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Non–Hermiticity can lead to the emergence of many intriguing phenomena that are absent in Hermitian sys-
tems, enabled by exceptional topological defects, amongwhichWeyl exceptional rings (WER) are particularly
interesting. The topology of a WER can be characterized by the quantized Berry phase and a nonzero Chern
number, bothencoded in theeigenvectors of the non–HermitianHamiltonian. So far,WERshavebeen realized
withclassicalwave systems,whose eigenvectors canbewell describedbyclassical physics.Wehere report the
first quantum–mechanical implementation of WERs and investigate the related topology transitions. The
experiment system consists of a superconducting qubit and a dissipative resonator, coupled to each other.
The high flexibility of the system enables us to characterize its eigenvectors on different manifolds of param-
eter space, each of which corresponds to a quantum–mechanical entangled state. We extract both the quan-
tized Berry phase and Chern number from these eigenvectors, and demonstrate the topological transition
triggered by shrinking the size of the corresponding loop or manifold in parameter space.
© 2025 Science China Press. Published by Elsevier B.V. and Science China Press. All rights are reserved,

including those for text and data mining, AI training, and similar technologies.
1. Introduction

Although most quantum-mechanical phenomena are observed
by isolating the quantum systems from their surrounding environ-
ment so as to minimize the decoherence effects arising from inter-
action with the environment, the non–Hermitian (NH) effects due
to dissipations can sometimes cause novel features that are inac-
cessible otherwise [1–4]. The rich physics of non–Hermitian sys-
tems is closely associated with exceptional points (EPs), featuring
the coalescence of both the eigenenergies and eigenstates. This
enables EPs to display distinct properties compared to the degen-
eracies of Hermitian systems, where the eigenenergies coalesce
but the eigenstates can remain orthogonal. Among these, excep-
tional topology is particularly appealing, which can manifest in
either the eigenspectra or in the eigenvectors of the NH Hamilto-
nian [5,6]. The topological invariants of isolated EPs have been
measured in different systems [7–15].
The topology features associated with non–Hermiticity are fur-
ther enriched by the discovery of one- and two-dimensional (2D)
EP structures, such as EP rings [16–26] and EP surfaces [27,28].
When some control parameter in the Hamiltonian is extended
from the real domain to the complex domain, each EP pair is trans-
formed into a ring, referred to as the Weyl exceptional ring (WER).
It was discovered that a WER formed by second-order EPs (EP2s)
carries a quantized Berry charge, which can be characterized by a
Chern number obtained by integrating the Berry curvature over a
closed 2D surface encompassing the ring, as well as by a quantized
Berry phase associated with the integral of the Berry connection
along a loop encircling the ring [17]. WERs have been observed
in several experiments [22–26], but all are restricted to classical
systems without any quantum effect. Even for the classical imple-
mentations, the associated Chern number has not been observed so
far.

We here investigate the topological transition associated with the
WER encoded in the entangled eigenvectors of a dissipative Jaynes-
Cummings (JC) model. This model consists of a qubit and a decaying
resonator, engineered with a circuit quantum electrodynamics (QED)
architecture. One of the superconducting qubits in the circuit QED
device is coupled to its readout resonator with an ac flux that pro-
ing, and
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duces a longitudinal parametric modulation to the qubit’s transition
frequency. The effective qubit-resonator coupling strength and
detuning are tunable by the modulation amplitude and frequency.
In the absence of dissipation, the Berry topological charge is carried
by the degeneracy of the qubit-boson entangled eigenstates, which
resides at the origin of the parameter space. The dissipation extends
the point-like singularity to a ring, realizing a WER in the parameter
space. The Berry curvature, which serves as a fictitious magnetic
field, is extracted from the eigenvectors measured for different
settings of the control parameter. By reducing the size of the loop
(manifold) so as not to encircle (enclose) the WER, the system
undergoes a topological transition, manifested by an abrupt
change of the Berry phase (Chern number).

2. Model and methods

We first consider the topology encoded in the parameter space
of the JC model without dissipation (Fig. 1a). In the framework
rotating at the frequency of the resonator, the system Hamiltonian
is given by (setting 1) [29,30]h

HS D e e ka g e k a e g 1

where and are the upper and lower levels of the qubit, a d
a are the creation and annihilation operators for the quantized field
stored in the resonator, and and denote the qubit-cavity cou-
pling coefficient and detuning, respectively. In the single-
excitation subspace, the composite qubit-resonator system can be
taken as a spin, with the basis states e and g respectively cor-
responding to the spin-up and -down states and where the
number in each ket denotes the photon number of the resonator.
With this analogy, the system dynamics can be described as the
motion of the spin in a magnetic fi B with the components

Re k By Im k , and D 2, as shown in Fig. 1b. This Her-
mitian system has a degeneracy at the origin, referred to as a dia-
bolic point, where the two eigenenergies coalesce but the
eigenvectors do not. This degeneracy is a mathematic analog of
the magnetic monopole that carries a quantized topological charge
in the parameter space, as shown in Fig. 1c. Due to the presence of
such a topological defect, any manifold that encloses this singular-
ity in the parameter space is topologically distinct from those with-
out involving it. The fictitious magnetic field emanated from the
topological charge is manifested by the Berry curvature. The quan-
tized Berry flux penetrating through the manifold is characterized
by the Chern number, defined as the integral of the Berry curvature
over the manifold.

e g an
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,
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With the dissipation of the photonic field being included, the
system dynamics is described by a master equation. Conditional
Fig. 1. Construction of theWER. (a) The JC model. The system is composed of a photonic m
respectively denoted as nd he qubit-resonator coupling coefficient and detuning

e 0 g 1 , the dynamics of the composite system is mathematically equiva
correspond to Im k , and respectively. (c) Point-like topological defect. In the a
of the 3D parameter space By Bz , which can be considered as a fictitious monopole c
by the photonic dissipation of the resonator with a rate ue to the presence of dissip
centered at the origin and located on the Bx-By plane of the parameter space.
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upon no photon being leaked into the environment, the system
dynamics is described by the NH Hamiltonian [31–34]

HNH HS
1
2
ija a 2

with eing the decaying rate of the photonic field. The eigenvec-
tors of the NH Hamiltonian are drastically different from those of its
Hermitian counterpart. Due to the non–Hermiticity, the left and
right eigenvectors, defi as HNH ur

n En ur
n and

HNH ul
n En, are not the Hermitian conjugates of each other,

and need to be obtained separately. For the present NH Hamilto-
nian, the two non-orthogonal right eigenvectors, 1 2), in
the single-excitation subspace can be written as

j b

ned
ul
n

ur
n (n

ur
n

k e 0 En D g 1

k 2 En D 2
3

where

E1 2
2D ij

4
k 2 2D ij 2
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The left eigenvectors can be obtained from the biorthonormal con-
dition [5,6]:

ul
n ur

m dm n 5

The non–Hermiticity changes the point-like degeneracy into a WER
with the radius of R j 4, centered at the origin and located on
the plane of the parameter space (Fig. 1d). Along the WER,
both the eigenenergies and eigenvectors coalesce. Due to the ring-
like structure of the topological defect, the topology of the
parameter-space manifold depends upon its position, as well as
upon its size, which is fundamentally distinct from that of a Hermi-
tian system.

BWE

Bx By-

3. Results

We engineer the WER and demonstrate its topological feature
using a circuit QED device with a bus reson r (Rb) and 5
frequency-tunable qubits, one of which (Q), together with its read-
out resonator (R), is used to realize the spin-boson model. Q has an
energy relaxation time 14 3 ls and a pure Gaussian dephas-
ing time 5 3 ls at its idle frequency 2p 6 0 GHz, where
it is transformed from the initial ground stat to the excited
state with a ulse. During application of the pulse, Q is highly
detuned and thus effectively decoupled from both and R with
frequencies xb 2p 5 584 GHz nd x 2p 6 656 GHz,
respectively. The pulse sequence is sketched in the Supplemental

ato

T1

T2 xI
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ode stored in a resonator interacting with a qubit, whose upper and lower levels are
are k D pectively. (b) Spin representation. In the single-excitation subspace
lent to a spin-1/2 (S) moving in a magnetic field B hose x-, y-, and z-components
bsence of dissipation, the eigenspectrum displays a twofold degeneracy at the origin
arrying a quantized topological charge. (d) WER. The non–Hermiticity is manifested
ation, the point-like singularity is extended to a ring with the radius of B j 4,
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Material. After this transformation, Q is coupled to R through appli-
cation of an ac flux, modulating the qubit frequency as

x0 e cos mt [4], where is the mean frequency an )
is themodulation amplitude (frequency), respectively. Themodula-
tion frequency 2p 8 4—643 0) MHz is close t x0, so
that Q is quasi-resonantly coupled to R at the first upper sideband
of the modulation. The couplings at the carrier and other sidebands
can be discarded due to large detunings. The system evolution is
approximately governed by the Hamiltonian of
Eq. (1) with the effective coupli k krJ1 l and the detuning

m x0 x, where e m J1 l is the first-order Bessel func-
tion of the first kind, kr 2p 41 MHz denotes the on-
resonance coupling strength between the qubit and the readout res-
onator. TheHamiltonianparameters d k tunableby thepara-
metric modulation pulse, and the non–Hermiticity is manifested by
the photonic dissipation with a rate j 5 MHz. The decaying
rates of Q and 0 07 an 083 MHz, are much smaller th j,
and thus can be discarded. As R is initially in the vacuum state, the
Q-R system evolves in the single-excitation subspace, so that both
the qubit and the resonator cannot be coupled to energy levels with
more than one excitation during their interaction.

xq x0 d (me

m (67 o x

ng
D l

and

D an are

of
Rb d 0 an

The topological features of the engineered WER are manifested
by the quantized Berry phase acquired along a loop encircling it, as
well as by the Chern number associated with a manifold enclosing
it. The Berry phase is defined as [16]

bn i
2

ul
n B

B
ur
n B dB 6

where the path travels across the ring twice along the loop in
parameter space (Fig. 2a), so that the eigenvector returns to the orig-
inal one after the entire trajectory.When the loop encircles theWER,
the acquired Berry phase is which becomes zero for a loop with-
out encircling it. Due to the chiral nature associated with the non–
Hermiticity, the systemdoesnot adiabatically followa specific eigen-
vector by slowly changing the control parameter [35]. The break-
down of the adiabaticity prevents measurement of the Berry phase
by adiabatic evolution. However, the Berry phase associated with
each eigenvector is encoded in the parameter space, andhas no direct
relation to the evolution time. This enables us to infer the Berry phase

2

p,
Fig. 2. Topological transition characterized with the Berry phase. (a) Loops associated w
j 2 Bz 0) on the ane. The WER is encircled when the radius of the traverse

denote the results associated with the two pairs of eigenvectors ul
n B with n

p 0 18 0 34 MHz). At each point, the concurrences are obtained from the corr

(Bx Bx- plBz
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by measuring the dependence of the eigenvector on the control
parameter [4], without resorting to the adiabatic process.

The eigenvectors for a preset control parameter can be
extracted from the joint Q-R output states dynamically evolved
for different times under the NH Hamiltonian of Eq. (2). The inter-
action time is controlled by the parametric modulating pulse.
When the modulation is switched off, Q is effectively decoupled
from R due to large detuning. Then Q’s state is mapped to an ancilla
qubit with the assistance o b, following which R’s state is
transferred to Q through the modulation-induced sideband inter-
action. The resulting join Qa-Q state projected to the single-
excitation subspace, which can be measured by the quantum state
tomography and postselection technique [4], corresponds to the Q-
R output state just before the state transfer procedure. The eigen-
vectors are inferred from the tracked time-evolving Q-R output
states, as detailed in the Supplemental Material. We choose circu-
lar loops centered at ( 0 Bx j 2) on the B ane. With this
choice, whether or not the WER is encircled depends on the radius
of the traversed loop ), as shown in Fig. 2a. We can fit right
eigenvectors B as functions of the control parameter with
the results extracted for different settings o and calculate the
left vectors n B using the biorthonormal condition. Fig. 2b
shows the Berry phase ( nd b or the two pairs of eigenvectors
versus These Berry phases, measured at 0 427j, are about

9844p and 9844p, respectively. With the shrinking of the
loop, each of these Berry phases makes an abrupt change around

0 226j, quickly dropping to 0 when crossing this critical
point, thereby manifesting a topological transition. Owing to con-
trol errors, such an experimentally inferred critical point slightly
deviates from the theoretical value 4. We note that it is experi-
mentally challenging to extract the eigenstates when the control
parameter is infinitely close to the critical point. This is due to
the fact that both the eigenstates and eigenenergies tends to coa-
lesce, so that the state evolution speeds become infinitely slow in
this case. Consequently, the jump of the Berry phase from p to
0 at the critical point cannot be unambiguously confirmed. In our
experiment, the minimum (maximal) value of for the observed
trivial (topological) phase is 26j 27j).

Qa f R

t
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(Br
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2. (c) Measured qubit-resonator concurrences (E) usu f fferent values of
esponding right eigenvectors. (d) versus
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Unlike previous implementations of WERs [5,6,22,23,25], in our
system the topological characteristic is encoded in highly nonclas-
sical states of the joint Q-R system. In the single-excitation sub-
space, the quantum entanglement between Q and R can be well
measured by the concurrence [36]. The concurrences of each
right eigenvector versus or different values of are presented
in Fig. 2c, where s the angle between the control paramete
and the x-axis in the displaced frame, whose origin coincides with
the center of the loops. The solid lines denote the results for the
ideal eigenvectors. We note that the topological phase transition
is closely related to the exceptional entanglement behavior. When

BC BWER j 4, the system works above the EP where
j 4 and Bz 0 for both 0 and and consequently

E p 1 in theory [4]. Here j 2 denotes the magni-
tude of t the center of the loops. Fo j 4 E 0 1, while
p linearly increases with Br . This implies that is inde-

pendent of or the trivial phase, but exhibits a B ependence for
the topological phase. To confirm this point, in Fig. 2d, we display
the measured p versus which is well agreement with the
ideal result (solid line). Consequently, the derivative of p with
respect to is not continuous at the poi Br j 4 [4]. These
results clearly demonstrate that the geometric features of the sys-
tem are encoded in the entangled states of Q and R, illustrating the
quantum–mechanical character of the measured Berry phase, and
the topological phase transition coincides with the exceptional
entanglement phase transition [4].

E
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It is convenient to calculate the Chern number on a spherical
manifold, which is centered at the origin of the parameter space.
For a sphere with a specific radius the control parameters are
the polar and azimuth angles /). Th an components of
the Berry connection are defined as

Br ,
(h e / d h

The Chern number is given by
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1
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Fig. 3. Topological transition characterized with Chern number. (a, b) Manifolds associa
origin of the 3D parameter space. When the WER is enclosed in the manifold (a), the qua
sphere is located inside the ring (b), the amount of the Berry flux entering the man

h / 1 2) versus r p 0 33 MHz (c) and MHz (d). Here ( /) de
0. The lines denote the functions fitted with the measured data. (e) Measured Chern

with the two right eigenvectors B and B , respectively.
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where hA
n
/ /A

n
h denotes the Berry curvature [16,37,38].

When j 4, the WER is enclosed in the manifold (Fig. 3a), so
that the quantized Berry flux emanated from the WER pierces
through the manifold, and the Chern number i 1. Fo j 4,
the sphere is located inside the ring (Fig. 3b), the Berry flux entering
the manifold and that going out of it cancel out each other, resulting
in a zero Chern number.

Fn
h/

Br

s r Br

Due to the spherical symmetry, the Berry connection A inde-
pendent of o that hA

n
/. Taking advantage of this symme-

try, the Chern number can be obtained from the results measured
along meridian [39,40],

n
h is

/, s Fn
h/

0 -

Cn

p

0
dh hA

n
/ Pn

e 0 p Pn
e 0 0 9

where h is the population of in the eigenvector h 0 .
With data of measured for different values of we can fit the

function h , which are shown in Fig. 3c and d. In our experiment,
it is difficult to extract the eigenvectors when s eqaul to 0 (see
Supplemental Material for details). Here we calculate the Chern
number using the measured values o 0 h1 and Pne,0(h2), where

and h2 are as close to d 0 as possible, respectively. Fig. 3e dis-
plays thus-obtained Chern numbers and versus the radius of
the manifold. As expected, the Chern numbers, measured on a man-
ifold with a radius larger than that of the WER are equal to
When s reduced to the critical value of , a topological transi-
tion occurs, characterized by an abrupt drop of the Chern number to
0. These results can be interpreted as follows. Under the condition
that the WER is enclosed in the manifold, the eigenvector h 0
makes a otation, flipping from ( ) to e ( g ) following
the variation o from 0 p, as illustrated in Fig. 3c, where

2p 0 33 MHz. In distinct contrast, fo j 4 ur
n h 0 tilts

away from vertical with an angle smaller than and then returns
(Fig. 3d, 2p 0 18 MHz). The measured versus r different
values of are detailed in Supplemental Material. We note this
topological behavior represents a unique characteristic that distin-
guishes the NH system from Hermitian ones, where a topological
transition occurs only when the manifold is displaced so as not to

Pn
e 0 e 0 ur

n

Pn
e 0 h,

Pn
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ntized Berry flux emanated from the WER pierces through the manifold. When the
ifold equals the amount going out of it. (c, d) Measured popula of e 0 in
note the spherical coordinates for the control parameter. All data are measured for
number versus the radius of the manifold. C d denote the results associated

tions
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enclose the origin of parameter space–the diabolic point [9,15,39–
45], but cannot be realized by shrinking the manifold centered at
the diabolic point. Because of the experimental limitation, the min-
imum (maximal) value o for the observed trivial (topological)
phase is 51j 03j).

f Br

0 1 (0 5

4. Discussion and conclusion

In conclusion, we have constructed a WER in a system com-
posed of a qubit coupled to a resonator supporting a decaying pho-
tonic field, and characterized its topological features by the
quantized Berry phase and Chern number, which are inferred from
the measured eigenvectors of the governing NH Hamiltonian. We
have observed a topological phase transition featuring a change
of the Chern numbers from 1 to 0, by continually reducing the
size of the spherical manifold centered at the origin of the param-
eter space. Our results confirm that the non–Hermiticity changes a
point-like degeneracy into a 2D ring of EPs, giving arise to excep-
tional topological phenomena that are absent in Hermitian sys-
tems. Our method can be generalized to realize the EP ring
associated with a non-Abelian monopole and to explore NH topo-
logical transitions based on a higher-order Chern number.
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