
SCIENCE CHINA
Mathematics

September 2025 Vol. 68 No. 9: 2031–2070
https://doi.org/10.1007/s11425-024-2359-6

© Science China Press 2025 math.scichina.com link.springer.com

. ARTICLES .

Quasi-admissible, raisable nilpotent orbits,
and theta representations

Fan Gao1,∗ , Baiying Liu2 & Wan-Yu Tsai3

1School of Mathematical Sciences, Zhejiang University, Hangzhou 310058;
2Department of Mathematics, Purdue University, West Lafayette, IN 47907;

3Department of Mathematics, “National” Central University, Taoyuan City 320317

Email: gaofan@zju.edu.cn, liu2053@purdue.edu, wytsai@math.ncu.edu.tw

Received February 2, 2024; accepted November 24, 2024; published online March 25, 2025

Abstract We study the quasi-admissibility and raisability of some nilpotent orbits of a covering group. In
particular, we determine the degree of the cover such that a given split nilpotent orbit is quasi-admissible and
non-raisable. The speculated wavefront sets of theta representations are also computed explicitly and are shown
to be quasi-admissible and non-raisable. Lastly, we determine the leading coefficients in the Harish-Chandra
character expansion of the theta representations of covers of the general linear groups.

Keywords covering groups, nilpotent orbits, wavefront sets, quasi-admissible, raisable, theta representations

MSC(2020) 11F70, 22E50

Citation: Gao F, Liu B Y, Tsai W-Y. Quasi-admissible, raisable nilpotent orbits, and theta representations. Sci
China Math, 2025, 68: 2031–2070, https://doi.org/10.1007/s11425-024-2359-6

1 Introduction

Let F be a p-adic local field of characteristic 0. Denote by F al the algebraic closure of F . Let G be a
split-connected linear reductive group over F . Consider the group G := G(F ) or its finite degree central
covers

µn G
(n)

G,

where we assume that F contains the full group µn of n-th roots of unity. In this paper, we focus
exclusively on covering groups that arise from the Brylinski-Deligne framework [8], and we also write
G := G

(n) whenever n is understood. If n = 1, then the covering groups are just the linear algebraic
groups. We consider genuine representations of G, where µn acts via a fixed embedding µn ↪→ C×.
Denote by Irrgen(G) the set of equivalence classes of irreducible genuine representations of G. We study
the leading wavefront sets of π ∈ Irrgen(G), which are related to the generalized Whittaker models of π.
We give a quick recapitulation.

Let N denote the partially-ordered set of nilpotent orbits in gF = Lie(G) under the conjugation action
of G, where the partial order is given by the closure ordering in the usual topology of gF induced from
that of F . Every (π, Vπ) ∈ Irrgen(G) defines a character distribution χπ in a neighborhood of 0 in gF .
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Moreover, there exists a compact open subset Sπ of 0 such that for every smooth function f with compact
support in Sπ, one has (see [36, 37] for the proof in the linear algebraic case and [50] for an extension to
the covering setting)

χπ(f) =
∑
O∈N

cO(π) ·
∫
f̂µO. (1.1)

Here, µO is a certain Haar measure on O properly normalized, and f̂ is the Fourier transform of f with
respect to the Cartan-Killing form on gF and a non-trivial character

ψ : F → C×;

one has cO(π) := cO,ψ(π) ∈ C. Note that implicitly used in (1.1) is an exponent map exp : L→ G defined
for a sufficiently small open set L ⊂ gF containing 0; it is used to “pull-back” the character distribution
of π defined on G to be on (a small neighborhood of 0 in) gF (see [50, § 4.3]).

Define
Ntr(π) = {O ∈ N : cO(π) 6= 0}

and let
Nmax

tr (π) ⊂ Ntr(π)

be the subset consisting of all maximal elements in Ntr(π). The set Nmax
tr (π) gives the Gelfand-Kirillov

dimension
dGK(π) :=

1

2
max {dimO : O ∈ Nmax

tr (π)} ,

which satisfies
dimπK ≈ cπ · vol(K)−dGK(π),

as certain open compact congruence subgroups K ⊂ G approach to the identity, and here cπ ∈ C depends
only on π. We see [60] for an argument stated for linear G but is actually applicable to the covering G
using (1.1). It is also known (see [55,67] for the linear algebraic case and [59] for the extension to covering
setting) that the set Nmax

tr (π) is equal to the set of maximal nilpotent orbits with respect to which the
generalized Whittaker models for π are nontrivial.

More precisely, let (f, h, u) ⊂ gF be an sl2-triple. In this case, h is called a neutral element and it gives
a filtration

gF =
⊕
i∈Z

gh[i],

and u ∈ gh[−2]. Write
nh,u :=

⊕
i⩾2

gh[i] ⊂ gF ,

and let
Nh,u := exp(nh,u) ⊂ G

be the unipotent subgroup of G associated with nh,u. There is a character

ψu : Nh,u → C×

given by
ψu(n) = ψ(κ(u, log(n))),

where κ : gF ×gF → F is the Killing form. Since G splits uniquely over every unipotent subgroup N ⊂ G,
we view N as a subgroup of G.

For every π ∈ Irrgen(G) and every pair (h, u) as above, one can use Nh,u and ψu above to define the
degenerate Whittaker model πh,u of π. Moreover, for every nilpotent G-orbit O ⊂ gF , we write

πO := πh,u,
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which is independent of the choice of any u ∈ O and neutral pair (h, u) (see Subsection 2.2 for details).
We call πO the generalized Whittaker model of π associated with O. This gives

NWh(π) = {O ⊂ gF : πO 6= 0} ,

and we let Nmax
Wh (π) ⊂ NWh(π) be the subset of maximal elements. Then it was shown in [55,59,67] that

• Nmax
tr (π) = Nmax

Wh (π) for every π ∈ Irrgen(G), and
• for every O in the above (equal) sets, one has cO = dimC πO.

We call Nmax
tr (π) and thus also Nmax

Wh (π) the wavefront set of π. For π ∈ Irr(GLr), a relation between
the full set {cO : O ∈ Ntr(π)} and certain degenerate Whittaker models of the Jacquet modules of π is
given in the recent work of Gurevich [35].

It is important to understand the set Nmax
Wh (π). Indeed, in view of the above relation among dGK(π),

Nmax
tr (π) and Nmax

Wh (π), we see that the set Nmax
Wh (π) measures the “asymptotic” size of the usually infinite-

dimensional π, coined by the Gelfand-Kirillov dimension. Moreover, one can define a global analogue of
Nmax

Wh (π), which has many deep applications, for example, in the theory of descent and the Gan-Gross-
Prasad conjectures and others, see [21, 31, 45] and the references therein. It should be mentioned that
the study of Nmax

Wh (π) for central covers has applications to problems concerning linear algebraic groups
as well. A prototype is the theta correspondence relating the representations of SO2m and the double
cover of Sp2r, which relies crucially on the fact that Nmax

Wh (ωψ) of the Weil representation ωψ consists
of the minimal orbits of the ambient symplectic group. Particularly interesting is the usage of theta
representations with appropriate Nmax

Wh to understand L-functions for linear algebraic groups (see, for
example, [12, 13,64]).

Nevertheless, determining the set Nmax
Wh (π) is a difficult problem for general π ∈ Irrgen(G), and this is

already the case for linear G. For GLr, Ginzburg [30] and Jiang [39] gave several speculations for the set
Nmax

Wh (π) in terms of the Moeglin-Waldspurger classification of the spectrum of GLr (see [52] for some
recent progress). For linear group G, the Arthur parametrization of certain unitary representations π is
expected to encode information on Nmax

Wh (π) in terms of their Arthur parameters. For linear G, several
conjectures are formulated in [39] regarding Nmax

Wh (π) using the parameter of π. There has been progress
towards these conjectures as in [40,41,43,44,51], among many others1). We also have the recent work by
Ciubotaru, Mason-Brown and Okada toward understanding the stable wavefront sets and their refined
versions (see [16,58]).

For covering groups, the most “fundamental” genuine representation of a covering group G is the theta
representation Θ(G) (see [24, 49]), a prototype of which is called the even Weil representation of the
double cover Sp

(2)

2r . It is desirable to have a full description of Nmax
Wh (Θ(G)). For GL

(n)

r , it was proved by
Cai [14] and Savin2) that for unramified theta representations, one has

Nmax
Wh (Θ(GL

(n)

r )) = {(nab)}, (1.2)

where r = an + b with 0 ⩽ b < n. For n ⩾ r, this recovers the earlier result of Kazhdan and
Patterson [49] on generic theta representations. Formulas analogous to (1.2) were proved for SO

(4)

2r+1

and GSpin
(2)

2r (see [10, 11, 47]), respectively. The case of Sp(n)2r was also studied extensively by Friedberg
and Ginzburg [19–22]. In [27], a uniform but speculative formula of Nmax

Wh (Θ(G)) was given for general
G, which was motivated from the works mentioned above.

It has been expected for a long time that over the algebraic closure, the wavefront set is a singleton
for general π. On the contrary, Tsai gave a counter-example recently in [66] for certain epipelagic
supercuspidal representations of U7. However, we still expect, as from [16, 58] for linear groups, that for
the genuine Iwahori-spherical representations, in particular unramified genuine theta representations, the
wavefront set is a singleton over F al.

Although it is difficult to determine precisely Nmax
Wh (π) for general π ∈ Irrgen(G), some work has been

done in the literature to determine whether a candidate O ∈ N could possibly lie in Nmax
Wh (π) for some

1) Liu B Y, Shahidi F. On Jiang’s wavefront sets conjecture for representations in local Arthur packets. Preprint, 2022
2) Savin G. A nice central extension of GLr. Preprint
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π. Pertaining to this are the notions of admissible or quasi-admissible orbits. Equivalently, one has some
sufficient condition for an orbit to lie in the complement set

N −
∪

π∈Irrgen(G)

Nmax
Wh (π), (1.3)

especially when G = G is a linear group.
The notion of admissibility was first proposed by Duflo [18] for real Lie groups. It was then studied

both in the p-adic and the real setting in many works later, for example, [56, 57, 65], and we refer the
reader to [56, 57, 65] for more extensive references and historical discussion. Utilizing a more general
“Whittaker pair”, we see that the recent work by Gomez et al. [32,33] enables one to consider degenerate
Whittaker models, where the discussion on admissibility and quasi-admissibility of nilpotent orbits was
framed generally and already applies to covering groups.

Closely related to admissible (or slightly weaker, quasi-admissible) orbits is the notion of special orbits,
which correspond to the special Weyl group representations via the Springer correspondence. It was shown
by Moeglin [54] that for classical groups, every admissible orbit has to be special. Thus, the set Nmax

Wh (π)

for classical linear algebraic groups contains necessarily just special orbits. This fact fails to cover groups,
as seen already from the three-fold cover of G2 and many covering groups considered in this paper. In
fact, in a different direction, Jiang et al. [42] considered the notion of raisability of nilpotent orbits, which
equally applies to covering groups as well. Roughly speaking, if a nilpotent orbit is raisable, then it must
lie in the set (1.3).

Our present paper is motivated by the works above. It could be in part considered as an application
and explication of [33, 42] in the covering setting, and in part as a sequel to [27]. Below, we give an
elaboration of this and also state our main results.

First, by applying and analyzing the techniques from [32,33,42], we determine the orbits O ⊂ gF which
are G(n)-quasi-admissible or G(n)-raisable. As alluded to above, the importance of these two notions lies
in the following:

• if O is G(n)-raisable or not G(n)-quasi-admissible, then it does not lie in Nmax
Wh (π) for any π ∈

Irrgen(G
(n)

).
For technical reasons, we only consider F -split nilpotent orbits. In Section 2, we consider general G and
give equivalent criteria for quasi-admissibility which are amenable to explicit verification, similarly for
raisability (see Propositions 2.4, 2.5 and 2.10).

In Section 3, applying results from Section 2, we analyze groups of each Cartan-type and determine
the quasi-admissibility and raisability of each F -split orbit O of G, whenever possible.
Theorem 1.1. Let G(n) be the n-fold cover of any of GLr, SO2r+1, SO2r and Sp2r. Conditions
for quasi-admissibility and raisability of an F -split orbit O ∈ N with the associated partition pO =

(pd11 · · · pdii · · · pdkk ) are stipulated in Theorems 3.1, 3.3 and 3.4. For covering groups of the simply-
connected exceptional groups G2, F4 and Er, 6 ⩽ r ⩽ 8, quasi-admissible and raisable orbits are given in
Tables 1–5, whenever our method applies.

For exceptional groups, we check the quasi-admissibility and raisability for all orbits of G2 and F4,
but only for those orbits which are speculatively the leading wavefront set of theta representations for
Er, 6 ⩽ r ⩽ 8. However, the method of the computation clearly applies to any orbit of Er.

Next, we consider in Section 4 theta representations Θ(ν) of G(n), where ν ∈ X ⊗ R is a certain
exceptional character. Naturally, associated with ν is the nilpotent orbit OSpr(j

W
Wν
εν) ⊂ gF al , which arises

from the Springer correspondence and the j-induction of the sign character εν of Wν ⊂W . This orbit is
expected to be Nmax

Wh (Θ(ν))⊗F al. In Subsection 4.3, we show that the computation of OSpr(j
W
Wν
εν) ⊂ gF al

is reduced to Sommers’ duality [63] between nilpotent orbits, which generalizes the classical Barbasch-
Vogan duality. With an explicit computation, we verify the quasi-admissibility and non-raisability of
such orbits.
Theorem 1.2 (Theorem 4.6). Let G(n) be a cover of the classical and exceptional groups considered
in Theorem 1.1.



Gao F et al. Sci China Math September 2025 Vol. 68 No. 9 2035

(i) The orbit OSpr(j
W
Wν
εν) ⊂ gF al for G(n) of classical groups is explicitly given as in Table 6; for G(n)

of exceptional groups, it is given in Tables 7–11.
(ii) The F -split orbit OΘ ⊂ gF of type OSpr(j

W
Wν
εν) is quasi-admissible and not raisable.

(iii) If the orbit OΘ is the regular orbit of a Levi subgroup of G, then it supports the generalized
Whittaker model of the theta representation Θ(ν).

Last, in Section 5, we determine cO for O in Nmax
Wh (Θ(GL

(n)

r )), which was already shown by Savin2)

and Cai [14] to be equal to
OSpr(j

W
Wν
εν) = (nab).

The main result in Section 5 is the following theorem.

Theorem 1.3 (Theorem 5.1). Assume p ∤ n. Consider an unramified theta representation Θ(GL
(n)

r )

of the Kazhdan-Patterson cover GL
(n)

r . Then for the unique orbit O = (nab) in Nmax
Wh (Θ(GL

(n)

r )), one
has

cO = 〈jWWν
(εν), εW ⊗ σX 〉

W
.

Thus, Conjecture 4.1 holds for unramified theta representations of GL
(n)

r .
Here, σX :W → Perm(X ) is the permutation representation of W on X via the twisted Weyl action

(see (4.2)). The proof of Theorem 1.3 relies on the crucial fact that every nilpotent orbit of GLr is of
PL-type à la [34], i.e., it is the principal/regular orbit of a Levi subgroup. In the proof of Theorem 1.3,
we also use the result of Gomez et al. [33] and some properties of the j-induction. As discussed earlier,
the number cO is equal to the dimension of certain generalized Whittaker models.

For general G(n), we expect that whenever the orbit OSpr(j
W
Wν
εν) is of PL-type, then [27, (2.4)] (i.e.,

(4.4) in Conjecture 4.1 here) can be checked by using similar analysis as in the case of GL
(n)

r . However,
it seems to require new ideas to deal with the case of non-PL-type orbits.

2 Quasi-admissible and raisable orbits
2.1 Covering groups

Let F be a p-adic local field of characteristic 0. Let G be a connected split linear reductive group over
F . Denote by (X,Φ,∆;Y,Φ∨,∆∨) the root datum of G, where X is the character lattice and Y is the
cocharacter lattice of a maximal split torus T ⊂ G. Here, ∆ is a choice of simple roots, and we denote
by Y sc ⊂ Y the coroot lattice and Xsc ⊂ X the root lattice. Denote by W the Weyl group of the coroot
system.

Let Q : Y → Z be a Weyl-invariant quadratic form, and BQ be the associated bilinear form. Assume
that F× contains the full group µn of n-th roots of unity. Consider the pair (D, η = 1), where D is
a “bisector” of Q (see [23, § 2.6]). As discussed in [23, § 2.6], the assumption η = 1 entails a simpler
description of the structure of G. Moreover, if G is simply-connected semisimple, then we do not lose
any generality with such an assumption since every (D, η) is isomorphic to (D′,1) for a certain D′ (see
[23, § 2.6] for a more detailed discussion on this).

In any case, associated with (D,1) one has a covering group G of G := G(F ), which is a central
extension

µn G
(n)

G

of G by µn. For simplicity, we may also write G := G
(n). For more details, see [8, 23, 68]. Throughout,

for every root α, we define
nα :=

n

gcd(n,Q(α∨))
. (2.1)

We also write Irrgen(G) for the set of equivalence classes of irreducible genuine representations of G,
where µn acts via a fixed embedding µ ↪→ C×.
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Definition 2.1. Assume that Gder is almost simple. Then the number

InvBD(G) := Q(α∨) ∈ Z,

where α∨ is any short coroot, is called the Brylinski-Deligne invariant associated with G.
Note that the Brylinski-Deligne invariant does not depend on n. Moreover, it behaves functorially

as follows. Let ζ : G → H be an algebraic group homomorphism. It induces a group homomorphism
ζ♮ : YG → YH on the cocharacter lattices of G and H. Let H be an n-fold cover of H associated with a
quadratic form QH . The pull-back n-fold cover ζ∗(H) of G via ζ is associated with Q ◦ ζ♮. In particular,
we have

InvBD(ζ
∗(H)) = Q ◦ ζ♮(α∨

G),

where α∨
G is any short coroot of G.

2.2 Degenerate Whittaker models

For the terminology and notations in this subsection, we follow [32,33]. In particular, the Lie algebra sl2
over F has a standard basis {e+, h0, e−}. Recall that gF denotes the Lie algebra of G.

Let u ∈ gF be a nilpotent element. Given a semisimple element h ∈ gF , one has a decomposition

gF =
⊕
i∈I

gh[i],

where I ⊂ F and gh[i] denotes the i-th eigenspace of the adjoint action of h on gF . The element h ∈ gF
is called Q-semisimple if I ⊂ Q. The pair (h, u) is called a Whittaker pair if h is Q-semisimple and
u ∈ gh[−2]. A Whittaker pair is called a neutral pair if there exists a nilpotent element f ∈ gF such
that (f, h, u) is an sl2-triple, in which case h is called a neutral element for u. For any nilpotent u,
the Jacobson-Morozov theorem gives a homomorphism γ : sl2 → gF such that u = γ(e−). Conversely,
naturally associated with any γ is an sl2-triple {f, h, u} ⊂ gF , where h is then a neutral element for u.

Let
κ : gF × gF → F

be the Killing form. For any Whittaker pair (h, u), one has a symplectic form

ωu : gF × gF → F

given by ωu(x, y) := κ(u, [x, y]). For any rational i ∈ Q, let

gh⩾i =
⊕
i′⩾i

gh[i′] and uh := gh⩾1.

The restriction ωu|uh
is well-defined and let nh,u be the radical of ωu|uh

. Then

[uh, uh] ⊂ gh⩾2 ⊂ nh,u.

By [32, Lemma 3.2.6], one has
nh,u = gh⩾2 + gh1 ∩ gu,

where gu denotes the centralizer of u ∈ g. If the Whittaker pair (h, u) is a neutral pair, then nh,u = gh⩾2.
Let Uh = exp(uh) and Nh,u = exp(nh,u) be the corresponding unipotent subgroups of G. Let

ψ : F → C×

be a nontrivial character. Define a character of Nh,u by

ψu(n) = ψ(κ(u, log(n))). (2.2)

Let N ′
h,u = Nh,u ∩Ker(ψu). Then Uh/N

′
h,u is a Heisenberg group with center Nh,u/N ′

h,u.
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Viewing ψu as a character of Nh,u/N ′
h,u, we denote by σψu the unique irreducible representation of

Uh/N
′
h,u with the central character ψu. The pull-back of σψu

via the quotient Uh ↠ Uh/N
′
h,u gives an

irreducible representation σ♯ψu
of Uh. The group G splits uniquely over every unipotent subgroup of G.

Thus, we view all the above Uh and Nh,u as subgroups of G.
The degenerate Whittaker model πh,u of π ∈ Irrgen(G) associated with any Whittaker pair (h, u) is by

definition (see [33, § 2.5])
πh,u := ((indGµn×Uh

ε⊗ σ♯ψu
)⊗ π)G,

where ε : µn ↪→ C× is the fixed embedding. For a nilpotent orbit O ⊂ gF , we write πO := πh,u for any
u ∈ O and any choice (h, u) of neutral pair. Define

NWh(π) = {O ⊂ gF : πO 6= 0} ,

and let
Nmax

Wh (π) ⊂ NWh(π)

be the subset consisting of maximal elements.

2.3 F -split nilpotent orbits

Let γ = (f, h, u) ⊂ gF be an sl2-triple. Let Ou ⊂ gF . Viewing γ ⊂ gF al , one has

Gu = Gγ ·Nu,

where Gγ ⊂ G is the stabilizer subgroup of γ. The group Gγ is a (possibly disconnected) linear algebraic
group and is the reductive part of Gu. In general, we have

(Ou ⊗ F al) ∩ gF =
⊔
i∈I

Oui
,

where the F -rational orbits Oui are classified by the Galois cohomology group H1(F,Gγ) (see [61,
Chapter III] and [57, § 4]). This group is only a pointed set if Gγ is not abelian.

Let Gγ,0 ⊆ Gγ be the connected component of the identity in Gγ . We get the group

π0(Gγ) = Gγ/Gγ,0

of connected components of Gγ . This group is one of the symmetric groups Si, 1 ⩽ i ⩽ 5; moreover, for
classical groups, it is either trivial or S2. One has an exact sequence of pointed sets

H1(F,Gγ,0) H1(F,Gγ) H1(F, π0(Gγ)) · · · .ι

In particular, if Gγ,0 is semisimple and simply-connected, then ι is injective.
The orbit Ou is called an F -split nilpotent orbit if the reductive group Gγ is split over F . In this

paper, we only consider F -split orbits since the computation with covers of a non-split Gγ involves further
subtlety. Henceforth, we assume that the orbit O ⊂ gF is always F -split without explicating this again.

In this paper, we implement the methods of Moeglin [54], Nevins [56,57], Jiang et al. [42] and Gomez
et al. [33] to give some necessary or sufficient condition for an orbit Ou to possibly lie in the wavefront
set of some genuine representation π ∈ Irrgen(G). In fact, for general G, we determine (if possible) the
F -split orbits of gF that cannot be the wavefront set of any genuine representation π. More precisely,
we consider necessary conditions for an F -split orbit Ou to be quasi-admissible in the sense of [33], and
also give sufficient conditions for it to be raisable, a notion due to [42]. All these together will enable us
to determine the subset of the orbits in N , which never occur in the wavefront set of any π ∈ Irrgen(G).

Some results here also hold in the global setting for genuine automorphic representations.
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2.4 G
(n)-quasi-admissible orbits

Recall that by restriction, one has a non-degenerate symplectic form

ωu : g[1]× g[1] → F.

The group Gγ = Gγ(F ) acts on g[1] and preserves the form ωu. Thus, one has a natural group
homomorphism

φ : Gγ → Sp(g[1]).

By pull-back of the metaplectic double cover Mp(g[1]) of Sp(g[1]) via φ (i.e., the fiber product of Gγ and
Mp(g[1]) over Sp(g[1])), one has a double cover

µ2 ↪→ G
(2),ϕ

γ ↠ Gγ .

Here, the metaplectic group Mp(g[1]) is uniquely determined by its Brylinski-Deligne invariant

InvBD(Mp(g[1])) = 1.

The inclusion Gγ ⊂ G gives an inherited covering G(n)

γ . We obtain the fiber product G(n)

γ ×Gγ
G

(2),ϕ

γ

as in the following commutative diagram:

G
(n)

γ ×Gγ
G

(2),ϕ

γ G
(2),ϕ

γ Mp(g[1])

G
(n)

γ Gγ Sp(g[1]).

G
(n)

G

qγ

ϕ

WriteGγ,der ⊂ Gγ for the subgroup generated by unipotent elements; it is equal to the derived subgroup
of Gγ,0 := Gγ,0(F ) ⊂ Gγ . Thus, we have the inclusions

Gγ,der ⊂ Gγ,0 ⊂ Gγ .

Let Gγ,der ⊂ Gγ be the derived subgroup, and f : Gγ,sc ↠ Gγ,der be the simply-connected cover. Setting
Gγ,sc := Gγ,sc(F ), the map f induces a map

f : Gγ,sc ↠ Gγ,der ↪→ Gγ,der(F ). (2.3)

In particular, the inclusion in (2.3) may not be an equality in general (see [6, § 6] for a detailed discussion).
Henceforth, we write

G
(n,2)

γ := G
(n)

γ ×Gγ
G

(2),ϕ

γ .

Similarly, for ? ∈ {0, der, sc}, one has the natural pull-back G(n)

γ,⋆ and G
(2),ϕ

γ,⋆ , and we set

G
(n,2)

γ,⋆ := G
(n)

γ,⋆ ×Gγ,⋆
G

(2),ϕ

γ,⋆ .

One has by construction the following commutative diagram:

G
(n,2)

γ,⋆ G
(2),ϕ

γ,⋆

G
(n)

γ,⋆ Gγ,⋆,

pγ,⋆ (2.4)

where pγ,⋆ is the canonical quotient map.
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Definition 2.2 (See [33]). A representation of a group H with µn×µ2 ⊂ Z(H) is called (n, 2)-genuine
if the central subgroups µn and µ2 both act faithfully. An F -split nilpotent orbit O = Ou ⊂ g is called

• G(n)-admissible if the map pγ,0 : G
(n,2)

γ,0 ↠ Gγ,0 in (2.4) splits;
• G(n)-quasi-admissible if G(n,2)

γ admits a finite-dimensional (n, 2)-genuine representation.
For simplicity, we may just use admissibility and quasi-admissibility when the underlying covering

group is clear from the context. Assume that pγ,0 splits. Then we have an isomorphism

G
(n,2)

γ,0 ' (µn × µ2)×Gγ,0,

and thus G(n,2)

γ,0 clearly has a one-dimensional (n, 2)-genuine character. Since G(n,2)

γ,0 is of finite index in
G

(n,2)

γ , induction gives a finite-dimensional (n, 2)-genuine representation of G(n,2)

γ . Hence, we see that

admissible ⇒ quasi-admissible

for F -split orbits O.
To understand further the quasi-admissibility, we denote by (G

(n,2)

γ )+ ⊂ G
(n,2)

γ the subgroup generated
by unipotent elements. For ? ∈ {0, der}, one has a commutative diagram

µn × µ2 G
(n,2)

γ,⋆ Gγ,⋆

Ker(pDγ ) (G
(n,2)

γ )+ Gγ,der.

pγ,⋆

ιD

pDγ

(2.5)

Here, pDγ is just the restriction of pγ,⋆ to (G
(n,2)

γ )+; it is surjective since Gγ,der is generated by unipotent
elements. Note that ιD may not be surjective in general.
Lemma 2.3. Let O = Ou be an F -split G(n)-quasi-admissible orbit.

(i) If n is odd, then Ker(pDγ ) = {1} and thus pγ,0 splits over Gγ,der.
(ii) If n = 2m is even, then either Ker(pDγ ) = {1} or Ker(pDγ ) = ∆(µ2), where ∆ : µ2 ↪→ µn×µ2 is the

diagonal embedding.
Proof. Let σ be a finite-dimensional (n, 2)-genuine representation of G(n,2)

γ , viewed as a representation
of G(n,2)

γ,0 by restriction. By [33, Lemma 4.5] (see also the proof of [33, Proposition 6.4]), we have

(G
(n,2)

γ )+ ⊂ Ker(σ).

In particular, Ker(pDγ ) ⊂ Ker(σ). Since σ is (n, 2)-genuine, this immediately gives the result.
Now we set n∗ = lcm(n, 2) and consider the multiplication map

m : µn × µ2 → µn∗ . (2.6)

By push-out via m, we obtain the following:

µn × µ2 G
(n,2)

γ,der Gγ,der

µn∗ m∗(G
(n,2)

γ,der) Gγ,der.

m

pγ,der

pmγ,der

(2.7)

Assume that Gγ =
∏
j∈J Gγ,j , where Gγ,j,der is almost simple for every j. Then one has

µn∗ m∗(G
(n,2)

γ,j,0 ) Gγ,j,0

µn∗ m∗(G
(n,2)

γ,j,der) Gγ,j,der

pmγ,j,0

pmγ,j,der

(2.8)



2040 Gao F et al. Sci China Math September 2025 Vol. 68 No. 9

for every j ∈ J . In general, the natural set-theoretic map∏
j

G
(n,2)

γ,j → G
(n,2)

γ

may not be a group homomorphism, i.e., block commutativity may fail. However, for the derived
subgroup, we have the natural group isomorphism(∏

j

G
(n,2)

γ,j,der

)
/K ' G

(n,2)

γ,der,

where K = {(ζj , ξj) ∈ (µn × µ2)
|J| :

∏
j(ζj , ξj) = (1, 1)}. Indeed, if Zj denotes the cocharacter lattice

of Gγ,j,der and Z that for Gγ,der, then any Weyl-invariant quadratic form Q on Z decomposes as Q =⊕
j Q|Zj . This shows that G(n)

γ,j,der commutes with each other in G
(n)

γ,der, and similarly for G(2),ϕ

γ,j,der; thus,
so does the G(n,2)

γ,j,der.
Proposition 2.4. Keep notations as above. Then the following are equivalent:

(i) The F -split orbit O is quasi-admissible.
(ii) The map pmγ,der in (2.7) splits.
(iii) For every j, the map pmγ,j,der in (2.8) splits.
(iv) For every j, the cover m∗(G

(n,2)

γ,j,0 ) has a finite-dimensional µn∗-genuine representation.
Proof. Let O be as given. The equivalence between (ii) and (iii) is clear in view of the preceding
discussion. We first consider the equivalence between (i) and (ii).

Assuming (i), we have the following two cases as from Lemma 2.3:
• If Ker(pDγ ) = {1}, then pγ,der splits over Gγ,der and thus pmγ,der splits as well.
• If Ker(pDγ ) = ∆(µ2), then necessarily 2|n and n∗ = n. In this case, by pushing out (G

(n,2)

γ )+ via ιD,
we obtain an isomorphism of extensions from the bottom two lines as in

Ker(pDγ ) (G
(n,2)

γ )+ Gγ,der

µn × µ2 ιD∗ (G
(n,2)

γ )+ Gγ,der

µn × µ2 G
(n,2)

γ,der Gγ,der.

ιD

pDγ

≃

Since in this case, Ker(m) = Im(ιD), we see that one has a retraction of the short exact sequence

µn∗ ↪→ m∗(G
(n,2)

γ,der) ↠ Gγ,der,

which then gives a splitting of pmγ,der.
Now, assuming that pmγ,der splits, we have a homomorphism s such that

µn × µ2 G
(n,2)

γ,der/(G
(n,2)

γ )+

µn∗

s

commutes. This implies in particular that

µn × µ2 (µn × µ2)/Ker(pDγ )

µn∗

m

ι

s
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commutes. Since m is injective on µn and also on µ2, we see that ι is injective on µn and on µ2 as
well. Thus, one has a finite-dimensional (n, 2)-genuine representation of G(n,2)

γ,der and also of G(n,2)

γ,0 (see [33,
Proposition 6.4]).

This equivalence between (iii) and (iv) follows an analogous argument for that of (i) and (ii). This
completes the proof.

In view of Proposition 2.4, we assume now that Gγ,der is almost simple and gives an explicit condition
for the splitting of pmγ,der. Consider the Brylinski-Deligne invariant (see Definition 2.1)

Q1 := InvBD(G
(n)

γ,0), Q2 := InvBD(G
(2),ϕ

γ,0 ) (2.9)

associated with G(n)

γ,0 and G(2),ϕ

γ,0 , respectively. Then we can view G
(n)

γ,0 as an n∗-fold cover associated with
(n∗/n)Q1, and view G

(2),ϕ

γ,0 as an n∗-fold cover associated with (n∗/2)Q2. Thus, we see that m∗(G
(n,2)

γ,der)

is an n∗-fold cover with the Brylinski-Deligne invariant (n∗/n)Q1 + (n∗/2)Q2.

Proposition 2.5. Let Q1 ∈ Z (resp. Q2 ∈ Z) be the Brylinski-Deligne invariant of G(n)

γ,0 (resp. G(2),ϕ

γ,0 ).
Assume that n∗ is coprime to the size of Ker(f : Gγ,sc ↠ Gγ,der). Then pmγ,der splits if and only if n∗
divides (n∗/n)Q1 + (n∗/2)Q2, or equivalently,

(i) n|Q1 when 2|Q2, and
(ii) n/ gcd(n,Q1) = 2 when 2 ∤ Q2.

Proof. Recall that the homomorphism f : Gγ,sc ↠ Gγ,der induces a map

f : Gγ,sc ↠ Gγ,der ↪→ Gγ,der(F ).

By the pull-back via f , the n∗-fold cover G(n∗)

γ,der of Gγ,der gives an n∗-fold cover G(n∗)

γ,sc , as depicted in the
following diagram:

µn∗ µn∗

Ker(f) G
(n∗)

γ,sc G
(n∗)

γ,der

Ker(f) Gγ,sc Gγ,der.

ι

q

ι

s
f

(2.10)

Thus, if G(n∗)

γ,der splits, then G
(n∗)

γ,sc splits by its definition as pull-back.
On the other hand, let

s : Gγ,sc ↪→ G
(n∗)

γ,sc

be a splitting, which is actually unique since Gγ,sc is equal to its derived subgroup. The assumption
implies that gcd(|Ker(f)|, n∗) = 1, and thus any group homomorphism from Ker(f) to µn∗ is trivial.
This shows that the splitting of Ker(f) into G(n∗)

γ,sc is unique, i.e., the left lower square in (2.10) involving
s commutes. This implies that G(n∗)

γ,der splits over Gγ,der.
The above shows that with our assumption on n∗, the map pmγ,der splits if and only if G(n∗)

γ,sc splits
over Gγ,sc. However, since Gγ,sc is simply-connected, its n∗-fold cover splits if and only if n∗ divides the
Brylinski-Deligne invariant. This completes the proof.

Remark 2.6. In general, consider f : Gsc ↠ G, the simply-connected cover of a semi-simple group
G, which gives f : Gsc ↠ Gder ↪→ G. There exists a non-split extension of Gder whose pull-back is split.
For example, consider G = SO3 and thus Gsc = SL2. Then one has Gder = SL2(F )/ {±1}, where we
identify {±1} with the center of SL2(F ). Consider the double cover

G
(2)

der := (µ2 × SL2(F ))/Im(σ),
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where the map σ : {±1} → µ2×SL2(F ) is given by σ(a) = (($, a)2, a). It is easy to see that the pull-back
of G(2)

der to Gsc = SL2 is a split extension. However, G(2)

der splits over Gder if and only if ($,−1)2 = 1. In
fact, G(2)

der is a Brylinski-Deligne cover associated with (D = 0, η), and is the running example for several
interesting phenomena discussed in [23].

However, in the notation of Proposition 2.5, we believe that the splitting of G(n∗)

γ,sc is always equivalent
to the splitting of G(n∗)

γ,der, without the assumption “· · · that n∗ is coprime to the size of · · · ” imposed
there, i.e., the covers G(n∗)

γ,der that arise are not of the type in the preceding paragraph, essentially due to
the fact that we consider in this paper covers associated with (D, η = 1). We are not able to prove this
expectation in full generality, though.

The importance of the quasi-admissibility is given as follows.
Theorem 2.7 (See [33, Theorem 1]). Let O be an F -split orbit such that O ∈ Nmax

Wh (π) for some
π ∈ Irrgen(G). Then O is quasi-admissible.
Proof. The proof of this result relies on [33, Theorem 1.4 and Proposition 6.3]. The statement in
[33, Theorem 1.4(i)] needs a revision in the covering setting. However, the idea of the proof of [33,
Theorem 1.4] still applies. Indeed, the proof of [33, Theorem 1.4] actually shows that if O ∈ Nmax

Wh (π),
then the non-zero finite-dimensional space πNO,ψO affords an (n, 2)-genuine representation of G(n,2)

γ and
thus is quasi-admissible.

2.5 Admissibility versus quasi-admissibility

Again, consider f : Gsc ↠ G of a semisimple G and the arising f : Gsc → G, which is not necessarily
surjective. It is possible that a cover over G does not split, but its restriction to Gder splits and thus also
the pull-back to Gsc. Note that if G = Gγ,0 for some γ, then this gives an example of orbit which is
quasi-admissible but not admissible.

As a more concrete example of this, consider G = SOk. Let SL
(m)

k be the m-fold cover with the
Brylinski-Deligne invariant Q(α∨), where α∨ is any coroot of SLk. Consider the cover SO

(m)

k obtained
from restricting SLk via the inclusion SOk ↪→ SLk. Thus,

InvBD(SO
(m)

k ) = 2Q(α∨) for k ⩾ 4 and InvBD(SO
(m)

3 ) = 4Q(α∨).

Lemma 2.8. Keep notations as above. The cover SO
(m)

k , k ⩾ 3 has a finite-dimensional µm-genuine
representation if and only if m|InvBD(SO

(m)

k ).

Proof. We first show the “only if” part. If SO(m)

k has a finite-dimensional µm-genuine representation,
then it gives rise to one for Gsc = Spink. It then follows that Gsc splits over Gsc, which implies that m
divides InvBD(Gsc) = InvBD(SO

(m)

k ).
Now for the “if” part, we first assume m|2Q(α∨). Then the desired result essentially follows from the

discussion in [26, § 2.4]. Let Ze be the cocharacter lattice of Gm, and Q : Ze → Z be a quadratic form.
It gives the cover

µm ↪→ F× ↠ F× (2.11)

associated with Q. Now assume m|2Q(e). Then the cover F× splits over F×2, and thus we obtain a
cover

µm ↪→ F×/2 ↠ F×/2,

where F×/2 := F×/F×2. This extension is abelian, though non-split. Consider the spinor norm

N : SOk → F×/2

and the pull-back cover
µm ↪→ N ∗(F×/2) ↠ SOk.
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If we consider the SL
(m)

k with the Brylinski-Deligne invariant Q(α∨) := Q(e), then by restriction, it gives
rise to SO

(m)

k , and one has
SO

(m)

k ' N ∗(F×/2)

(see [26, Example 2.10]). Thus, there is a one-dimensional µm-genuine representation of SOk.
For the “if” part, the only remaining case is when k = 3 and m = 4Q(α∨). In this case, the

extension (2.11) associated with Q(e) := Q(α∨) also splits over F×2. The pull-back cover

µm ↪→ N ∗(F×/2) ↠ SO3

is equal to the cover SO
(m)

3 of SO3 restricted from SL
(m)

3 with InvBD(SL
(m)

3 ) = Q(α∨) via SO3 ↪→ SL3.
Since in this case, F×/2 clearly has a finite-dimensional µm-genuine representation, so does the cover
SO

(m)

3 .
Combining all the above, we complete the proof.

Thus, suppose that Ou and γ are such that
• Gγ,0 = SOk as above,
• InvBD(G

(n)
γ,0) = 2Q(α∨) with n|2Q(α∨), and

• 4|InvBD(G
(2),ϕ
γ,0 ).

Such an orbit Ou is always quasi-admissible. However, it might not be admissible if n = 2Q(α∨). A
concrete example is the orbit B3 of the exceptional group F4 (see Subsection 3.5).

2.6 G
(n)-raisable orbits

Now we discuss the notion of G-raisability following [42]. It pertains to a “local” version of non-quasi-
admissibility relative to a “good” choice of an SL2 ⊂ Gγ , if it exists.

Let gγ ⊂ g be the centralizer of γ in g. Assume that
• (C0) There is a non-trivial map

τ : sl2 → gγ .

In this case, we write
sl2,τ = τ(sl2).

If we set
uτ := τ(e−(x))

for some 0 6= x ∈ F , then
γ′ = γ ⊕ τ : sl2 → g

is a Jacobson-Morozov map associated with the nilpotent element u′ = u + uτ . Let g[j, l] ⊂ g be the
space of vectors with γ-weight j and τ -weight l. We assume the following:

• (C1) The τ -weights l are bounded by 2.
• (C2) As sl2,τ -module,

g[1] = g[1]sl2,τ ⊕mV2.

• (C3) dim g[0, 2] = 1 + dim g[2, 2].
By abuse of notation, we still denote by τ : SL2 → Gγ the map corresponding to τ . Also, there is a
natural group homomorphism

φm : SL2 → Sp2m

arising from φ ◦ τ and (C2) above. Recall that

φ : Gγ → Sp(g[1])
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is the natural group homomorphism. This gives rise to the following diagram:

SL
(n),τ

2 ×SL2
SL

(2),ϕm

2 SL
(2),ϕm

2 Mp2m

SL
(n),τ

2 SL2 Sp2m.

G
(n)

G

pτ

ϕm

τ

(2.12)

From now, we write
SL

(n,2)

2,τ := SL
(n),τ

2 ×SL2
SL

(2),ϕm

2 .

The two covering groups SL(n),τ

2 and SL
(2),ϕm

2 both arise from the Brylinski-Deligne framework. Consider
n∗ = lcm(n, 2) and the push-out of SL(n,2)

2,τ via m as in (2.6). This gives

µn × µ2 SL
(n,2)

2,τ SL2

µn∗ m∗(SL
(n,2)

2,τ ) SL2.

m

pmτ

(2.13)

Definition 2.9 (See [42]). An F -split nilpotent orbit O ⊂ g is called G
(n)-raisable if there exists

τ : sl2 → gγ satisfying (C0)–(C3) such that the projection pmτ in (2.13) does not split.
Again, we denote by

(Qτ1 , Q
τ
2) := (InvBD(SL

(n),τ

2 ), InvBD(SL
(2),ϕm

2 )) (2.14)

the pair of Brylinski-Deligne invariants associated with SL
(n),τ

2 and SL
(2),ϕm

2 , respectively. We have an
analogue of Proposition 2.5, noting that Qτ2 = m in this case.
Proposition 2.10. Keep notations as above. Then pmτ splits if and only if

n∗|(Qτ1n∗/n+Qτ2n
∗/2),

or equivalently,
(i) n|Qτ1 when m ∈ N⩾0 is even, and
(ii) n/ gcd(n,Qτ1) = 2 when m ∈ N⩾0 is odd.
As a first example, we have the following corollary.

Corollary 2.11. Let G
(n) be an n-fold cover of an almost simple simply-connected G with

InvBD(G
(n)

) = 1. Then the zero orbit is always raisable if n ⩾ 2.
Proof. Pick any long root α and let τ : sl2 → sl2,α be the identity. In this case, (C1)–(C3) are all
satisfied. We have g[1] = 0. This shows that

(Qτ1 , Q
τ
2) = (1, 0).

It then follows from Proposition 2.10 that the orbit {0} is raisable if n ⩾ 2.

The importance of the raisability is seen from the following result given by Jiang et al. [42].
Theorem 2.12 (See [42]). Let O be a G-raisable orbit. Then it does not lie in the wavefront set
Nmax

Wh (π) of any π ∈ Irrgen(G).
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2.7 A comparison

Consider the following three properties of O ⊂ g:
(P1) O is G-raisable;
(P2) O is not G-quasi-admissible;
(P3) O does not lie in Nmax

Wh (π) for any π ∈ Irrgen(G).
In view of Theorems 2.7 and 2.12, one has the implications

(P1) ⇒ (P3) ⇐ (P2).

In general, raisable and non-quasi-admissible orbits are not identical. Even in the case Gγ,0 = SL2, these
two properties are not necessarily equivalent, though can be shown to be so in many cases.

3 Explicit analysis for each Cartan-type

For each covering group G
(n) and each F -split nilpotent orbit O ⊂ g, our goal is to determine n such

that O is quasi-admissible and raisable.
The computation in this section is case by case. For classical groups of type A to type D, we work out

the details. For exceptional groups, we illustrate the method by giving full details for G2 and F4. For E6,
E7 and E8, we only consider the raisability and quasi-admissibility of those orbits, which are conjecturally
equal to the wavefront sets of theta representations. Whenever our method applies, we show that these
conjectural wavefront orbits of theta representations are not raisable and are also quasi-admissible.

Let
p = (pd11 · · · pdii · · · pdkk )

denote a partition of r, where pi’s are distinct with di ∈ N⩾1. For any p ∈ {pi}i appearing in p, we define
two functions

A(p, p) =
∑

i:pi>p,
pi−p+1∈2Z

di, B(p, p) =
∑

i:pi<p,
pi−p+1∈2Z

di. (3.1)

3.1 Type A

For type A groups, we analyze GLr instead of general groups for convenience since the parabolic subgroups
of the former allow for a simpler description. Consider the Dynkin diagram of simple roots for GLr:

d d d d d .` ` ` ` ` ` ` ` `α1 α2 αr−3 αr−2 αr−1

For the orbit O ⊂ GLr associated with the partition pO = (pd11 · · · pdkk q1 · · · qm) where di ⩾ 2 and pi
and qj are distinct, one has

Gγ,der =

k∏
i=1

SL∆,pi
di

'
k∏
i=1

SLdi .

Here, SL∆,p
d means the image of the diagonal embedding of SLd into

∏p
i=1 SLd. For each pair (pi, pj)

with pi even and pj odd, we have a map

φpi,pj : SLdi × SLdj → Sp(gpi,pj [1])

arising from the natural action of SLdi × SLdj , where

gpi,pj [1] ' 2min {pi, qj} · (Cdi ⊗Cdj )

with Cdi affording the standard representation of GLdi . We get

g[1] =
⊕

(pi,pj)

gpi,pj [1]
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ranging over pairs (pi, pj) as above. Then the representation

φ : Gγ,der → Sp(g[1])

arises from gluing all the φpi,pj together. For each di, denote by (Q1,di , Q2,di) the two Brylinski-Deligne
invariants attached to SLdi ⊂ Gγ,der as defined in (2.9). We have

Q1,di = pi ·Q(α∨)

for any root α of GLr and Q2,di ∈ 2Z for every 1 ⩽ i ⩽ k. By Propositions 2.4 and 2.5, we see that O is
quasi-admissible if and only if nα|pi for every i. Recall that nα is defined in (2.1).

Now we turn to raisability. Here, we choose 1 ⩽ i ⩽ k and take

τi : SL2 → SL∆,pi
di

↪→ Gγ

to be the embedding corresponding to any simple root of SLdi . Then this τi satisfies (C0)–(C3) as in
Subsection 2.6, and regardless of m, one has

SL
(2),ϕm

2 ' µ2 × SL2,

i.e., Qτi2,di ∈ 2Z. On the other hand, for any Brylinski-Deligne cover of GLr, the pull-back covering

µn ↪→ SL
(n),τ

2 ↠ SL2

has the Brylinski-Deligne invariant Qτi1,di = pi ·Q(α∨). Hence, by Proposition 2.10, the orbit O is raisable
if n ∤ pi ·Q(α∨), i.e., nα ∤ pi. For the definitions of Qτi1,di and Qτi2,di , see (2.14).
Theorem 3.1. Keep notations as above and assume Q(α∨) 6= 0. Then the orbit

O = (pd11 · · · pdkk q1 · · · qm)

is
(i) quasi-admissible if and only if nα|pi for every i;
(ii) raisable if nα ∤ pi for some i.

In particular, the orbit O is always GL
(n)

r -raisable for any n > |Q(α∨)| ·min {pi}.
Note that every orbit is GLr-quasi-admissible for the linear GLr, i.e., when n = 1.
Consider the orbit Or,n := (naαb) of GLr, where r = a ·nα+b and 0 ⩽ b < nα. We believe the following

holds.
Conjecture 3.2. Let π ∈ Irrgen(GL

(n)

r ). Then one has Or,n ⩽ O for every O ∈ Nmax
Wh (π).

Here, the orbit Or,n is equal to the leading wavefront set of the theta representation of GL
(n)

r (see (1.2)).
If Or,n is the regular orbit, then Conjecture 3.2 implies that every π ∈ Irrgen(GL

(n)

r ) is generic in this
case, which is exactly the content of [25, Conjecture 6.9(ii)].

3.2 Types B and D

In this subsection, we consider classical groups of orthogonal type.
For SO2r+1, r ⩾ 2, its Dynkin diagram of simple roots is given as follows:

d d d d d .p p p p p p p p p >
α1 α2 αr−2 αr−1 αr

We consider the natural covering
SO2r+1 ↪→ SL2r+1
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obtained from restriction of the covering SL2r+1 with the Brylinski-Deligne invariant

InvBD(SL2r+1) = 1 = Q(α∨),

where α∨ is any coroot of SL2r+1. This gives

Q(α∨
r ) = 4 ·Q(α∨) = 4 and Q(α∨

1 ) = 2 ·Q(α∨) = 2,

i.e.,
InvBD(SO2r+1) = 2.

For SO2r, r ⩾ 3, we have the Dynkin diagram of simple roots to be

d d d d d d
d.

` ` ` ` ` ` ` ` ` ����

HHHH

α1 α2 α3 αr−3
αr−2

αr−1

αr

We have the cover SO2r obtained from restricting the above SL2r via SO2r ↪→ SL2r. In this case,

InvBD(SO2r) = 2.

Note that we consider the above specific covers only for notational simplicity later. All the argument
below applies to covers of SO2r+1, SO2r associated with the general quadratic form in the Brylinski-
Deligne framework.

Consider a nilpotent orbit O with the partition

pO = (pd11 · · · pdii · · · pdkk q
e1
1 · · · qejj · · · qemm ),

where pi are even, qj are odd, di ⩾ 1, and ej ⩾ 1. Thus, di are necessarily even. To discuss the
quasi-admissibility and raisability of orbit O, we first note that

Gγ,0 =

( k∏
i=1

Sp∆,pidi

)
×
( m∏
j=1

SO∆,qj
ej

)
.

For each pair (pi, qj), we have

gpi,qj [1] ' min {pi, qj} · (Cdi ⊗Cej ),

where Cdi affords the natural action of Spdi , and Cej affords the natural action of SOej ; also,

g[1] =
⊕

(pi,qj)

gpi,qj [1]

as Gγ-representations (see [56, § 5]). Since InvBD(Mp(g[1])) = 1, we obtain that
• the Brylinski-Deligne invariant for Sp

(2),ϕ

di is

∑
j

min {pi, qj} ej =
( ∑
j:pi>qj

qjej

)
+ pi

( ∑
j:pi<qj

ej

)
;

• the Brylinski-Deligne invariant for SO
(2),ϕ

ej , ej ⩾ 4 is

∑
i

2min {pi, qj} di = 2qj

( ∑
i:pi>qj

di

)
+ 2

( ∑
i:pi<qj

pidi

)
.

Similarly, we have that
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• the Brylinski-Deligne invariant for Sp
(n)

di is pi;
• the Brylinski-Deligne invariant for SO

(n)

ej , ej ⩾ 4 is 2qj (and for SO
(n)

3 , it is 4qj).
Note that in general,

G
(n,2)

γ,0 6=
( k∏
i=1

Sp
(n,2)

di

)
×µn

( m∏
j=1

SO
(n,2)

ej

)
.

However, G(n,2)

γ,0 has the (n, 2)-genuine representation if and only if each factor has it as well, which
follows easily from [33, Proposition 6.4]. Thus, it suffices to consider each factor in Gγ,0. The n∗-fold
cover m∗(Sp

(n,2)

di ) has the Brylinski-Deligne invariant

(n∗pi/n) +

(∑
j

min {pi, qj} ej
)
n∗/2,

m∗(SO
(n,2)

ej ), ej ⩾ 4 has the Brylinski-Deligne invariant

(2n∗qj/n) + n∗
(∑

i

min {pi, qj} di
)
,

and m∗(SO
(n,2)

3 ) has the Brylinski-Deligne invariant

(4n∗qj/n) + 2n∗
(∑

i

min {pi, qj} di
)
.

Hence, m∗(Sp
(n,2)

di ), di ⩾ 2 splits over Spdi if and only if the following hold:
• n|pi and B(pO, pi) ∈ 2Z if n is odd;
• n|pi if n is even and B(pO, pi) ∈ 2Z;
• gcd(n, pi) = n/2 if n is even and B(pO, pi) /∈ 2Z.

On the other hand, it follows from Lemma 2.8 that SO(n,2)

ej , ej ⩾ 3 has a finite-dimensional (n, 2)-genuine
representation in the following cases:

• n|qj if n is odd;
• n|(2qj) if n is even and ej ⩾ 4;
• n|(4qj) if n is even and ej = 3.
Now, regarding raisability, we implement [42, § 8–9] and consider the following two cases:
• (B/D-Sym) Suppose that there exists di ⩾ 2. Let τ : SL2 ↪→ Spdi be the embedding corresponding

to the long simple root of Spdi . Then this τ satisfies (C1)–(C3), where g[1] = g[1]sl2,τ ⊕mV2 with

m = pi ·
( ∑
qj :qj>pi

ej

)
+

∑
qj :qj<pi

qj · ej = pi · A(pO, pi) +
∑

qj :qj<pi

qj · ej .

• (B/D-Ort) Suppose that there exist ej ⩾ 4 and thus a Levi subgroup

GL2 × SOk ⊂ SOej .

Let τ : SL2 ↪→ SOej be corresponding to the root of GL2. This τ satisfies (C1)–(C3) and g[1] =

g[1]sl2,τ ⊕mV2, where

m = qj ·
( ∑
pi:pi>qj

di

)
+

∑
pi:pi<qj

pi · di = qj · A(pO, qj) +
∑

pi:pi<qj

pi · di.

To give a sufficient condition for the orbit O to be raisable, we proceed with considering the two covering
groups SL

(2),ϕm

2 and SL
(n),τ

2 . Again, we have two cases depending on the consideration of symplectic or
orthogonal stabilizer.
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• (B/D-Sym) We have Qτ2 = m and Qτ1 = pi for the Brylinski-Deligne invariants. It follows
from Proposition 2.10 that the cover m∗(SL

(n,2)

2 ) ↠ SL2 splits if and only if
∑
qj :qj<pi

ej is even and
n|(pi ·Q(α∨)), or

∑
qj :qj<pi

ej is odd and n/ gcd(n, pi ·Q(α∨)) = 2. It follows that the orbit O is raisable
if one of the following holds:

• n ∤ pi or B(p, pi) /∈ 2Z if n is odd;
• n ∤ pi if n is even and B(p, pi) ∈ 2Z;
• gcd(n, pi) 6= n/2 if n is even and B(p, pi) /∈ 2Z.

• (B/D-Ort) In this case, since di is always even, we get m ∈ 2Z. Here, SOei has the Brylinski-Deligne
invariant equal to 2qj . Thus, the covering SL

(n),τ

2 has the Brylinski-Deligne invariant Qτ1 = 2qj as well.
We see that m∗(SL

(n,2)

2 ) splits if and only if n|2qj , i.e., the orbit O is raisable if n ∤ (2qj).
Theorem 3.3. Consider an orbit O with pO = (pd11 · · · pdii · · · pdkk q

e1
1 · · · qejj · · · qemm ) for the orthogonal

group Gr = SO2r or Gr = SO2r+1 with pi even and qj odd.
(i) It is G(n)

r -quasi-admissible if and only if for every i and j with di ⩾ 2 and ej ⩾ 3, the following
hold:

• n|pi and B(pO, pi) ∈ 2Z if n is odd;
• n|pi if n is even and B(pO, pi) ∈ 2Z;

• gcd(n, pi) = n/2 if n is even and B(pO, pi) /∈ 2Z;

• n|qj if n is odd;
• n|(2qj) if n is even and ej ⩾ 4;

• n|(4qj) if n is even and ej = 3.
(ii) It is G(n)

r -raisable if for some i and j with di ⩾ 2 and ej ⩾ 4, one of the following holds:
• n ∤ pi or B(p, pi) /∈ 2Z if n is odd;
• n ∤ pi if n is even and B(p, pi) ∈ 2Z;

• gcd(n, pi) 6= n/2 if n is even and B(p, pi) /∈ 2Z;

• n ∤ (2qj).
For G = SO2r or G = SO2r+1, one can easily see from Theorem 3.3, by applying n = 1, that an orbit O

is G-quasi-admissible if and only if it is special (see [17, p. 100]); this also follows from [33, Proposition 1.2]
and [56, Theorem 5.8].

We remark that for SO2r with r even, there could be two orbits associated with a very even partition
(see [17, p. 70]). However, our argument above equally applies to either case and the results depend only
on the partition.

3.3 Type C

Consider the Dynkin diagram for the simple roots of type Cr:

d d d d d .p p p p p p p p p <
α1 α2 αr−2 αr−1 αr

We consider the group G = Sp2r and a nilpotent orbit

O = (pd11 · · · pdii · · · pdkk q
e1
1 · · · qejj q

em
m ),

where pi is even and qj is odd. Here, ej is necessarily even. To discuss the quasi-admissibility, we first
note that

Gγ,0 =

( k∏
i=1

SO∆,pi
di

)
×
( m∏
j=1

Sp∆,qjej

)
.

For each pair (pi, qj), we have gpi,qj [1] ' min {pi, qj} · (Cdi ⊗Cej ), where Cdi affords the natural action
of SOdi , and Cej affords the natural action of Spej . Also,

g[1] =
⊕

(pi,qj)

gpi,qj [1],
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where Gγ,0 acts on each component as given above. Consider the cover Sp(n)2r obtained from the restriction
of SL(n)

2r via inclusion Sp2r ⊂ SL2r, one has

InvBD(Sp
(n)

2r ) = Q(α∨
r ) = Q(α∨) = 1,

where α∨ is any coroot of SL2r. We have
• the Brylinski-Deligne invariant for Sp

(2),ϕ

ej is∑
i

min {pi, qj} di =
( ∑
i:pi<qj

pidi

)
+ qj

( ∑
i:pi>qj

di

)
;

• the Brylinski-Deligne invariant for SO
(2),ϕ

di , di ⩾ 4 is∑
j

2min {pi, qj} dj = 2pi

( ∑
j:qj>pi

ej

)
+ 2

( ∑
j:pi>qj

qjej

)
.

Similarly, we have
• the Brylinski-Deligne invariant for Sp

(n)

ej is qj ;
• the Brylinski-Deligne invariant for SO

(n)

di , di ⩾ 4 is 2pi, and it is 4pi for SO
(n)

3 .
Again, for quasi-admissibility, it suffices to consider the splitting of the n∗-fold cover of m∗(Sp

(n,2)

ej ) and
m∗(SO

(n,2)

di ) over Spej and SOdi , respectively. The n∗-fold cover m∗(Sp
(n,2)

ej ) has the Brylinski-Deligne
invariant

(n∗qj/n) +

(∑
i

min {pi, qj} di
)
n∗/2,

and m∗(SO
(n,2)

di ), di ⩾ 4 has the Brylinski-Deligne invariant

(2n∗pi/n) + n∗
(∑

j

min {pi, qj} ej
)
.

Also, m∗(SO
(n,2)

3 ) has the Brylinski-Deligne invariant

(4n∗pi/n) + 2n∗
(∑

j

min {pi, qj} ej
)
.

Here, m∗(Sp
(n,2)

ej ), ej ⩾ 2 splits over Spej if and only if the following hold:
• n|qj and A(pO, qj) ∈ 2Z if n is odd;
• n|qj if n is even and A(pO, qj) ∈ 2Z;
• gcd(n, qj) = n/2 if n is even and A(pO, qj) /∈ 2Z.

On the other hand, SO(n,2)

di , di ⩾ 3 has a finite-dimensional (n, 2) representation if the following hold:
• n|pi if n is odd;
• n|(2pi) if n is even and di ⩾ 4;
• n|(4pi) if n is even and di = 3.
Now, regarding raisability, we again have the following two cases:
• (C-Sym) Suppose that there exists ej ⩾ 2. Let τ : SL2 ↪→ Spej be the embedding corresponding to

the long simple root of Spej . Then this τ satisfies (C1)–(C3), where g[1] = g[1]sl2,τ ⊕mV2 with

m = qj ·
( ∑
pi:pi>qj

di

)
+

∑
pi:pi<qj

pi · di = qj · A(p, qj) +
∑

pi:pi<qj

pi · di.

We have Qτ2 = m and Qτ1 = qj . It follows from Proposition 2.10 that m∗(SL
(n,2)

2 ) ↠ SL2 split if and only
if A(p, qj) is even and n|qi, or A(p, qj) is odd and gcd(n, qj) = 2. This shows that the orbit O is raisable
if one of the following holds:
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• n ∤ qj or A(p, qj) /∈ 2Z if n is odd;
• n ∤ qj if n is even and A(p, qj) ∈ 2Z;
• gcd(n, qj) 6= n/2 if n is even and A(p, qj) /∈ 2Z.

• (C-Ort) Suppose that there exist di ⩾ 4 and thus a Levi subgroup GL2 × SOk ⊂ SOdi . Let τ : SL2

↪→ SOdi be associated with the root of GL2. It satisfies (C1)–(C3) and

g[1] = g[1]sl2,τ ⊕mV2,

where
m = pi ·

( ∑
qj :qj>pi

ej

)
+

∑
qj :qj<pi

qj · ej .

In this case, since ej is always even, we get m ∈ 2Z. Here, SOdi has the Brylinski-Deligne invariant 2pi.
Thus, the covering SL

(n),τ

2 has the Brylinski-Deligne invariant Qτ1 = 2pi as well. We see that m∗(SL
(n,2)

2 )

splits if and only if n|(2pi), i.e., the orbit O is raisable if n ∤ (2pi).
Theorem 3.4. Let O = (pd11 · · · pdii · · · pdkk q

e1
1 · · · qejj · · · qemm ) be an F -split symplectic orbit for Sp2r with

pi even and qj odd. Consider the n-fold cover Sp
(n)

2r of Sp2r with the Brylinski-Deligne invariant equal to
Q(α∨

r ) = 1.
(i) The orbit O is Sp

(n)

2r -quasi-admissible if and only if for every i and j with di ⩾ 3 and ej ⩾ 2, the
following hold:

• n|qj and A(pO, qj) ∈ 2Z if n is odd;
• n|qj if n is even and A(pO, qj) ∈ 2Z;

• gcd(n, qj) = n/2 if n is even and A(pO, qj) /∈ 2Z;

• n|pi if n is odd;
• n|(2pi) if n is even and di ⩾ 4;

• n|(4pi) if n is even and di = 3.
(ii) The orbit O is Sp

(n)

2r -raisable if for some i and j with ej ⩾ 2 and di ⩾ 4, one of the following holds:
• n ∤ qj or A(p, qj) /∈ 2Z if n is odd;
• n ∤ qj if n is even and A(p, qj) ∈ 2Z;

• gcd(n, qj) 6= n/2 if n is even and A(p, qj) /∈ 2Z;

• n ∤ (2pi).
Again, by considering n = 1 in Theorem 3.4, we see that an orbit O is Sp2r-quasi-admissible if and

only if it is special (see [17, p. 100]), which also follows from [33, Proposition 1.2] and [56, Theorem 5.8].
For a partition p and ] ∈ {B,C,D}, we denote by p♯ and p♯ the type ]-collapse and ]-expansion of p,

respectively. More precisely, p♯ is the unique partition of ]-type that is dominated by p, and p♯ is the
unique one of ]-type that dominates p (see [17, § 6.3] for more details).
Example 3.5. We consider three special families of orbits of Sp2r and their quasi-admissibility. First,
assume that n ∈ N⩾1 is odd with 2r = an+ b. Consider the orbit

O2r,n
C = (nab)C =

{
(nab), if a is even (and b even),
(na−1, n− 1, b+ 1), if a is odd.

It is Sp
(n)

2r -quasi-admissible by Theorem 3.4, and is not raisable. Second, if n = 2k with k odd and we
write 2r = ka+ b with 0 ⩽ b < k, then we have

(k + 1,O2r−k−1,k)C =

{
(k + 1, ka, b), if a is even,
(k + 1, ka−1, k − 1, b+ 1), if a is odd.

We see that this orbit is quasi-admissible in this case. If a is even, then the orbit is not raisable since
n/ gcd(n, qj ·Q(α∨)) = 2 in this case. As a last example, consider n ∈ 4Z, then the orbit is

O2r,n/2
C = O2r,n/2 = ((n/2)ab),
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where a and b are both even. This orbit is quasi-admissible. In this case, pi = n/2 and clearly
n|(2pi ·Q(α∨)). Thus, the orbit is not raisable as well.

These orbits are the speculated wavefront sets of the theta representation of Sp(n)2r (see Subsection 4.4
for more details).

In the remaining of this subsection, we consider exceptional groups and discuss in more detail the case
of G2 and F4. The computation of types Ei, 6 ⩽ i ⩽ 8 follows from the same techniques, the details of
which however are more involved. Thus, for Ei, we only discuss the quasi-admissibility and raisability of
certain nilpotent orbits, which are the speculated stable wavefront sets of the theta representations.

For each orbit written in the Bala-Carter notations, we give information on whether it is special or even,
and the structure of Gγ,der, which can be obtained from [15,17,38]. By computing the Brylinski-Deligne
invariants (Q1, Q2) for each of the simple subgroups of Gγ,der, we obtain a criterion of quasi-admissibility
on n. Similarly, by computing (Qτ1 , Q

τ
2) for properly chosen τ , we can give the condition on n such that

the orbit is G(n)-raisable. Our computations rely on the extensive results in [38], some of which were
already used in [42].

For simplicity, in the remaining of this subsection, we consider an almost-simple simply-connected
exceptional group G and its cover G(n) with

InvBD(G
(n)

) = 1.

We use V k to denote a certain irreducible k-dimensional representation of the underlying group, which
is clear from the context.

3.4 Type G2

Consider the Dynkin diagram of simple roots of G2:

d d .<
α1 α2

The results are summarized in Table 1.
The entries for the three orbits {0} , G2(a1) and G2 are clear. Thus, we give a brief explanation for

the two orbits A1 and Ã1.
The minimal orbit A1 gives Gγ,der = SL2 associated with α1. One has g[1] ' V 4, which then gives

Q2 = 4. We also have Q1 = 3. Thus, the orbit is G(n)

2 -quasi-admissible for n = 1, 3. The method of
raisability in [42] does not apply.

The orbit Ã1 gives Gγ,der = SL2 associated with the long root α2, which immediately gives Q1 = 1.
On the other hand, g[1] ' V 2, and thus Q2 = 1. This shows that the orbit Ã1 is quasi-admissible if and
only if n = 2. The map τ = id satisfies (C1)–(C3). If n 6= 2, then m∗(SL

(n,2)

2,τ ) ↠ SL2 does not split and
thus Ã1 is raisable.

Table 1 Nilpotent orbits for G2

O special/even? Gγ,der (Q1, Q2) quasi-admissible, if and only if raisable if
{0} yes/yes G2 (1, 0) n = 1 n ⩾ 2

A1 no/no SL2,α1 (3, 4) n = 1, 3 n.a.
Ã1 no/no SL2,α2 (1, 1) n = 2 n ̸= 2

G2(a1) yes/yes 1 n.a. all n n.a.
G2 yes/yes 1 n.a. all n n.a.
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3.5 Type F4

Consider the Dynkin diagram of simple roots of F4 as follows:

d d d d .>
α1 α2 α3 α4

The results are given in Table 2.
Again, the method for quasi-admissibility and raisability does not apply to distinguished orbits (i.e.,

the orbits which do not arise from proper Levi subgroups in the Bala-Carter classification of orbits [17,
§ 8.2]). Thus, it suffices to consider the following orbits:

A1, Ã1, A1 + Ã1, A2, Ã2, A2 + Ã1, B2, Ã2 +A1, C3(a1), B3, C3.

We give a case by case discussion.
The orbit A1 has Gγ,der = Sp6 associated with {α2, α3, α4}. One has

g[1] =
∧3

Vstd/Vstd

as a Gγ,der-module and is of dimension 14, where Vstd represents the standard representation of Sp6.
We have g[1] = 4V 1 ⊕ 5 · V 2 as an SL2,α2

-module. This gives that Q2 = 5. Thus, it follows from
Propositions 2.4 and 2.5 that the orbit A1 is F (n)

4 -quasi-admissible if and only if n = 2. For raisability,
we take

sl2,τ = sl2,α2

to be associated with α2. Then (C1)–(C3) are satisfied with m = 5. This shows that if 2 ∤ n, then A1 is
F

(n)

4 -raisable by Proposition 2.10.
The orbit Ã1 gives Gγ,der = SL4 associated with {α1, α2, α2 + 2α3}. One has g[1] = Vstd ⊕ V ∗

std, where
Vstd is the standard representation of SL4. This gives that Q2 = 2. Since Q1 = 1, we see that Ã1 is
F

(n)

4 -quasi-admissible if and only if n = 1. For raisability, consider τ : SL2 ↪→ Gγ,der associated with the
simple root α2 of Gγ,der, and then (C1)–(C3) are satisfied with Q1 = 1 and m = Qτ2 = 2. In this case,
we see that Ã1 is raisable if n ⩾ 2.

Table 2 Nilpotent orbits for F4

O special/even? Gγ,der (Q1, Q2) quasi-admissible, if and only if raisable if
{0} yes/yes F4 (1, 0) n = 1 n ⩾ 2

A1 no/no Sp6 (1, 5) n = 2 n ̸= 2

Ã1 yes/no SL4 (1, 2) n = 1 n ⩾ 2

A1 + Ã1 yes/no SL2,α1 × SO3 (1, 6), (8, 20) n = 1 n ⩾ 2

A2 yes/yes SL3 (2, 0) n = 1, 2 n ⩾ 3

Ã2 yes/yes SL3 (1, 0) n = 1 n ⩾ 2

A2 + Ã1 no/no SL2 (6, 11) n = 4, 12 n.a.
B2 no/no SL2,α2 × SL2 (1, 1), (1, 1) n = 2 n ̸= 2

Ã2 +A1 no/no SL2 (3, 12) n = 1, 3 n.a.
C3(a1) no/no SL2,α2 (1, 3) n = 2 n ̸= 2

F4(a3) yes/yes 1 n.a. all n n.a.
B3 yes/yes SO3 (8, 0) n = 1, 2, 4, 8 n ̸= 1, 2, 4, 8

C3 yes/no SL2,α2 (1, 2) n = 1 n ⩾ 2

F4(a2) yes/yes 1 n.a. all n n.a.
F4(a1) yes/yes 1 n.a. all n n.a.
F4 yes/yes 1 n.a. all n n.a.
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The orbit A1 + Ã1 gives
Gγ,der = SL2 × SO3,

where SL2 is associated with α1 and SO3 = PGL2 is embedded in SL3 associated with {α3, α4}. As a
Gγ,der-module, one has

g[1] = (V 2 ⊠ V 5)⊕ (V 2 ⊠ V 1).

Thus, we have Q1 = 1 for SL2 and Q1(α
∨
3 + α∨

4 ) = 8 for SO3. Also, Q2 ∈ 2Z for both SL2 and SO3.
Thus, m∗(SL

(n,2)

2,τ ) splits over SL2 if and only if n = 1; also, m∗(SO
(n,2)

3,der) splits over SO3,der if and only if
n = 1, 2, 4, 8. Thus, the orbit A1 + Ã1 is quasi-admissible if and only if n = 1. For raisability, consider
the embedding

τ = id× 1 : SL2 ↪→ Gγ,der,

which satisfies (C0)–(C3) with Qτ2 = m = 6. Since Qτ1 = 1. We see that if n ⩾ 2, then A1+ Ã1 is raisable.
The orbits A2 and Ã2 are even, and thus Q2 = 0 for both of them. For A2, one has Gγ,der = SL3

associated with α3 and α4. For Ã2, one has Gγ,der = SL3 associated with α1 and α2. We get Q1 = 2 for
A2 and Q1 = 1 for Ã2. This gives the criterion for quasi-admissibility. For A2, let

τ : SL2 ↪→ Gγ,der

be the embedding associated with α3, which gives Qτ1 = 2, and thus we see that if n ⩾ 3, then the orbit
is raisable. Similarly, if n ⩾ 2, then the orbit Ã2 is raisable.

The orbit A2 + Ã1 has Gγ,der = ∇(SL2), where

∇ = Sym2 × id : SL2 ↪→ SL3,α1,α2
× SL2,α4

.

In this case,
g[1] = V 2 ⊕ V 4

as a Gγ,der-module. We have
(Q1, Q2) = (6, 11).

Thus, the orbit is quasi-admissible if n = 4 or 12. For raisability, the method in [42] does not apply.
The orbit B2 has

Gγ,der ' SL2,α2 × SL2 ⊂ Sp4,

where Sp4 is associated with α2 and α3. Also,

g[1] = (V 2 ⊠ V 1)⊕ (V 1 ⊠ V 2).

For every copy of SL2 in Gγ,0, one has Q1 = 1. Also, Q2 = 1. Thus, the orbit B2 is quasi-admissible
if and only if n = 2. On the other hand, if we take SL2,τ to be associated with α2, then (C1)–(C3) are
satisfied with m = 1. In this case, the orbit B2 is raisable if n 6= 2.

The orbit Ã2 +A1 gives
Gγ,der = ∆(SL2) ⊂ SL2,α1

× SL2,α3

and
g[1] = 2V 2 ⊕ V 4.

This gives that (Q1, Q2) = (3, 12). Thus, the orbit is quasi-admissible if and only if n = 1, 3. On the
other hand, the method of raisability does not apply.

The orbit C3(a1) has Gγ,der ' SL2,α2 and g[1] = 3V 2. Thus, (Q1, Q2) = (1, 3), and the orbit is
quasi-admissible if and only if n = 2. For raisability, taking τ = id shows that the orbit is raisable if
n 6= 2.

The orbit B3 gives
Gγ,der = SO3 ⊂ SL3
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associated with α3 and α4, and g[1] = 0. Thus, one has

(Q1, Q2) = (8, 0).

This shows that the orbit is quasi-admissible if and only if n = 1, 2, 4, 8. Taking τ : SL2 → SO3 = PGL2

to be the natural map, one sees that the orbit B3 is raisable if n 6= 1, 2, 4, 8.
The orbit C3 has Gγ,der = SL2,α2 and g[1] = 2V 2. This gives that (Q1, Q2) = (1, 2). Thus, the orbit is

quasi-admissible if and only if n = 1. Also, taking τ = id shows that it is raisable if n ⩾ 2.

3.6 Certain orbits for types Er,6 ⩽⩽⩽ r ⩽⩽⩽ 8

Now we consider several specific non-distinguished orbits for each exceptional group Er and investigate
their E(n)

r -quasi-admissibility and E
(n)

r -raisability. The consideration of these orbits is motivated from
theta representations Θ(E

(n)

r ) since they are expected to be equal to Nmax
Wh (Θ(E

(n)

r ))⊗ F al for some n.
More precisely, we consider orbits as follows:
• for E6, the orbits

3A1, 2A2 +A1, D4, A4 +A1, D5;

• for E7, the orbits

4A1, 2A2 +A1, A3 +A2 +A1, A4 +A2, A6, E6(a1);

• for E8, the orbits
4A1, 2A2 + 2A1, 2A3, A4 +A3, A6 +A1, A7.

3.6.1 Type E6

Consider the Dynkin diagram for the simple roots of G = E6, following Bourbaki’s labeling [7]:

d d d d d .

d
α1 α3 α4 α5 α6

α2

The results are given in Table 3.
The orbit 3A1 has

Gγ,der ' SL2,α2
×∆(SL3),

where ∆ : SL3 ↪→ SL3,α1,α3
× SL3,α5,α6

is the diagonal embedding. Also, g[1] = V 2 ⊠ (V 1 ⊕ Vadj). Thus,
for SL2,α2 , we have (Q1, Q2) = (1, 9), and for ∆(SL3), one has (Q1, Q2) = (2, 12). Hence, m∗(SL

(n,2)

2,α2
)

splits over SL2,α2
if and only if n = 2. On the other hand, the n∗-fold cover of ∆(SL3) splits if and only

if n = 1, 2. This shows that the orbit is quasi-admissible if and only if n = 2. For raisability, τ such that
τ(SL2) = SL2,α2

satisfies (C1)–(C3) with Qτ2 = m = 9. We see that the orbit is raisable if n 6= 2.

Table 3 Some nilpotent orbits for E
(n)
6

O special/even? Gγ,der (Q1, Q2) quasi-admissible, if and only if raisable if
3A1 no/no SL2,α2 × SL3 (1, 9), (2, 12) n = 2 n ̸= 2

2A2 +A1 no/no SL2 (3, 14) n = 1, 3 n.a.
D4(a1) yes/yes 1 n.a. all n n.a.
A4 +A1 yes/no 1 n.a. all n n.a.

D5 yes/yes 1 n.a. all n n.a.
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The orbit 2A2 +A1 gives Gγ,der = SL2, diagonally embedded into SL2,α2 × SL2,α3 × SL2,α5 . One has

g[1] = 4V 2 ⊕ V 4.

This gives (Q1, Q2) = (3, 14). Thus, the orbit is quasi-admissible if and only if n = 1, 3. For raisability,
the method in [42] does not apply.

The orbit D4(a1), A4 +A1 and D5 all give that Gγ,der = 1.

3.6.2 Type E7

Consider the Dynkin diagram for the simple roots of E7:

d d d d d d .

d
α1 α3 α4 α5 α6 α7

α2

The results are given in Table 4.
The orbit 4A1 has Gγ,der ' Sp6 ⊂ SL6, where SL6 is associated with ∆ − {α2, α7}. Also, as Gγ,der-

module, one has g[1] = 2V 6⊕V 14. Let SL2,τ ⊂ Gγ,der be associated with the long root. As SL2,τ -module,
we have

g[1] = 7V 2 ⊕ 12V 1

with m = 7. This shows that
(Q1, Q2) = (1, 7),

and thus the orbit is quasi-admissible if and only if n = 2. Moreover, considering the above SL2,τ , we see
that it is raisable if n 6= 2.

The orbit 2A2 +A1 has

Gγ,der = SLa2 × SLb2 ⊂ SL2,α1 × SL4 × SL2,α7 .

Here, SLa2 ×SLb2 ↪→ SL2,α1
×SL2,α7

is the identity, and SLa2 ×SLb2 ↪→ SL4 is the tensor embedding, where
SL4 is associated with {α2, α4, α5}. One has

g[1] = 2(V 2
a ⊠ V 3

b )⊕ (V 4
a ⊕ 2V 2

a )⊠ V 1
b .

Thus, for SLa2 , one has (Q1, Q2) = (3, 18); for SLb2, one has (Q1, Q2) = (3, 16). We see that the orbit is
quasi-admissible if and only if n = 1, 3. The method in [42] does not work for raisability.

The orbit A3 +A2 +A1 gives
Gγ,der ' SL2 ↪→ SL5 × SL3,

where the embedding is given by 4ω1 ⊗ 2ω1. Here, ω1 is the fundamental weight of SL2. Also, SL5 and
SL3 are associated with {αi : 1 ⩽ i ⩽ 4} and {α6, α7}, respectively. One has (Q1, Q2) = (24, 0).

Table 4 Some nilpotent orbits for E
(n)
7

O special/even? Gγ,der (Q1, Q2) quasi-admissible, if and only if raisable if
4A1 no/no Sp6 (1, 7) n = 2 n ̸= 2

2A2 +A1 no/no SLa
2 × SLb

2 (3, 8), (3, 16) n = 1, 3 n.a.
A3 +A2 +A1 yes/yes SL2 (24, 0) n|24 n.a.

A4 +A2 yes/yes SL2 (15, 0) n|15 n.a.
A6 yes/yes SL2 (7, 0) n|7 n.a.

E6(a1) yes/yes 1 n.a. all n n.a.



Gao F et al. Sci China Math September 2025 Vol. 68 No. 9 2057

Thus, the orbit is quasi-admissible if and only if n|24. For τ = id : SL2 → Gγ,der, the condition (C1) is
not satisfied, thus the method of [42] does not apply.

The orbit A4 +A2 gives
Gγ,der = SL2 ↪→ SL4 × SL3 × SL2,α2 ,

where the embedding is given by 3ω1⊗2ω1⊗ω1. Here, SL4 and SL3 are associated with {α5, α6, α7} and
{α1, α3}, respectively. We have

(Q1, Q2) = (15, 0),

and thus the orbit is quasi-admissible if and only if n|15. The conditions for raisability are not satisfied.
The orbit A6 gives

Gγ,der = SL2 ↪→ SLa2 × SLb2 × SLc2 × SL3,

where the embedding is given by identities into SLi2, i = a, b, c and 2ω1 : SL2 ↪→ SL3. We have g[1] = 0.
We get

(Q1, Q2) = (7, 0),

and thus the orbit is quasi-admissible if and only if 7|n. Since (C1) for the identity map SL2 → Gγ,der is
not satisfied, the method of raisability does not apply.

3.6.3 Type E8

Consider the Dynkin diagram for the simple roots of E8:

d d d d d d d .

d
α1 α3 α4 α5 α6 α7 α8

α2

The results are given in Table 5.
The orbit 4A1 of E8 gives

Gγ,der = Sp8 ↪→ SL8,

where SL8 is associated with ∆− {α2}. Also,

g[1] =
∧3

V 8.

Now if we take SL2,τ to be associated with any long root of Gγ,der, then (C1)–(C3) are satisfied with
m = 15. This shows that

(Q1, Q2) = (1, 15),

and thus the orbit is quasi-admissible if and only if n = 2. It also shows that the orbit is raisable if n 6= 2.
The orbit 2A3 + 2A1 has

Gγ,der = Sp4 ↪→ SL4 × SL5

Table 5 Some nilpotent orbits for E
(n)
8

O special/even? Gγ,der (Q1, Q2) quasi-admissible, if and only if raisable if
4A1 no/no Sp8 (1, 15) n = 2 n ̸= 2

2A2 + 2A1 no/no Sp4 (3, 34) n = 1, 3 n.a.
2A3 no/no Sp4 (2, 15) n = 4 n.a.

A4 +A3 no/no SL2 (10, 58) n|10 n.a.
A6 +A1 yes/no SL2 (7, 14) n = 1, 7 n.a.

A7 no/no SL2 (4, 15) n = 8 n.a.
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via the diagonal map, where Sp4 ↪→ SL4 is the canonical inclusion and SL4 = Spin5 ↠ SO5 ↪→ SL5.
Here, SL4 and SL5 are associated with {α6, α7, α8} and {α1, α2, α3, α4}, respectively. From this, we get
Q1 = 3. Taking SL2,τ ⊂ Sp4 to be associated with the long root of Sp4, we have

g[1] = 8V 1 ⊕ 8V 2 ⊕ 4V 3 ⊕ V 4.

Thus, Q2 = 34 and this shows that the orbit is quasi-admissible if and only if n = 1, 3. The method of
raisability does not apply.

For the orbit 2A3, consider
L = SLa4 × SLb4,

which acts on g[1] = V 4
b ⊕ (V 4

a ⊠
∧2

V 4
b ). Here, SLa4 and SLb4 are associated with {α2, α3, α4} and

{α6, α7, α8}, respectively. We have
Gγ,der = Sp4 ↪→ L

via the diagonal embedding. Let SL2,τ ⊂ Gγ,der be the one associated with the long root. We have that
as an SL2,τ -module,

g[1] = 8V1 ⊕ 7V2 ⊕ 2V3.

This gives that
(Q1, Q2) = (2, 15),

and thus the orbit is quasi-admissible if and only if n = 4. For raisability, the method in [42] does not
work.

The orbit A4 +A3 has
Gγ,der = SL2 ↪→ SL2 × SL2 × SL3 × SL3,

where the embedding is diagonal via id : SL2 → SL2 and Sym2 : SL2 ↪→ SL3. Here, SL2 and SL3 are
associated with the connected components of ∆− {α4, α7} in the Dynkin diagram. One has

g[1] = 3V2 ⊕ 3V4 ⊕ V6,

as a Gγ,der-module. We get
(Q1, Q2) = (10, 68)

and thus the orbit is quasi-admissible if and only if n|10. The method of [42] does not apply to raisability.
The orbit A6 +A1 has

Gγ,der ' SL2 ↪→ SL2 × SL2 × SL2 × SL3.

Here, the three SL2’s and SL3 are associated with the connected component of ∆ − {α1, α4, α6} in the
Dynkin diagram. We have

g[1] = V4 ⊕ 4V2,

and hence
(Q1, Q2) = (7, 14).

This shows that the orbit is quasi-admissible if and only if n = 1, 7. On the other hand, the method
of [42] for raisability does not apply.

The orbit A7 gives
Gγ,der ' SL2 ↪→ SL2 × SL2 × SL2 × SL2,

diagonally embedded in SL2’s associated with α2, α3, α5 and α8. One has

g[1] = 5V2 ⊕ V4

as a Gγ,der-module. This gives that
(Q1, Q2) = (4, 15).

Hence the orbit is quasi-admissible if and only if n = 8. The method of [42] does not apply to raisability.
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4 Wavefront sets of theta representations

In this section, we consider theta representations Θ(ν) of G(n), where ν ∈ X ⊗R is a certain exceptional
vector. We compute explicitly the F al-orbit OSpr(j

W
Wν
εν) ⊂ gF al , which is expected to be the single

element in Nmax
Wh (Θ(ν)) ⊗ F al. We show that a method of determining OSpr(j

W
Wν
εν) ⊂ gF al is given by

Sommers’ duality [63] between nilpotent orbits, which generalizes the classical Barbasch-Vogan duality.
With an explicit computation, we also determine the quasi-admissibility and non-raisability of such orbits.

4.1 Theta representations

We introduce theta representations following the notation and exposition in [27].
Let T ⊂ G be the covering torus of G. We assume that there exists a certain distinguished (finite-

dimensional) genuine representation π† of T determined by a distinguished genuine character χ† of the
center Z(T ) of T (see [23, § 6–7]). For every ν ∈ X ⊗R, there is a map δν : T → C× given by

δν(y ⊗ a) = |a|ν(y)F

on the generators y⊗a ∈ T , where ν(y) is the natural pairing between Y and X⊗R. For every ν ∈ X⊗R,
denote by

I(π†, ν) := IndG
B
(π† ⊗ δν)

the normalized induced principal series representation of G.
A vector ν ∈ X ⊗ R is called an exceptional character if ν(α∨

Q,n) = 1 for every α ∈ ∆. Here,
α∨
Q,n := nα ·α∨. It follows from the Langlands classification theorem for covers (see [5]) that if ν ∈ X⊗R

is exceptional, then I(π†, ν) has a unique irreducible quotient Θ(π†, ν). We may write Θ(G, ν),Θ(ν) or
Θ(G) for Θ(π†, ν), whenever the emphasis is different; but the dependence on π† and exceptional ν are
both understood.

A covering group G is called saturated (see [25, Definition 2.1]) if

Y sc ∩ YQ,n = Y scQ,n,

where the one-sided inclusion ⊃ always holds. If G is semisimple and simply-connected, then G is
saturated if and only if its dual group G

∨ is of adjoint type, i.e., YQ,n = Y scQ,n. We also recall the notion
of a persistent cover as follows (see [25, Definition 2.3]). Consider

X sc
Q,n := Y/Y scQ,n, XQ,n := Y/YQ,n,

which are both endowed with the twisted Weyl action

w[y] := w(y − ρ∨) + ρ∨

for every w in the Weyl group W . Here, ρ∨ is the half sum of all positive coroots in Φ∨. For every y ∈ Y ,
let y† and y‡ denote its image in X sc

Q,n and XQ,n, respectively. An n-fold cover G is called persistent if

StabW (y†;X sc
Q,n) = StabW (y‡;XQ,n)

for every y ∈ Y . A saturated cover is always persistent.

4.2 The set Nmax
tr (Θ(π†, ν))

For every ν ∈ X ⊗R, denote by

Wν = {w ∈W : w(ν)− ν ∈ Xsc} ⊂W

the integral Weyl subgroup associated with ν. It is a reflection subgroup associated with the root
subsystem

Φν = {α ∈ Φ : 〈ν, α∨〉 ∈ Z} . (4.1)
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The MacDonald-Lusztig-Spaltenstein j-induction thus gives an irreducible representation jWWν
(εWν ) of

W , where εWν
denotes the sign character of Wν . Write εν = εWν

.
Let g ⊗ F al be the Lie algebra of G over the algebraically closed field F al. Let x ∈ g ⊗ F al be a

nilpotent element and consider Ax := Gad,x/(Gad,x)
o, the group of connected components of Gad,x.

Since Ax depends only on the conjugacy class Ox of x, for a nilpotent orbit O ⊂ g⊗ F al, we use AO to
denote Ax for any x ∈ O. Define

N en(G) = {(O, η) : O ∈ N (G) and η ∈ Irr(AO)},

and the Springer correspondence gives an injective map

SprG : Irr(W ) N en(G),

denoted by
SprG(σ) = (OG

Spr(σ), η(σ)).

If no confusion arises, we write Spr = SprG and OSpr = OG
Spr. We call

OG
Spr(σ) ⊂ g⊗ F al

the nilpotent orbit associated with σ. Here, the normalization is such that OG
Spr(1) = Oreg, and

OG
Spr(εW ) = O0. Note that for every O ∈ N (G), the pair (O,1) lies in the image of Spr, i.e.,

(O,1) = Spr(σO) for a unique σO ∈ Irr(W ). This gives us a well-defined injective map

Spr−1
1 : N (G) Irr(W )

given by Spr−1
1 (O) := Spr−1((O,1)). It is clear that OSpr ◦ Spr−1

1 = idN (G). However, Spr−1
1 ◦OSpr may

not be the identity map on Irr(W ).
One has the permutation representation

σX :W → Perm(XQ,n) (4.2)

given by the twisted Weyl action w[y] = w(y−ρ∨)+ρ∨. We have the following expectation on the stable
wavefront set of Θ(π†, ν).
Conjecture 4.1 (See [27]). Let G be a Brylinski-Deligne n-fold covering of G over a p-adic local field
F . Let ν ∈ X ⊗R be exceptional. Consider the Harish-Chandra local character expansion of Θ(π†, ν) as
in (1.1).

• One has
Nmax

tr (Θ(π†, ν))⊗ F al = {OG
Spr(j

W
Wν

(εν))}. (4.3)

• If furthermore G is a persistent cover and p ∤ n, then

cO = 〈jWWν
(εν), εW ⊗ σX 〉

W
(4.4)

for every orbit O ∈ Nmax
tr (Θ(π†, ν)).

In [27], we showed the part of the Conjecture when Θ(π†, ν) is generic. Compatibility with existing
work in the literature was also verified. This verification depends solely on explicating the right-hand
side of (4.3) for several cases of G(n) of interest. (During the revision of our paper, the equality (4.3) in
Conjecture 4.1 has been verified in the recent work of Karasiewicz et al. [48].)
Remark 4.2. We have revised the statement in Conjecture 4.1 compared with the original form
in [27, Conjecture 2.5] since the assumption on “persistence” and the tame condition p ∤ n should concern
only (4.4) and not (4.3). Moreover, we have removed a certain process of “saturation” ν̃ ∈ X ⊗ R

of ν in Conjecture 4.1 above, which appeared [27, Conjecture 2.5]. It seems to us that the saturation
may not be necessary. More precisely, if G is almost-simple and simply-connected, then in view of the
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third-bullet remark in [27, p. 11], a saturation of ν is needed essentially only for G = Sp
(n)

2r with 4|n
by [27, Lemma 2.3]. (For simplicity, we assume InvBD(Sp

(n)

2r )) = 1 here.) For such Sp
(n)

2r , if we write
2r = (n/2)a+ b with a ∈ N⩾0 and 0 ⩽ b < n/2, then

Φν = (Aa)
b/2 × (Aa−1)

n/4−b/2.

On the other hand, if we write r = (n/2)k + s with k ∈ N⩾0 and 0 ⩽ s < n/2, then

Φν̃ =

{
(A2k−1)

n/4−1−s × (A2k)
s ×Dk × Ck, if 0 ⩽ s < n/4,

(A2k)
n/2−1−s × (A2k+1)

s−n/4 ×Dk+1 × Ck, if n/4 ⩽ s < n/2.

In particular, Φν is not isomorphic to Φν̃ . However, one can check that for such Sp
(n)

2r , we get

OG
Spr(j

W
Wν

(εν)) = OG
Spr(j

W
Wν̃

(εν̃)),

which is more explicitly given in Table 6. This explains our venturing to remove the saturation of ν in
Conjecture 4.1.

4.3 The method of the computation

Here, we want to compute the orbit OG
Spr(j

W
Wν

(εν)) explicitly for all covers, at least when G is almost
simple and simply-connected or is of the classical type. We show that the method of the computation is
reduced to the Sommers’ duality as in [63].

For any linear algebraic group G, we consider another enhanced set of nilpotent orbits

N en
geo(G) := {(O, c) : O ∈ N (G) and c ∈ Conj(AO)} ,

where Conj(AO) denotes the set of conjugacy classes of AO. There is a quotient map

AO ↠ ÃO,

where ÃO is the Lusztig canonical quotient (see [63, § 5]). This gives a set

Ñ en
geo(G) := {(O, c̃) : O ∈ N (G) and c̃ ∈ Conj(ÃO)}

together with a natural surjection
f : N en

geo(G) ↠ Ñ en
geo(G)

given by (O, c) 7→ (O, c̃), where c̃ is the image of c.
Recall that there is a natural order-reversing bijection on special orbits N spe(G) ⊂ N (G), which can

be extended to give the Lusztig-Spaltenstein map

dLS : N (G) ↠ N spe(G).

Now we have the various extensions of dLS as depicted in the following commutative diagram:

N spe(G) N spe(G∨) N (G∨) Ñ en
geo(G

∨)

N (G) N en
geo(G) Ñ en

geo(G).

ι
pr1

dLS

dBV dSom

f

dAch
dSom

(4.5)

Here, ι is the canonical bijection arising from the identification of the Weyl group W of G and that of
its Langlands dual group G∨. Since by definition, there is a bijection between special representations of
the Weyl group and the special nilpotent orbits, one has the bijection ι. Moreover, the Barbasch-Vogan
duality is given by

dBV := ι ◦ dLS.
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The top inclusion in (4.5) is the canonical one, and the bottom inclusion is given by map O 7→ (O,1).
On the other hand, the existence of the extended maps

dSom : N en
geo(G) → N (G∨)

and dAch is not trivial and are given in [63] and [1] respectively. It was shown in [63] that the map dSom
factors through f and thus can be defined on Ñ en

geo(G) as well.
What pertains to our work is the map dSom and thus we give some elaboration on it. Take any

(O, c) ∈ N en
geo(G).

One picks e ∈ O and a semisimple element s ∈ ZG(e) such that

φ(s) = c,

where φ : ZG(e) ↠ AO is the canonical quotient map. We take

L := ZG(s)

which is the so-called pseudo-Levi subgroup (see [53, § 6]) of G with e ∈ L. Consider the nilpotent orbit
OL
e ⊂ Lie(L). It is known that there exists σe ∈ Irr(W (L)) such that

Spr(σe) = (dLS(OL
e ),1) ∈ N en(L).

Hence,
σe = Spr−1

1 ◦ dLS(OL
e ).

Now consider
jWW (L)(σe) ∈ Irr(W ),

where we identify the Weyl groups of G and G∨. The desired orbit arising from dSom is then

dSom((O, c)) = OG∨

Spr(j
W
W (L)(σe)) ∈ N (G∨),

which is independent of the choices of e and s. In fact, we have

SprG
∨
(jWW (L)(σe)) = (dSom(O, c),1).

For (O, c) above, one can pick (s, e) such that OL
e is a distinguished nilpotent orbit of L. In fact, a

generalized Bala-Carter classification for N en
geo(G) was constructed by Sommers [62, p. 548], using such

pairs satisfying the minimal “key property”. Recall that the Bala-Carter classification gives a bijection

fBC : {(L′,OL′)} → N (G),

where L′ ⊂ G is a Levi subgroup and OL′ ⊂ Lie(L) a distinguished orbit. By considering more generally
a general pseudo-Levi subgroup L ⊂ G and a distinguished orbit OL ⊂ Lie(L), Sommers showed that
there is a natural surjection f̃BC : {(L,OL)} ↠ Ñ en

geo(G) such that the following diagram

{(L′,OL′)} N (G)

{(L,OL)} Ñ en
geo(G)

fBC

f̃BC

commutes, i.e., it extends the classical Bala-Carter classification.
Combining the above, one has a natural map

d♡Som := dSom ◦ f̃BC : {(L,OL)} → N (G∨).

The construction of the map dSom immediately gives the following proposition.
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Proposition 4.3. Let O be a distinguished orbit of a pseudo-Levi L. Then

d♡Som((L,O)) = OG∨

Spr(j
W
W (L) ◦ Spr

−1
1 ◦ dLS(O)),

where jWW (L) ◦ Spr
−1
1 ◦ dLS(O) is viewed as the representation of the Weyl group of G∨. In particular,

d♡Som(L,Oreg) = OG∨

Spr(j
W
W (L)(εW (L))).

For application purposes, we exchange the roles of G and G∨. In particular, retaining the notations
in Conjecture 4.1, we have a pseudo-Levi subgroup L∨

ν whose root system is Φ∨
ν . It thus follows from

Proposition 4.3 that
OG

Spr(j
W
Wν

(εν)) = d♡Som(L
∨
ν ,Oreg). (4.6)

4.4 The orbit OSpr(j
W
Wν

εν) for classical groups

For type Am groups, pseudo-Levi groups are all Levi subgroups, and thus every L∨
ν corresponds to a

partition
pν = (pd11 p

d2
2 · · · pdkk )

of m+ 1. Since d♡Som extends the Barbasch-Vogan duality, we have

OG
Spr(j

W
Wν

(εν)) = p⊤ν ,

the transpose of the partition pν . Consider any Brylinski-Deligne GL
(n)

r of GLr with nα = n. We write
r = an+ b with 0 ⩽ b < n. Then

pν = ((a+ 1)ban−b),

and this gives
OG

Spr(j
W
Wν

(εν)) = (nab).

For types Br, Cr and Dr, we recall the formula for dSom(O, c) given in [63], which then gives
d♡Som(L,Oreg). First, for the pair (O, c) ∈ N en

geo(G), one can choose the aforementioned (s, e) with
additional properties.

• Lie(L) has semisimple rank equal to that of g, and one has

Lie(L) = l1 ⊕ l2,

where l2 is a semisimple Lie algebra of the same type as g, and l1 is a simple Lie algebra containing
−α̌ ∈ ∆̌ in the extended Dynkin diagram with simple roots ∆̌.

• one has e = e1 + e2, ei ∈ li, where e1 is a distinguished element in l1.
The Lie algebra l1 is of type B, type C or type D if g is of type B, type C or type D, respectively. To
such a pair (s, e), one can attach a pair of partitions (p1, p2) corresponding to the orbits Ol1

e1 and Ol2
e2 ,

respectively. In fact, one has
pO = p1 ∪ p2.

Theorem 4.4 (See [63, Theorem 12]). For type B, type C and type D groups, assume that (p1, p2) is
associated with (O, c) as above. Then

dSom(O, c) =


(p1 ∪ (p−2 )C)

⊤
C , if g is of type B,

(p1 ∪ (p+2 )B)
⊤
B , if g is of type C,

(p1 ∪ (p⊤2,D)
⊤)⊤D, if g is of type D.

Here, the operations p− and p+ of a partition p are given as in [63, p. 804].
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If e1 = 0 (equivalently g1 = 0), then p1 = ∅; in this case, dSom recovers the Barbasch-Vogan duality. In
general, suppose (O, c) = fBC(L,O) for a distinguished O of L. We can write l = g1 ⊕ g′2, where g1 is a
simple Lie algebra (if nonzero) containing −α̌ ∈ ∆̌, and g′2 is a Levi subalgebra of g. Also, O = Oe1 ⊕Oe2

with e1 and e2 distinguished in g1 and g′2, respectively. Then p1 = pOg1
e1
. On the other hand, let g2 ⊃ g′2

be the maximal Levi subalgebra such that its simple roots are disjoint from those of g1 in ∆̌. Consider
the orbit Ol2

e2 of e2 in g2, one has p2 = pOg2
e2
. The above discussion readily applies to the case of our

interest when OL = Oreg and thus e1 and e2 are regular in g1 and g′2, respectively.
Consider the cover of G of type Br. We consider both the cases of G = Spin2r+1 and G = SO2r+1.

For G = Spin
(n)

2r+1 with the Brylinski-Deligne invariant InvBD(Spin
(n)

2r+1) = 1, one has in this case the
exceptional character

ν =


ρ/n, if n is odd,

2ωr/n+

( ∑
1⩽i⩽r−1

ωi

)
/n = ρ(Cr)/n, if n is even.

Now if we write
r = na+ b with 0 ⩽ b < n,

then a direct computation gives that
• for odd n = 2m+ 1, we have

Φ∨
ν =

{
Ca × (A2a−1)

m−b × (A2a)
b, if 0 ⩽ b ⩽ m,

Ca+1 × (A2a)
2m−b+1 × (A2a+1)

b−m−1, if m+ 1 ⩽ b ⩽ 2m;

• for even n = 2m, we have

Φ∨
ν =

{
Ca × Ca × (A2a−1)

m−1−b × (A2a)
b, if 0 ⩽ b ⩽ m− 1,

Ca+1 × Ca × (A2a)
2m−b−1 × (A2a+1)

b−m, if m ⩽ b ⩽ 2m− 1.

By applying (4.6) and Theorem 4.4, we see that if n = 2m+ 1 is odd, then

OSpr(j
W
Wν
εν) = O2r+1,n

B =

{
(n2a, 2b+ 1), if 0 ⩽ b ⩽ m,

(n2a+1, 2b+ 1− n), if m+ 1 ⩽ b ⩽ 2m.

On the other hand, if n = 2m is even, then

OSpr(j
W
Wν
εν) = O2r+1,n

B =

{
(n2a, 2b+ 1), if 0 ⩽ b ⩽ m− 1,

(n2a, n− 1, 2b+ 1− n, 1), if m ⩽ b ⩽ 2m− 1.

For SO
(n)

2r+1, it depends on the parity of nα1
= n/ gcd(n, 2). In particular, the exceptional character is

of the form

ν =


ρ/nα1 , if nα1 is odd,

2ωr/nα1 +

( ∑
1⩽i⩽r−1

ωi

)
/nαr = ρ(Cr)/nα1 , if nα1 is even.

Thus, the root subsystem associated with an exceptional character of SO(n)

2r+1 equals the root subsystem
associated with that of Spin(nα1

)

2r+1 . This gives us the column for SO2r+1 in Table 6.
Now consider Sp

(n)

2r with InvBD(Sp
(n)

2r ) = 1. If n is odd, then a detailed computation of OSpr(j
W
Wν
εν)

was already given in [27, § 4]. For n even, the root subsystem Φν is given in Remark 4.2 (see also [27,
Remark 4.2]). Thus, a similar computation gives the orbit, which we tabulate in the column of Sp2r in
Table 6.
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Table 6 OSpr(j
W
Wν

εν) for classical groups

GL
(n)
r SO

(n)
2r+1 Sp

(n)
2r SO

(n)
2r

n is odd Or,n O2r+1,n
B O2r,n

C O2r,n
D

n = 2m, m is even Or,n O2r+1,m
B O2r,m

C (m+ 1,O2r−m−1,m
D )

n = 2k, k is odd Or,n O2r+1,k
B (k + 1,O2r−k−1,k

C ) O2r,k
D

Consider the group of types Dr, r ⩾ 2, where again we analyze both Spin2r and SO2r. Consider Spin2r
and its n-fold cover with InvBD(Spin

(n)

2r ) = 1, the exceptional character is ν = ρ/n. We write r−1 = na+b

with 0 ⩽ b < n. If n = 2m+ 1 is odd, then the root subsystem is

Φ∨
ν =

{
Da+1 × (A2a−1)

m−b × (A2a)
b, if 0 ⩽ b ⩽ m,

Da+1 × (A2a)
2m−b × (A2a+1)

b−m, if m+ 1 ⩽ b ⩽ 2m;

also if n = 2m is even, then we have

Φ∨
ν =

{
Da+1 ×Da × (A2a−1)

m−1−b × (A2a)
b, if 0 ⩽ b ⩽ m− 1,

Da+1 ×Da+1 × (A2a)
2m−b−1 × (A2a+1)

b−m, if m ⩽ b ⩽ 2m− 1.

By applying Theorem 4.4, we see that if n = 2m+ 1 is odd, then

OSpr(j
W
Wν
εν) = O2r,n

D =

{
(n2a, 2b+ 1, 1), if 0 ⩽ b ⩽ m,

(n2a+1, 2b+ 2− n), if m+ 1 ⩽ b ⩽ 2m.

On the other hand, if n = 2m is even, then

OSpr(j
W
Wν
εν) = (n+ 1,O2r−n−1,n

D ) =

{
(n+ 1, n2a−2, n− 1, 2b+ 1, 1), if 0 ⩽ b ⩽ m− 1,

(n+ 1, n2a, 2b+ 1− n), if m ⩽ b ⩽ 2m− 1.

The case of SO(n)

2r depends on the parity of nα = n/ gcd(n, 2), where α is any root. In particular, the
exceptional character is of the form ν = ρ/nα. Thus, the root subsystem associated with an exceptional
character of SO(n)

2r equals the root subsystem associated with that of Spin(nα)

2r . This gives us the column
for SO2r in Table 6.
Remark 4.5. In a recent work, Bai et al. [2] devised two algorithms to compute the nilpotent orbit
associated with the highest weight modules for all classical Lie algebras, which partially extend the recipes
and some relevant results given in [3, 4]. One such algorithm in [2] is the so-called “partition algorithm”
and is based on Sommers’ duality in [63]. In particular, one can check that Table 6 can be recovered by
applying [2, § 1.2, Theorem] to an exceptional ν ∈ X ⊗R.

4.5 The orbit OSpr(j
W
Wν

εν) for exceptional groups

For exceptional groups, the computation follows from (4.6) and the tables in [63, § 9]. Thus, we have
Table 7 for G(n)

2 . For F (n)

4 , we have Table 8. For E(n)

6 , we have Table 9. For E(n)

7 , we have Table 10. For
E

(n)

8 , we have Table 11.

4.6 Compatibility and remarks

In view of the above tables and the criterion of quasi-admissibility and raisability discussed in Section 3,
we have the following theorem.
Theorem 4.6. Let G be any of the covering GL

(n)

r , SO
(n)

2r+1, Sp
(n)

2r , SO
(n)

2r , G(n)

2 , F (n)

4 and E
(n)

r ,
6 ⩽ r ⩽ 8 discussed above. Assume that G is persistent. Consider the F -split orbit OΘ of type
OSpr(j

W
Wν
εν) of G.
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Table 7 OSpr(j
W
Wν

εν) for G
(n)
2

n Φχ jWWν
εν OSpr(j

W
Wν

εν) dimO
1 G2 ϕ1,6 {0} 0
2 Ã1 +A1 ϕ2,2 Ã1 8
3 Ã2 ϕ′′

1,3 A1 6
4, 5, 6, 9 Ã1 ϕ2,1 G2(a1) 10

7, 8 or ⩾ 10 ∅ ϕ1,0 G2 12

Table 8 OSpr(j
W
Wν

εν) for F
(n)
4

n Φχ jWWν
εν OSpr(j

W
Wν

εν) dimO
1 F4 ϕ1,24 {0} 0
2 C4 ϕ′′

2,16 A1 16
3 Ã2 +A2 ϕ6,6 Ã2 +A1 36
4 A3 +A1 ϕ′′

4,7 A2 + Ã1 34
5, 6 Ã2 +A1 ϕ12,4 F4(a3) 40
7, 10 Ã1 +A1 ϕ9,2 F4(a2) 44
8 Ã2 ϕ′′

8,3 B3 42
9, 11, 12, 14, 16 Ã1 ϕ4,1 F4(a1) 46
13, 15 or ⩾ 17 ∅ ϕ1,0 F4 48

Table 9 OSpr(j
W
Wν

εν) for E
(n)
6

n Φχ jWWν
εν OSpr(j

W
Wν

εν) dimO
1 E6 ϕ1,36 {0} 0
2 A5 +A1 ϕ15,16 3A1 40
3 3A2 ϕ10,9 2A2 +A1 54
4 2A2 +A1 ϕ80,7 D4(a1) 60
5 A2 + 2A1 ϕ60,5 A4 +A1 62

6, 7 3A1 ϕ30,3 E6(a3) 66
8 2A1 ϕ20,2 D5 68

9, 10, 11 A1 ϕ6,1 E6(a1) 70
⩾ 12 ∅ ϕ1,0 E6 72

Table 10 OSpr(j
W
Wν

εν) for E
(n)
7

n Φχ jWWν
εν OSpr(j

W
Wν

εν) dimO
1 E7 ϕ1,63 {0} 0
2 A7 ϕ15,28 4A1 70
3 A5 +A2 ϕ70,18 2A2 +A1 90
4 A4 +A2 ϕ210,13 A3 +A2 +A1 100
5 A3 +A2 +A1 ϕ210,10 A4 +A2 106
6 A2 +A2 +A1 ϕ315,7 E7(a5) 112
7 A2 + 3A1 ϕ105,6 A6 114
8 A2 + 2A1 ϕ189,5 E7(a4) 116
9 (4A1)′′ ϕ120,4 E6(a1) 118

10, 11 (3A1)′ ϕ56,3 E7(a3) 120
12, 13 2A1 ϕ27,2 E7(a2) 122

14, 15, 16, 17 A1 ϕ7,1 E7(a1) 124
⩾ 18 ∅ ϕ1,0 E7 126
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Table 11 OSpr(j
W
Wν

εν) for E
(n)
8

n Φχ jWWν
εν OSpr(j

W
Wν

εν) dimO
1 E8 ϕ1,120 {0} 0
2 D8 ϕ50,56 4A1 128
3 A8 ϕ175,36 2A2 + 2A1 168
4 D5 +A3 ϕ840,26 2A3 188
5 A4 +A4 ϕ420,20 A4 +A3 200
6 A4 +A3 ϕ4480,16 E8(a7) 208
7 A4 +A2 +A1 ϕ2835,14 A6 +A1 212
8 A3 +A2 + 2A1 ϕ1400,11 A7 218
9 A3 +A2 +A1 ϕ2240,10 E8(b6) 220

10, 11 2A2 + 2A2 ϕ1400,8 E8(a6) 224
12, 13 A2 + 3A1 ϕ700,6 E8(a5) 228
14 A2 + 2A1 ϕ560,5 E8(b4) 230

15, 16, 17 (4A1)′ ϕ210,4 E8(a4) 232
18, 19 3A1 ϕ112,3 E8(a3) 234

20, 21, 22, 23 2A1 ϕ35,2 E8(a2) 236
24, 25, 26, 27, 28, 29 A1 ϕ8,1 E8(a1) 238

⩾ 30 ∅ ϕ1,0 E8 240

(i) The orbit OΘ is quasi-admissible and non-raisable.
(ii) If the orbit OΘ is the regular orbit of a Levi subgroup of G, then it supports certain generalized

Whittaker models of the theta representation Θ(G, ν).
Proof. First, (i) follows from comparing Tables 6–11 with Theorems 3.1, 3.3 and 3.4 and Tables 1–5.

For (ii), recall from [32] that for any π ∈ Irrgen(G) and any Whittaker pair (S, u) of Ou, there is a
degenerate Whittaker model πS,u such that one has a G-equivariant surjection πNO,ψO ↠ πS,u (see [32,
Theorem A]). If Ou is the split regular orbit of a Levi subgroup L, then one can pick (S, u) such that
πS,u is equal to the semi-Whittaker models of π, i.e., the Whittaker model of the Jacquet model JU (π)
with respect to the unipotent radical U of the parabolic subgroup P = LU .

Applying the above to Θ(G, ν), by the periodicity of theta representations (see the argument in [9,
Theorem 2.3], [14] or [46], which actually applies to general G), one has that JU (Θ(G, ν)) is a theta
representation on the Levi subgroup L. Thus, it suffices to show that every theta representation Θ(LO)

on the Levi subgroup LO associated with such OΘ is generic. It follows from [25, Proposition 6.2] that
dimWhψ(Θ(LO)) = 〈εW (LO), σ

X 〉
W (LO)

, where W (LO) denotes the Weyl group of LO. Moreover, an
explicit numerical criterion on the non-vanishing of dimWhψ(Θ(LO)) is given in [27, § 3]. The result then
follows from a direct check by using results in [27, § 3] and Tables 6–11. We illustrate this by considering
Sp

(n)

2r and E
(n)

8 as examples.
The cover Sp

(n)

2r is persistent if and only if n is odd or n = 2m with m even. If n is odd, then by
Example 3.5, we have (for 2r = an+ b and 0 ⩽ b < n) the following:

• If a and b are both even, then OΘ = (nab) is the principal orbit of a Levi with LO = Spb×
∏a/2
j=1 GLn.

In this case, Θ(LO) is generic by [24, Proposition 5.1] or [27, Lemma 3.3].
• If a and b are both odd, then OΘ is a principal orbit of a Levi only when b = n− 2, and in this case,

LO = GLn−1 ×
∏(a−1)/2
j=1 GLn. Again, Θ(LO) is generic in this case.

Now, if n = 2m with m even, then the orbit OΘ = (mab) with 2r = am + b is always the principal
orbit of the Levi subgroup LO = Spb ×

∏a/2
i=1 GLm. In this case, Θ(LO) is generic by results in [24,27] as

well.
For E(n)

8 , it follows that the non-trivial orbits OΘ, which are regular orbits of Levi subgroups, are
4A1, 2A2+2A1, 2A3, A4+A3, A6+A1 and A7, which are associated with n = 2, 3, 4, 5, 7, 8, respectively.
It follows that Θ(LO) is always generic in this case.



2068 Gao F et al. Sci China Math September 2025 Vol. 68 No. 9

Other groups can be checked in the same way, and this completes the proof.

5 The coefficient cO for Θ(GL
(n)

r )

In this section, we verify the equality (4.4) in Conjecture 4.1 regarding the leading coefficient cO for
the theta representation of covers of GLr. Note that the equality (4.3) for GL

(n)

r is due to Savin2) for
the so-called Savin’s coverings and Cai [14, Theorem 1.2] for Kazhdan-Patterson coverings [49] (for a
comparison of the two families of coverings, see [28, § 5.1]).

Theorem 5.1. Consider a Kazhdan-Patterson cover GL
(n)

r . Assume p ∤ n. Then for every unramified
theta representation Θ(π†, ν), one has cO = 〈jWWν

(εWν ), εW ⊗ σX 〉
W
, where O = (nab) is the unique orbit

in Nmax
tr (Θ(π†, ν)) with r = na+ b, 0 ⩽ b < n.

Proof. We first note that every GLr is saturated and thus persistent. For any partition µ ∈ P(r) of
r, we denote by Mµ ⊂ GLr the standard Levi subgroup. The Weyl group of Mµ is denoted by Wµ ⊂W .
We write λ := (nab) ∈ P(r). Since Nmax

tr (Θ(π†, ν)) = {λ}, we see that [59] and [33, Theorem 1.5]
together with the periodicity of theta representations (see [14, Proposition 3.21]) give the first equality in
cO = dimWhψ(Θ(M

(n)

λ )) = 〈εWλ
, σX 〉Wλ

= 〈IndWWλ
(εWλ

), σX 〉
W
, where the theta representation M

(n)

λ

is associated with π† and ν, and the second equality follows from [25, Proposition 6.2]. On the other
hand, the Weyl subgroup Wν is a parabolic Weyl subgroup associated with λ⊤ = ((a+ 1)ban−b). Thus,

〈jWWν
(εWν

), εW ⊗ σX 〉
W

= 〈jWW
λ⊤

(εW
λ⊤ ), εW ⊗ σX 〉

W

= 〈εW ⊗ jWW
λ⊤

(εW
λ⊤ ), σX 〉

W
= 〈jWWλ

(εWλ
), σX 〉

W
,

where the last equality follows from [29, Corollary 5.4.9].
We have

IndWWλ
(εWλ

) = jWWλ
(εWλ

) +
∑
λ⩽µ
µ ̸=λ

jWWµ
(εWµ

)

(see [29, Theorem 5.4.7]). Also, for any µ > λ,

〈jWWµ
(εWµ

), σX 〉
W

⩽ 〈IndWWµ
(εWµ

), σX 〉
W

= 〈εWµ
, σX 〉

Wµ
= dimWhψ(Θ(Mµ)),

where the last equality follows from [25]. Since µ > λ, there is a component in the partition of µ
strictly greater than n, and thus one has dimWhψ(Θ(Mµ)) = 0. All the above together give cO =

〈jWWν
(εWν ), εW ⊗ σX 〉

W
. This completes the proof.

Note that our restriction to the Kazhdan-Patterson cover [49] of GLr is more for convenience only.
Results in Theorem 5.1 and other parts of the paper could be extended to general Brylinski-Deligne covers
of GLr without much difficulty, where we anticipate that the only essential alternation in the statement
is to replace n by nα.
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