2} \cdot 0. 5\mathrm{C_2}\mathrm{H_5}\mathrm{OH} \cdot 4\mathrm{H_2}\mathrm{O}$	83.8	351.5 468.5	16.84(16.79)	59.69(58.65)
$GdL_2Cl \cdot 2.5H_2O$	68.2	360.1	6.41(6.00)	65.26(67.05)
$YbL_2Cl \cdot 3H_2O$	82.6	366.1 500.6	6.50(6.97)	67.24(66.06)

Table 3 Thermal analysis data of the ligand and complexes

表中可见 配体的 TG 中有 2 个失重阶段,分别对应于 1 个吸热峰和 1 个放热峰,当温度达到 630~%时 配体分解完全。配合物加热到较低温度附近时 ,TG 图上有小部分失重 ,失重温度在 100 ℃以下 ,可 认为失去的是乙醇和结晶水[15]。继续升温,所有配合物均经历2步氧化分解过程,第1步失重较大,并 伴随有强放热。在 Nd 配合物中 .第 1 阶段的失重还包含了 2 分子的配位水。 由于失水温度高 .失水吸 热峰被氧化分解放热峰掩盖[16]。在 620 ℃ ,热重曲线变得平缓 ,配合物分解完毕 ,残余物为 RE,O,・ 3CO,

由以上结构表征结果可以推断 水杨醛缩 5-氨基水杨酸 Schiff 碱与稀土离子作用形成配合物时配 体以四齿形式参与配位 配位数分别为 7(Nd)和 9(Gd 和 Yb) 其可能的结构如 Scheme 1 所示。

2.5 抑菌活性

已有文献⁷¹报道 Schiff 碱及其稀土配合物具有良好的消炎、解热镇痛作用,其消炎和解热镇痛活 性优于临床药物美莎拉嗪和阿司匹林。用平板滤纸法测定了配体及它的3种稀土配合物不同浓度下对 金黄色葡萄球菌、大肠杆菌和枯草杆菌的抑菌性能 结果列于表 4。

Scheme 1 Structures of the complexes

表 4 配体及配合物的抑菌环直径

Table 4 The bacteriostatic cycle diameters of the ligand and complexes

Compounds	10 ⁶ Concentration/(g⋅mL ⁻¹)	Bacteriostatic cycle diameter/nm				
		Staphyococcus aureus	Escherichia cocli	Withered grass bacillus		
HL	5	6	6.5	7.0		
	10	6.5	7.0	8.0		
	20	6.5	10.0	9.0		
$\mathrm{NdLCl}_2 \cdot 0. 5\mathrm{C}_2\mathrm{H}_5\mathrm{OH} \cdot 4\mathrm{H}_2\mathrm{O}$	5	6.8	7.0	8.5		
	10	6.8	7.5	8.5		
	20	6.8	12.5	9.0		
$GdL_2Cl \cdot 2.5H_2O$	5	6.8	8.3	7.0		
	10	6.8	9.5	7.0		
	20	6.8	10.0	7.0		
$YbL_2Cl \cdot 3H_2O$	5	6.8	8.0	8.0		
	10	6.8	8.5	8.5		
	20	6.8	8.5	9.0		

由表中数据可见(1)配体和配合物对金黄色葡萄球菌、大肠杆菌和枯草杆菌均表现出抑菌作用,其中对大肠杆菌的抑菌效果最好(2)总体上,它们的抑菌活性均随浓度增大而增强(3)Gd和Yb的配合物在较低浓度下对大肠杆菌的抑菌作用明显优于配体,并且比Nd配合物的抑菌效果好,这说明在较低浓度下,中稀土和重稀土配合物的抑菌作用比轻稀土好,在较高浓度下,Nd配合物对大肠杆菌的抑菌作用优于配体及Gd和Yb配合物,抑菌圈最大,这说明在高浓度条件下,轻稀土配合物的抑菌效果好。

参考文献

- 1 Forsberg J H. Gemeline Handbuck der Anorgenishen Chime D2 ,1980 25
- 2 ZHANG Xiu-Ying(张秀英) ZHANG You-Juan(张有娟), YANG Lin(杨林). Chem Res Appl(化学研究与应用)[J], 2002 14(1)?
- 3 HE Xiu-Ying(何秀英), WU Ji-Mei(吴纪梅), YAN Zhen-Huan(严振寰), et al. J Inorg Chem(无机化学学报 [J], 1995, 11(3)302
- 4 XIAN Jing-Chur(贤景春) ,HA Ri-Ba-La(哈日巴拉) ,CAO Gao-Wa(曹高娃) , et al. Chem Res Appl(化学研究与应用), J] 2000 ,12(4) ;437
- 5 YAO Ke-Min(姚克敏)SHEN Lian-Fang(沈联芳). Acta Chim Sin(化学学报 [J] 1,1993 **51**(7) 1677
- 6 LI Xiao-Yan(李晓艳) SUN Hong-Jian(孙宏建). Acta Chim Sin(化学学报】J],1995 53(4)336
- 7 Jayasekhar P Rao S B Santhakumari G. Indian J Pharm Sci [J] 1997 59(1) 8
- 8 ZHANG Zhong-Sheng(张仲生),WU Ji-Guǐ(吴集贵),DENG Ru-Wen(邓汝温). Chin J Appl Chem(应用化学)[J], 1988 5(2)62

- 9 Geary W J. Coord Chem Rev J] 1971 7 81
- 10 WEI Dan-Yi(魏丹毅),LI Dong-Cheng(李冬成),YAO Ke-Min(姚克敏). J Inorg Chem(无机化学学报)[J],1998, 14(2)209
- 11 LI Dong-Cheng 李冬成), YAO Ke-Min(姚克敏). Chin J Appl Chem(应用化学) 1,1993,10(3) 8
- 12 Marappan M Narayanan V Kandaswamy M. J Chem Soc Dalton Trans [J], 1998 3 405
- 13 ZHONG Ben-Yi-Xiong 中本一雄)Chief-Edrs. IR and Raman Spectra of Inorganic and Coordination Chemistry(无机和配位化合物的红外和拉曼光谱 [M]. Beijing(北京) ;Chemical Industry Press(化学工业出版社),1991 257
- 14 LI Wu-Ju(李五聚) SHI Zar(史讚) LI Shi-Yin(李时银). J Inorg Chem(无机化学学报 [J] 2000 16(3) 510
- 15 LIANG Kai(梁凯), JIA Dian-Zeng(贾殿增), Bu Wei-Ming(卜为名), et al. Acta Chim Sin(化学学报)[J] 2001, 59(7):1019
- 16 Zhang X Y Zhang Y J , Yang L , et al. Synth React Inorg Met-Org Chem[J] 2000 30(1) 45

Salicylaldehyde-5-aminosalicylic Acid Schiff Base and its Rare Earth Complexes Synthesis, Characterization, and Bacteriostatic Activity

GAO Shu-Yan^{a b}, ZHANG Xiu-Ying^a, LEI Xue-Feng^a, ZHANG Hong-Jie^{b*}
(^aCollege of Chemistry & Environmental Science Henan Normal University Xinxiang 453007;

^bLabaratory of Rare Earth Chemistry and Physics Changehun Institute of Applied Chemistry,

Chinese Academy of Sciences Changehun 130022)

Abstract Salicylaldehyde-5-aminosalicylic acid Schiff base was obtained from salicylaldehyde and 5-aminosalicylic acid and Nd(III), Gd(III), and Yb(III) complexes with it were synthesized. Elemental analysis, molar conductance, IR, ¹H NMR, and TG-DTA measurements of the three rare earth complexes indicate that the Schiff base acts as a quadridentate ligand and the coordination numbers are 7 for Nd ³+, and 9 for Gd³+ and Yb³+. The ligand and synthesized rare earth complexes show good bacteriostatic activities against *staphyo-coccus aureus*, *escherichia cocli* and *withered grass bacillus*. Moreover, the bacteriostatic activities of salicylaldehyde-5-aminosalicylic acid Schiff base and its Nd(III), Gd(III) and Yb(III) complexes are related to the rare-earth elements themselves and increased with the increase of the concentrations of the Schiff base and its complexes.

Keywords salicylaldehyde-aminosalicylic acid Schiff base rare earth complex synthesis bacteriostatic activity