试谈科技论文的标准化与规范化 Ⅱ.量和单位及其符号的使用规则[∞]

宋粤华

(中国科学院盐湖研究所,西宁,810008)

摘要\简单介绍了国家 GB3100~3102 对量和单位及其符号的使用规定,并列出了科技论文中常见的有关量和单位及其符号的不规范用法。

关键词 科技论文 量 单位 标准化 分类号 ${
m H}^{152.3}$

计量单位涉及工农业生产、国防建设、科学研究、文化教育、国内外贸易等各个方面。我国十分重视量、单位及其国家标准的制定工作,1985年9月6日,全国人大常委会通过了《中华人民共和国计量法》,把国家推行国际单位制提高到了法律的高度。我国的法定计量单位是1984年2月27日发布的,其具体应用形式就是《量和单位》系列国家标准GB3100~3102,这是我国各行业都必须执行的强制性、基础性标准。

科技论文——尤其是公开发表的科技论文,借助于书、期刊、文集、光盘等载体,流传于社会并产生一定的影响。计量单位的统一,正确使用法定的量和单位,是科技论文做到标准化、规范化的一个极其重要的方面。总结近几年投到本刊的科技论文在量和单位使用方面的情况,大部分作者认真努力地执行了法定计量单位,但也有一些作者由于种种原因,如未见到有关标准,或受传统习惯影响较深,在执行法定计量单位上还存在不少问题。因此,特撰此文对有关量和单位及其符号的使用规则作一简单介绍。

1 我国量、单位与国家标准的制定工作

1981年7月14日,国务院批准了中国国际单位制推行委员会制订的《中华人民共和国计量单位名称与符号方案(试行)》(以下简称《方案》),该《方案》是以国际单位制为基础的。1982年发布的有关量和单位的一系列国家标准共15个(GB3100~3102-82),这些标准的制订参照采用了国际标准ISO31/0~13。该标准的主要内容以表格的形式列出;量的表格列出了该标准所涉及的科学技术中最主要的量及其符号,大多数情况下给出了定义,但这些定义并不全是完整的,只是为了便于识别;量的相应单位连同其国际符号和定义一起列出,《量和单位》从此按学科范围单独以国标(GB)的形式出现;还将"序号"、改为"项号",原来的"量的名称"和"量的符号"修订、补充为"量的名称"及"符号"、"单位名称"及"符号"。该标准被1986年发布的有

^{(20) |} 收稿日期 1999-03-10 (20) | 1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www

关量和单位的系列国家标准" $GB_{3100} \sim 3102 - 86$ "所代替。1993年又发布了有关量和单位的系列国家标准" $GB_{3100} \sim 3102 - 93$ "代替" $GB_{3100} \sim 3102 - 86$ "。

1993年发布的"GB3100~3102-93"中,有关量和单位的系列标准共 15 个,是我国目前执行的最新标准(以下简称新标准)。新标准等效采用国际标准 ISO 1000:1992《SI 单位及其倍数单位和一些其他单位的应用推荐》,参照采用国际计量局《国际单位制(SI)》(1991年第6版)。这一系列标准:

GB3100-93 国际单位制及其应用;

GB3101-93 有关量、单位和符号的一般原则;

GB3102.1-93 空间和时间的量和单位;

GB3102.2-93 周期及其有关现象的量和单位;

GB3102.3-93 力学的量和单位;

GB3102.4-93 热学的量和单位;

GB3102.5-93 电学和磁学的量和单位;

GB3102.6-93 光及有关电磁辐射的量和单位;

GB3102.7-93 声学的量和单位;

GB3102.8-93 物理化学和分子物理学的量和单位;

GB3102.9-93 原子物理学和核物理学的量和单位;

GB3102.10-93 核反应和电离辐射的量和单位;

GB3102.11-93 物理科学和技术中使用的数学符号;

GB3102.12-93 特征数;

GB3102.13-93 固体物理学的量和单位。

新标准中列出了614个量的名称,也列出了一些暂时可以与SI的单位并用的非SI单位。

GB^{3100~3102} 系列国家标准是强制性、基础性的国家标准,适用于国民经济、科学技术、文化、教育等一切领域,是我国科学技术方面的重要的基础文件,也是理、工、农、医等各学科的共同语言基础。

2 量

物理量,简称量,是现象、物体或物质的可以定性区别和定量确定的一种属性。它有两个特点:(1)存在于某一量制中,一切量都可以与其它量建立数学关系,进行数学运算;(2)可测,一切量都可以定量地表达和测出;(3)量所表达的是物理性质,物理量都有确切的物理定义(它不同于计数量)。

2.1 量名称

量都有各自的名称。新标准共列出了 614 个量的名称,这些量名称反映了学科的最新发展,是标准化的名称。新标准在继承 1986 年版本的基础上,对其中约 200 个量的名称进行了修改或补充,有的还明确废弃了旧名称。

关于量的名称,在使用中要注意的是:

- (1)有的量具有2个以上的名称,如压力与压强,电势差、电位差与电压等。但同一个量名称不应有多种写法,尤其应注意以科学家命字命名的量名称的写法。
 - (2)一般应使用标准规定的量名称,不要使用自造的或已废弃的名称。表1列出了一些常

见的尚在使用的已废弃的量名称和标准化名称的对照。

(3) 应优先采用标准化的新名称。新标准在等效采用国际标准、给出了标准的新名称的同时,还在备注栏内列出了一些暂许使用的旧名称,注明"该量也称…",但国家标准鼓励科技论文优先采用新名称。表 2 列出了一些常用的标准名称与暂时允许并存的旧名称的对照。

2.2 量符号

在新标准中,对每个量都给出了1个或2个以上符号,这些符号就是标准化的符号。有着量符号的一般规则是:

			E 石柳		
标准化量名称	量符号	废弃的名称	说 明		
质量	М	重量			
密度	ρ	比重	当其单位为 kg/m^3 时, 应称为密度; 当其单位为 1 , 表示在相同		
相对密度	d		条件下,某一物质的密度与另一参考物质的密度之比时,应称		
			为相对密度。		
摩擦系数	$\mu(f)$	摩擦系数			
比热容	c	比热	定义为热容 C 除以质量 m,单位为 J/(kg·K)		
比定压热容	c_p	定压比热容,恒压比热			
热力学能	U	内能	不再使用符号 E, 其单位为 J		
电流	I	电流强度	单位为 A		
相对原子质量	A r	原子量	单位为1		
相对分子质量	<i>M</i> _r	分子量	单位为1		
分子质量	m	分子量	单位为 kg 常用 u		
		摩尔数,克原子数,克分			
物质的量	n, (v)	子数,克离子数,百分浓	单位为摩尔		
		度			
B的质量分数	w B	重量百分数,重量的百分	单位为 1, 是 B 的质量与混合物的质量之比		
		浓度			
B的体积分数	P 8	 体积百分浓度	单位为 1, 是 B 的体积与混合物的体积之比		
B的浓度,B的	СВ	体积克分子浓度,摩尔浓	单位为 mol/m³,是 B 的物质的量除以混合物的体积		
物质的量浓度		度,当量浓度	, , , , , , , , , , , , , , ,		
[放射性]活度	A	 放射性强度,放射性	单位为 Bq		
(MAIL JILIX	71	/// ILEA/X, //// IE	⊥ 1₹24 nd		

表 1 常见标准化量名称与废弃名称的对照

- (1)量符号一般为单个拉丁字母或希腊字母,有时带有下标或其它说明性记号。但有25个用来描述传递现象的特征数由2个字母构成,且当首字母要采用大写体(由于它来源于人名)。
 - (2) 应采用新标准中规定的量符号,尤其要注意量符号的大小写字母是不能随意互换的,
- 表 3中列出了022些量符号常见的错误用法。lectronic Publishing House. All rights reserved. http://www

标准量名称	量符号	暂许用旧名称	单位
角频率	ω	圆频率	rad/s,s ⁻¹
摩擦系数	н , (f)	摩擦系数	1
热力学能	U	内能	J
电通[量]密度	D	电位移	C/m ²
摩尔热力学能	U_m	摩尔内能	J/mol
B的活度因子	U	质量内能	J/kg
	У В	B的活度系数	1

表 2 常用标准化量名称与暂许使用的旧名称对照

表 3 常见的量符号错误用法

量名称	质量	力	速度	时间	压力	电流	电荷	电压	电阻	摄氏温度	热力学温度	热力学能
正确量符号	+ m	\boldsymbol{F}	v	t	p	I	Q	$\boldsymbol{\mathit{U}}$	R	t	T	U
错误量符号	+W , Q	N , P	V	T	P	i	q	и	r	T	t	(在新标准中已废弃)

(3) 不能把量符号当作纯数来使用。按新标准规定,对于任何一个量A,量和单位的正规表达式可以写成

$$A = \{A \} \cdot [A]$$

其中:A 为某一物理量的符号; [A] 为量 A 的单位; [A] 为物理量 A 在使用单位 A 时的数值。

根据这个公式,每个量符号又确实存在着某个未指明的单位。如l 是长度的量符号,l 中必定包含着 km,m,cm,mm 等单位中的某个单位,因此不能将量符号当作纯数来使用。表 4 列出了一些常见量符号当作纯数使用的情况。

表 4 常见将量符号当作纯数使用例表

错误表示	正确表示
长度为 lem	长度为 l ,单位为 cm
时间为 ts	时间为 t ,单位为 s
物质的量为 n mol	物质的量为 n ,单位为 mol
压强的对数 lgp (kpa)	压强的对数 lg(p/kpa)
(t−10)°C	t-10°C

(4) 不能把化学元素符号作为量符号使用。例如,典型的既不规范、又含意不清楚的表达式 $H_2: O_2 = 2: 1$ (或 $H_2/O_2 = 2/1$),其规范化的表示应为:

如指质量比, 为 $m(H_2)$: $m(O_2) = 2$: $1(或 m(H_2) / m(O_2) = 2 / 1)$;

如指体积比,为 $V(H_2)$: $V(O_2) = 2$: $1(或 V(H_2)/V(O_2) = 2/1)$;

如指质量的量比,为 $n(H_2)$: $n(\Omega_2) = 2$: 1 (或 $n(H_2)$) $n(\Omega_2) = 2/1$; house. All rights reserved. http://www

还有一些常见的习惯使用的不规范符号如 Wt %、Vot %、mol %、at %等,它们的规范符号分别应为质量分数 w B、体积分数 \mathfrak{q} 摩尔分数 x 或 γ 、原子数分数 x 或 γ 。

(5) 量符合的组合规则

相乘时,对于2个字母组成的量符号,为避免误解为2个量的相乘,当其出现在公式中时,相乘的量之间一定要加中圆点"·"。对于矢量相乘,不加乘号与加"·"和"×"的意义是各不相同的,不能互换。

相除时,若采用"/"作相除号,则同一行中的"/"不能多于 1条(加括号时例外)。当分子或分母为多项式时,如采用"/",必须使用括号。

也不能把元素或分子式等符号后加"%"当作量符号使用,如常见的错误表示 $M \, nO_2 \, \% = 58.4 \, \% \, p"M \, nO_2 \, \%$ 指的应是 $M \, nO_2$ 的质量分数,其规范的表示为 $w \, (M \, nO_2) = 58.4 \, \%$ 。"

2.3 量符号的下标

为了表示量的特定状态、位置、条件或测量方法等,常需在量符号上附加其它标志,如右上标"*"(表示纯的)、"o"(表示标准)、"°"(表示无限稀释)、""和下标等。当一篇论文中有不同的量使用同一字母作量符号,或同一个量有不同的使用特点需加以区别时,常采用附加下角标的形式。

量符号下标的书写和印刷有比较严格的规则。新标准对许多量符号规定了下角标,其主要依据是现已为各国所采用的、由国际电工委员会(IEC)提出的书写规则。量符号下角标的书写和使用的一般规则为:

- (1) 应优先采用新标准规定的下标符号。
- (2)注意区分下标字母的正斜体。量符号和代表变动性数字及坐标轴的字母和下标时用斜体,其余均用正体。
- (3)注意区分下标字母的大小写。量符号和单位符号作下标时,其字母大小写同原符号;来源于人名的缩写作下标时用大写体;凡不是来源于人名的缩写作下标时,一般都用小写体;在某些情况下使用汉语拼音字母作下标时,也应采用小写体。
- (4) 当一个量符号中出现两个以上下角标,或下角标中代表物质的符号比较复杂时(如分子式或下角标中又带有下角标等),可把这些下角标符号置于量符号之后的圆括号中。如要表示 5h 放电的一蓄电池在-35^{\circ} 温度下的电能容量,应写成 W_{5h} ,-35^{\circ} 或 W(5h,-35^{\circ})。
- (5) 在化学等学科中,代表物质的符号表示成右下标,如 B 物质的浓度 c_B ,B 的分压力 p_B 等。具体物质的符号一般应置于与主符号齐线的括号中,而不写作下标,如硫酸的浓度表示为 $c(H^2SO_4)$ 、二氧化碳的分压力表示为 $p(CO_2)$,以及前面提到的 H^2 的质量表示 $m(H^2)$,最好不要写成 $c_{H_2}s_{O_4}$, p_{CO_2} 和 m_{H_2} 。
- (6) 在国标未规定下标的量附加下标,可用汉语拼音或汉字量名称的缩写作下标。复合下标间用逗号隔开,也可留一适当空隙;在不至于引起混淆时,也可紧接着写。

3 单位

3.1 单位的名称

单位名称有全称和简称 2 种,也有一部分单位的全称与简称相同。组合单位的名称与其符号表示的顺序一致,乘号无名称,除号的名称为"每",且"每"只能出现一次,如质量热容的单位 $J/(kg, \cdot K)$ 的名称为"焦耳每千克开尔文"。乘方形式的单位名称,其顺序是指数名称在前,单

位名称在后,指数由数字加次方组成:当长度的 2 次和 3 次幂表示面积和体积时,其相应的指数名称为平方和立方。如,表示体积的量值"5hm³"读作"五立方百米",而"500m³"读作"五百立方米"。

3.2 单位符号及其使用规则

新标准中规定,科技论文必须一律使用国际符号,即标准化符号。不能使用单位的中文符号。使用单位符号应注意以下几点:

- (1)单位符号无例外地采用正体。
- (2) 一般单位符号为小写体,只有来源于人名的单位,其符号的首字母用大写体,应注意单位符号的大小写不要混淆(表5)。只有体积单位升是例外,它的符号大小写皆可,但最好采用"L",并且统一用"L"升作为表示物质浓度单位中体积的基准单位,而不使用 中L,mL 及 mm³等作为浓度单位的分母。

	11. 20 10 17 7 70 1	7 17 E 17 17 E 1
单位名称	错误符号	标准符号
米	M	m
秒	S	s
吨	T	t
千克	Kg	kg
摩[尔]	Mol	mol
帕[斯卡]	pa	Pa
摄氏度	ç	°C
电子伏	ev, Kev	eV , keV
赫[兹]	HZ , H_z	Hz
法[拉]	f	F
瓦[特]	w , K W	W , k W

表 5 常见单位符号在小写混淆示例

- (3) 平面角单位度、分、秒在组合单位中采用(°),(°),(°)的形式,如°min 是不规范的用法,应采用(°)/min。单位符号不能跟中文符号构成组合形式的单位,如速度单位的规范表达式为"km/h",不得写作"km/时"。
 - (4) 当某些单位没有国际符号时,可用汉字与国际符号构成组合单位,如 m²/人,t/月。
 - (5)不能把单位英文名称的非标准缩写甚至全称作为单位符号(表6)。
- (6) 不能把量符号当作单位符号使用,如"m"为溶质的"质量摩尔浓度"的量符号,其单位名称为"摩[尔]每千克",相应的单位符号为"mol/kg",即只能说"某溶质的质量摩尔浓度 m 为 40mol/kg",而不能写作"4m"。

3.3 关于数值表示法的说明

为了区别量本身和用特定单位表示的量的数值,尤其是在图表中用特定单位表示量的数值,可用示例。种方法之一表示(但第一种方法较好)tiblishing House. All rights reserved. http://www

单位名称	非标准符号	标准符号
分	M	min
秒	Sce	s
天	Day	\mathbf{d}
[小]时	hr, hs	h
年	y, yr	a
转每分	Rpm	r/min
星期	Wk	星期,周
月	Мо	月

表 6 常见非标准单位符号

- (1) 用量与单位的比值。如用"波长/nm"取代原来用的"波长 λ nm"或"波长 λ nm"或"波长 λ nm",用 "时间 t/s"取代原来用的"时间 t/s"或"时间 t(s)",这里如不写量符号 λ 和 t 也是不规范的。

3.4 应停止使用的非法定单位

按新标准规定,在科技论文中应停止使用的非法定单位大致包括:所有市制单位;除公斤、公里、公顷以外的"公"字头单位;英制单位;其它非法定单位(表7)。

废弃单位名称	废弃符号	与标准单位换算系数
微(米)	μ	1 μ=1 μ _m
千克力	kgf	$1_{kgf} = 9.80665N$
吨力	tf	$1_{tf} = 9.806 65_{kN}$
标准大气压	atm	$1_{atm} = 101.325_{kPa}$
工程大气压	at	$1_{at} = 9.806 65 \times 10^4 P_a$
毫米汞柱	mmHg	$1_{mmHg} = 133.322P_a$
毫米水柱	mmH2O	$1_{mmH2O} = 9.80665P_a$
转第分*	rpm	$1_{\rm rpm} = 1_{\rm r/min}$
卡	cal	$1_{cal} = 4.186 8 J$
大卡	Kcal	$1_{K cal} = 4.186 8_{K J}$
度(电能)		1 度 $=1_{kW}$
[马制]马力		1 马力=735.499W
高斯	Gs	$1_{\mathbf{G}\mathbf{s}} \approx 10^4 \mathbf{T}$
体积克分子浓度	M	$1_{\rm M} = 1_{\rm mol/L} = 1_{\rm Kmol/m}^3$
当量浓度	N	$1_{\mathbf{N}} = (1_{\mathbf{mol}/\mathbf{L}}) \times \mathbf{Z}(\mathbf{离子电荷数})$
埃**	?	$1? = 10_{-10} \mathbf{m}$

表7 常见废弃及换算系数

^{* &}quot;转每分"仍为法定单位"r/min"的名称。

^{**}暂时与法定单位可并存,但在科技论文中无特殊情况不得使用。

参 考 文 献

[1]GB3100~3102-93 量和单位.

PRELIMINARY DISCUSSION ON THE STANARDIZATION AND NORMALIZATION OF SCIENCE PAPERS | REGULARITIES OF QUANTITIES AND UNITS WITH THEIR SYMBOLS

Song Yuehua

(Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008)

Abstract

This paper briefly introduces the regularities of using quantities and units with their symbols in science papers that the national standard GB3100~3102 specifies Common irregular uses have also been listed.

Keywords Science paper, Quartity, Unit, Standardization.