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ABSTRACT
Themanufacturing sector is envisioned to be heavily influenced by artificial-intelligence-based technologies
with the extraordinary increases in computational power and data volumes. A central challenge in the
manufacturing sector lies in the requirement of a general framework to ensure satisfied diagnosis and
monitoring performances in different manufacturing applications. Here, we propose a general data-driven,
end-to-end framework for the monitoring of manufacturing systems.This framework, derived from
deep-learning techniques, evaluates fused sensory measurements to detect and even predict faults and
wearing conditions.This work exploits the predictive power of deep learning to automatically extract
hidden degradation features from noisy, time-course data. We have experimented the proposed framework
on 10 representative data sets drawn from a wide variety of manufacturing applications. Results reveal that
the framework performs well in examined benchmark applications and can be applied in diverse contexts,
indicating its potential use as a critical cornerstone in smart manufacturing.
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INTRODUCTION
In recent decades, it has been envisioned that sen-
sory data measured in manufacturing processes, in-
cluding vibration, pressure, temperature and energy
data, can be used as features for artificial-intelligence
(AI) algorithms [1–3]. AI algorithms have the po-
tential to localize faults or even predict faults before
they occur. In this way, run-to-failure maintenance
could be replaced by condition-based or predictive
maintenance that would be more effective in reduc-
ing unnecessary maintenance cost while guarantee-
ing the reliability of the machinery [4]. However,
the existing diagnosis and monitoring techniques
most focus on specific tasks; advanced approaches
should be developed to form a general frame-
work to produce satisfied performances after sim-
ple tuning of parameters in different manufacturing
applications.

Model-based and data-driven approaches are
two main techniques for diagnosis and monitor-
ing. Model-based approaches for fault monitoring
use mathematical models to provide insights into

the failure mechanism of mechanical systems [5,6].
Faults are diagnosed by monitoring discrepancies
between model predictions and the actual measure-
ments. With the increasing volume of data captured
from sensors during manufacturing processes, data-
driven approaches have been gaining considerable
attention [7,8].Data-driven approaches are featured
by building models without using the knowledge of
the failure mechanism, but can perform excellent
prediction results [9,10].Themeasured sensory sig-
nals have often been processed via feature extraction
[11] to represent the complete signalsmanually.The
extracted features are then used to train the system
using standard classification and regression meth-
ods to allow predictions to be made in a case-by-
case manner [12–14]. However, both model-based
and data-driven approaches are highly tuned to ap-
plications and could not be generalized to other ap-
plications without substantial efforts. Consequently,
there exists an urgent need for a method that can
simultaneously provide convenience for feature ex-
traction and offer universality for use in diverse
manufacturing applications.

C©TheAuthor(s) 2019. Published byOxfordUniversity Press on behalf of China Science Publishing&Media Ltd.This is anOpen Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original
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On the other hand, the Convolutional Neural
Network (CNN) [15], as an important type of
deep learning, obtained remarkable results in Im-
ageNet in 2012 [16] and has gradually become
a representative method that is used in medical-
diagnosis [17], image-recognition [18] and speech-
recognition [19] applications.When comparedwith
othermachine-learning algorithms, the advantage of
CNN is that it enables automatic feature extraction
from raw data and can thus eliminate any depen-
dence on prior knowledge [20], which brings inspi-
ration that CNN could provide unified, end-to-end
solutions to industrial problems.

This paper transforms manufacturing-
monitoring problems into a unified supervised-
learning framework. In particular, it proposes a
general end-to-end framework, i.e. a CNN that
can extract features automatically and solve the
problems accurately. Its outperformance is verified
via using 10 measurement data sets for different
manufacturing problems. Two open benchmark
data sets including Case Western Reserve Univer-
sity’s bearing data [21] and hydraulic-system data
[22], five experiment data sets performed in the
lab including airplane-girder simulation-damage
data [23], broken-tool data, the bearing data [23],
tool-wear data and gearbox data [24] were all
converted into classification problems. Moreover,
National Aeronautics and Space Administration
(NASA) tool-wearing data [25], battery data [26]
and the Center of Advanced Life Cycle Engineering
(CALCE) battery data [27] were converted into
regression problems. Higher than 95% accuracies
are achieved using a unified CNN framework for
manufacturing diagnosis problems, while small
monitoring errors are achieved for condition
monitoring problems, indicating the proposed
framework has a good application prospect in the
manufacturing field. In addition, the robustness of
the proposed framework is investigated by adding
different levels of additive noises to the raw signals
in diagnosis tasks.

RESULTS
Rolling bearing fault detection and classification are
used here as an illustrative example for the pro-
posed framework; other applications can be found
in the Supplementary Data. Rolling bearings are vi-
tal components in many types of rotating machin-
ery, ranging from simple electrical fans to complex
machine tools. More than half of machinery defects
are generally related to bearing faults. Typically, a
rolling bearing fault can lead to machine shutdown,
chain damage and even human casualties [28].
Bearing vibration fault signals are usually caused by

localized defects in three components: the rolling
elements, the outer race and the inner race. When
bearings degrade near the end of their lifetimes, in-
stances of deformation, cracking andburning among
these components may cause spindle deviation and
further serious damage to mechanical systems.

A bearing data set provided by the CaseWestern
Reserve University (CWRU) data center—which is
regarded as a benchmark for the bearing fault di-
agnosis problem—is used to validate the effective-
ness of our proposed framework. An experimen-
tal platform (illustrated in Fig. 1b [29]) was used
to conduct the signals to be used for defect detec-
tion on bearings with three different fault diameters
(7, 14 and 21 mils (1 mil = 0.001 inches)). Vi-
bration signals in different conditions from the in-
ner race, the outer race and the rolling elements for
all fault diameters were acquired using accelerome-
ters.The data set originally consisted of four rotating
speeds (1797, 1772, 1750 and 1730 rpm) and in to-
tal had 4 normal samples and 52 faulty samples. We
formulate this as a fault-diagnosis problem by clas-
sifying the fault types as representations of the
following three problems: (i) binary classification
(normal plus faulty conditions), (ii) four-way clas-
sification (normal plus three main faulty conditions
with different rotating speeds) and (iii) ten-way clas-
sification (normal plus three main faulty conditions
for each of the faulty diameters).

Each sample in the original data set contains
a different number of time-course measurements.
To increase the number of samples for training a
more accurate model, we reshape the samples here
to ensure that each sample has 6000 time-course
measurements consistently. In total, 1320 samples
are reconstructed from the original data set. Con-
sidering that the potential time dependency existed
among the reconstructed samples, we apply three
standard cross-validation methods (random sub-
sets, contiguous block and independent sequence
[30], which are depicted in Fig. 1e) to evaluate
the performance of the CNN method. For the
random-subsets method, the entire pre-processed
data set is constructed and then randomly divided
into 90% for training (1188 samples) and 10% for
test (132 samples). Figure 1a presents the t-SNE
visualization [31] of the binary-classification fea-
tures before the final classifier. Features for normal
and faulty signals are clearly separated into two
clusters indicating that a good classification can be
easily obtained by selecting a proper final classifier.
Figure 1c demonstrates that the classification
accuracy will be improved with the increasing of the
sample number. We also reveal that more samples
are required to obtain a promising result for a more
complex problem, such as the ten-way classification
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Figure 1. Classification results on the CWRU-bearing-test data set, visualized in a 2D feature space. (a) t-SNE visualization
of the binary-classification task (normal and fault). (b) The experiment platform in the CWRU-bearing data center. (c) Evolution
curves of the accuracy variations regarding the two-way (binary), four-way and ten-way classification tasks, where the sample
number is increased from 10 to 1200. (d) The curves of accuracies with the noise ratio vary from 0% to 500% for the three
classification models, where the accuracies all surpass 98%when the noise ratio is less than or equal to 100%. (e) Schematic
diagram of the three cross-validation methods (random subsets, contiguous block and independent sequence).

task that requires at least 400 samples for training a
model with 90% accuracy. Classification results and
evaluation metrics are summarized in Fig. 2, where
all three models achieve 100% (i.e. 132 of 132 test
samples) fault classification, and are consistent over
different randomization. For the contiguous-block
method, we divide the 1320 samples into a training
set and a test set according to time evolution, and
the proportion of the test set varied from 10%
to 50% of the entire record time of the original
sample; the accuracies are greater than 95% for all
experiments using the contiguous-block method.
For the independent-sequence method, to elim-
inate the confused dependency, we divide the
data set into a completely independent training
set and a test set, i.e. the training set and test set
correspond to different rotating speeds, where data
with rotating speeds of 1797, 1750 and 1730 rpm
are used for training and data with rotating speeds
of 1772 rpm are used for test. Similar results are
obtained using the independent-sequence method:
100% (340/340), 100% (340/340) and 98.82%
(336/400) for two-way classification, four-way clas-
sification and ten-way classification, respectively.
The experiment results of three cross-validation
methods are summarized in Table 1.

For further evaluation of the classification results,
we used the following three assessment metrics that
are commonly used in machine learning to evaluate
the classification performance with test data using

the random-subsetsmethod: (i) precision, (ii) recall
and (iii) accuracy, which are defined as follows:

precision = TP
TP + FP

× 100%, (1)

recall = TP
TP + FN

× 100%, (2)

accuracy = TP + TN
TP + TN + FP + FN

× 100%,

(3)

where the abbreviations TP, FP, FN and TN denote
the numbers of true positives, false positives, false
negatives and true negatives, respectively [32–34].
In our four-way and ten-way classification in random
subsets, we regarded the first class as the positive
class while others are negative classes for computing
these metrics. Across the three classification tests,
the defined assessmentmetrics all achieved results of
100%.

These results demonstrate that, without prior
knowledge (manufacturing parameters and failure
mechanism), measurement data as well as their la-
bels suffice to classify fault types accurately and
thereby pinpoint the location of faults, which makes
the fixing process efficient. In addition, the pro-
posed framework requires an average of 5 min for
training using a standard GTX 1080 GPU. With
the obtained trained model, the CNN performs
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Figure 2. Summary of the classification and regression results of different data sets. The data sets for classification problems include: CWRU-bearing
data; hydraulic-system data; tool-broken data; bearing data; airplane-girder data; blades-processing data; gearbox data. The data sets for the supervised-
regression problems include: NASA tool-wear data; NASA battery data; CALCE data. Specifically, for the multi-classification problem, we define the
first class as the positive class to calculate the precision, recall and accuracy according to Equations (1–3).

fault-prediction results within 0.05 s on the same
GPU, which is fast enough compared to the sam-
pling time of 0.5 s. Therefore, the proposed algo-
rithm can be implemented online to localize faults
in real time.

Generalizability of the proposed CNN
framework
A major feature of the proposed framework can
also be generalized for a wide range of other appli-
cations with high metrics, including greater accu-
racy, precision and recall (summarized in Fig. 2).

Here, we focus on two other representative applica-
tions using the proposed CNN framework (Fig. 3):

(i) Hydraulic-system-condition classification: with
its excellent performance in creatingmovement
or repetition [35,36], hydraulic-system-
based equipment has been widely used in
many applications, including manufacturing,
robotics and steel processing. However, the
fluid in a hydraulic system is highly pressur-
ized, extremely hot and even toxic, which
bring a high level of hazards to the workers
and the surrounding environment. Our CNN
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Table 1. Three cross-validation methods (random subsets, contiguous block, independent sequence) are employed to verify
the effectiveness of the model in CWRU data; 10%, 20%, 30%, 40% and 50% test schemes for the contiguous-block method
are used. X% means that the first (100–X)% of the total data set is used for training and the rest (X% of the data) is used for
test.

Contiguous block
Random Independent
subsets sequence 10% test 20% test 30% test 40% test 50% test

Two-way 100%
(132/132)

100%
(340/340)

100%
(132/132)

100%
(262/264)

100%
(396/396)

100%
(528/528)

100%
(660/660)

Four-way 100%
(132/132)

100%
(340/340)

100%
(132/132)

99.24%
(262/264)

97.22%
(385/396)

95.83%
(506/528)

96.21%
(635/660)

Ten-way 100%
(132/132)

98.82%
(336/340)

99.24%
(131/132)

98.86%
(261/264)

98.48%
(390/396)

96.21%
(508/528)

96.67%
(638/660)

fault-prediction algorithm for hydraulic systems
can generate hazard-warning signals to prevent
chemical burns to the workers, igniting nearby
materials and causing explosions in real time.
Hydraulic-system-condition monitoring is a
classification task. We chose CNN as the
base model to make predictions for different
conditions. Four condition classifications cor-
responding to different hazard types and levels
are conducted: (a) a three-way classification for

Figure 3. An illustration of a CNN model for a classification/regression task. This framework is a fully automated system. Raw data are generated
by the manufacturing system and processed, and they go through the CNN operations. The input raw data are passed through convolutional layers
(a), Max-pooling layers (b) and fully connected layers, as explained in the ‘Convolutional neural networks’ section. A flattening operation is employed
before the data are fed into the first fully connected layer. The output layer with 1 × N size resulting (N is an integer for classification categorizes or
equals 1 for regression) from the CNN model can be fed back to the manufacturing system for decision-making.

cooler condition, (b) a four-way classification
for valve condition, (c) a three-way classifica-
tion model for internal pump leakage and (d) a
four-way classification model for the hydraulic
accumulator. The algorithm achieved accu-
racies of 100% in both cooler-condition and
valve-condition classifications. Meanwhile, the
pump-leakage and hydraulic-accumulator clas-
sifications also achieved satisfactory accuracies,
at 98.19% and 99.10%, respectively.
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(ii) NASA lithium-ion battery data for State of
Health (SOH) estimation: lithium-ion batteries
(LiBs) are the auxiliary or main power sources
for many electronic systems, including medical
devices, aerospace systems, smartphones and
electric vehicles [37]. Estimating the SOH is
the key issue for evaluating the health status of
LiBs. A benchmark of industrial lithium-ion bat-
tery data obtained by NASA is used to estimate
battery SOH. CNN models are trained for this
data set and the smallest average RMSE (Equa-
tion (9) in the Supplementary Data) value of
0.0172mmis achievedwith respect to the small-
est error of 0.0264 mm that has been achieved
in previous related work [38]. Detailed de-
scriptions of the data structures and the estab-
lished models for these applications and sev-
eral further, diverse cases can be found in the
Supplementary Data.

Interpretability of the proposed CNN
framework
To validate the generality of the proposed CNN-
algorithm framework for fault prediction, it is key to
understand how CNN extracts meaningful features
from the manufacturing data. However, interpret-
ing deep neural networks remains a notoriously dif-
ficult task in the literature. Inspired by practical suc-
cessful studies in medicine [39] and biology [40],
we have developed amethod formanufacturing data
to visualize the general features, such as frequency,
phase or amplitude, extracted by a CNNmodel that
contribute to the fault prediction. Note that, in this
study,weonly focus on revealing the relationship be-
tween the convolutional layers (outputs before fully
connected layers) and the hidden features in the
manufacturing data.

The time-series signal, as the most common
form in manufacturing data, is constructed as the
sum of harmonically related sinusoids and ex-
pressed by a Fourier series form (Equation (13)),
based on [ISO 2041:2018] [41], with varying fre-
quencies Fn (associated with the fault frequen-
cies, noise frequencies and resonance frequencies
of mechanical components), phases φn ∈ [0, 2π],
amplitudes an (associated with damage levels on
mechanical components) and/or white noise u
(associated with environmental noises). Binary-
classification experiments (Equation (13)), with
class A signals (F A

n , φA
n , a B

n , u) and class B sig-
nals (F B

n , φB
n , a B

n , u), used to visualize the con-
tribution of the convolutional layers, are conducted.
Several effects with respect to different frequencies,
phases, amplitudes and noises are shown in Fig. 4.

Starting from the basic single-sinusoid function
(class A signal), the fault signals (class B signals)
have varying features corresponding to different fre-
quencies, phases or amplitudes from the left to the
right plot, respectively (Fig. 4a). The frequency do-
main results in the first plot reveal that the extracted
features (feature A and feature B) from convolu-
tional layers are with the same frequencies as the in-
put signals (class A and class B). This is a clue to
classify manufacturing data with different frequency
components due to wearing, breakage or deforma-
tion. The polar-coordinate result in the second plot
showsan interestingphenomenon that thephasedif-
ference between the two features extracted is around
π
2 , which is equal to the initial phase difference. The
third plot shows the CNN ability to distinguish the
amplitude difference of manufacturing data. Fault
signals (classB signals) havefive times the amplitude
of the normal signal (class A signal); results demon-
strate that the magnitudes of features after convo-
lutional layers for normal and fault signals present
the same proportional relationship as the initial in-
put signals. In Fig. 4b, with an additive Gaussian
noise compared to Fig. 4a, the results revealed that
the CNN can ignore the redundant noise and ex-
tract the valuable information (almost the same fea-
tures as Fig. 4a) for classification. Figure 4c shows a
more complex case that is a combinationof two sinu-
soid signals; features of fault signals after the convo-
lutional operations (classB signals) canbe also easily
distinguished in both the frequency domain and the
polar coordinate.

The final fault-prediction decision obtained by
the CNN is a collective impact of all the coefficients
discussed above with respect to signal frequencies,
phases, amplitudes and biases. In this study, we at-
tempt to give a plausible interpretation of the CNN
framework for manufacturing data, from simple to
complex cases. We reveal that CNN is successful for
capturing the features of manufacturing problems
due to the fact that the time-series signals (the most
common form of manufacturing data) are composi-
tional hierarchies.

Robustness of the proposed CNN
framework
To test the robustness of the proposed framework,
different levels of noise are added to samples for test.
For CWRU data set, additive noise, whose power
varies from 0% to 500% of the original signal, is
added; the prediction results for three classification
tasks are shown in Fig. 1d. In addition, the intensi-
ties of the additive noise in other diagnosis applica-
tions are listed in Table 2. The classification appli-
cations still obtain high accuracies when the power
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Figure 4. Interpretation of the CNN model for manufacturing data. Two classes (class A and class B) of time-series signals with different coefficient
settings (F n , φn , an , and u in Equation (13)) are formulated to represent the manufacturing data. The output features (feature A and feature B)
of the convolutional layers through Equations (4–7) are presented in the frequency domain (first and third columns) and the polar coordinate (second
column). (a) Single-sinusoid-function case. The class A signal is with fixed coefficients without noise (u = 0), where F A

1 = 300 Hz, φ A
1 = 0 and

a A1 = 1. Meanwhile, the coefficients of the class B signal are changed sequentially from the left plot to the right plot; the remaining two coefficients
remain the same as the class A signal, where in the first plot F B

1 = 600 Hz, in the second plot φ B
1 = π

2 and in the third plot a B1 = 5. (b) The same
coefficient settings as in (a), plus an additive Gaussian noise u where u ∼ N (0, 0.05) for all class A and B signals. (c) Sum of two sinusoid functions
case. Class A signal is with fixed coefficients without noise (u = 0), where F A

1 = 400 Hz, F A
2 = 600 Hz, φ A

1 = 0, φ A
2 = 0, a A1 = 1 and a A2 = 1.

Similar to (a), the coefficients of the class B signal are changed sequentially from the left plot to the right plot, where in the first plot F B
1 = 300 Hz

and F B
2 = 500 Hz, in the second plot φ B

1 = π

2 and φ B
2 = π

2 , and in the third plot a B1 = 5, a B2 = 5.

of the additive noises is less than a certain level,
which demonstrates the robustness of the proposed
CNN framework. Detailed operations and the cor-
responding results of other cases can be found in the
Supplementary Data.

DISCUSSION
In summary, we have demonstrated the effective-
ness of the proposed framework for usage in man-
ufacturing systems. Using a unified framework, we
have tested the proposed deep-learning algorithm
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Table 2. The range of added noise in each manufacturing application.

Data Noise range (%)

Rolling bearing fault classification [0–500]
Hydraulic system fault classification [0–1]
Tool broken classification [0–600]
Rolling bearing fault classification (own experiment) [0–200]
Airplane girder fault classification [0–20]
Aero engine blades processing classification [0–150]
Gearbox fault classification [0–500]

against a large number of critical diagnostic tasks
in a variety of applications. The proposed end-
to-end framework achieves the satisfactory accu-
racies reported for both the benchmark data sets
and our own data sets. The interpretation ability
of the fault prediction in the CNN model provides
valuable information for understanding why deep
learning can make a diagnosis decision on manu-
facturing data with different frequencies, amplitude
and phases. With the designed hardware implemen-
tation specified in the Supplementary Data, our pro-
posed algorithm framework could be easily applied
to data sets in other industry applications.

This framework entails some limitations, which
shall be listed as our future work. The limitations
include, first of all, the method has a few hyper-
parameters to tune, in order to achieve the best per-
formance; a cross-validation or optimization algo-
rithm could be used to select the hyper-parameters,
such as the kernel size, the number of strides and the
number of layers. Second, given the number of pa-
rameters in the constructedmodel, it requires a large
amount of data to train; this may not be feasible for
certain applications.

METHODS
Data sets
The data sets used in this manuscript are of the
following types: open-accessible data, competition
data, experimental data collected in our lab and
real production data provided by industrial partners
with permission. These data sets are composed of
sensory-current signals, force signals, vibration sig-
nals or acoustic-emission signals, or their combina-
tions, which are processed for the classification or re-
gression tasks.

Main idea
We convert practical problems into supervised clas-
sification and regression tasks, and solve them us-
ing a deep-learning technique. An end-to-end al-
gorithm is proposed to automatically discover the
hidden features needed for learning and prediction

without prior knowledge.Wedevelop a novel frame-
work based on CNN that performs fault diagnosis
and prediction and regression based on the raw data.
We constructed a fully automated closed-loop sys-
tem: a CNN model is fed with the sensory mea-
surements and automatically extracts the features
for classification or prediction. The results learned
by the CNN are then fed back to the machine for
decision-making, such as whether amaintenance ac-
tion is required.

Pre-processing
We normalize the measurements in each data set in
several ways as detailed in the Supplementary Data.
More specifically, for data sets with a small num-
ber of time-course measurements, such as CWRU-
bearing data set, we divided the total features to a
constant length in each sample without affecting the
periodicity of the data. For prediction tasks, such as
Case 8, the data set is transformed by a standardiza-
tion as specified in the Supplementary Data.

Parameter-tuning
We propose to fine-tune the CNN model accord-
ing to different classification and prediction objec-
tives, with a fixed Max-pooling size of 1 × 2. To
extract fewer features, stride sizes (i.e. the sliding-
window size) in CNN models are set to be, for ex-
ample, 500 or 1000 in a data sequence with tens of
thousands of dimensions, 100 or 200 in a data se-
quence with thousands of dimensions and adjusted
according to specific applications.The basic compo-
nents of the proposed CNNmodel are stacked with
input data, CNN layers and a fully connected layer
(including an output layer). For classification prob-
lems, the number of nodes N in the output layer is
equal to the number of fault types. For regression
problems, N is set to 1. For detailed model param-
eters of difference applications, refer to the Supple-
mentary Data.

Convolutional neural networks
In the proposed framework, CNNs consist of con-
volutional layers, Max-pooling layers, a flatten layer
and fully connected layers with a final N-way predic-
tion layer. In essence, theCNNuses rawdata I ∈ R

k

as inputs and outputs are classification or regression
results ŷ , i.e.

ŷ = act(FCN(Flatt(pool

(ReLU(conv(I)))))). (4)

The convolutional layer (conv) uses a number
of filters to discretely convolve with the input data.
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We define a weight vector H ∈ R
m, a data vector

I ∈ R
k computed from raw data and a constant

b of a bias. In a convolutional process, stride
is the distance between two sub-convolution
windows and we define it as parameter d.
We define the ith sub-vector of I , i.e. I (i ) =
[I 1+(i−1)d , I 2+(i−1)d , . . . , I m+(i−1)d ]T (i = 1,
2, . . . , k−m

d + 1). The idea of a 1D convolution is
to take the product between the vector H and the
sub-vector I (i ) of raw data, which reads as follows:

S(i) = I (i) ∗ H + b =
m∑
j=1

I j+(i−1)d H j + b,

(5)
where H j is the jth element of vector H, j = 1,2,
. . ., m. When conducting a convolutional process,
the number of filters (different filters have different
initial vectorH) are set to determine the depth of the
convolutional results. Since the process of convolu-
tionbetweeneachfilter anddata usesweight sharing,
the number of trainingparameters and complexity of
the model are greatly reduced. As a result, computa-
tional efficiency is improved.

An activation function named the Rectified
Linear Unit (ReLU) is followed by each convolu-
tional layer, which has the following form:

U i = ReLU(S(i)) �= max(0, S(i )). (6)

ReLU avoids gradient vanishing with respect to
other functions when the optimizer calculates the
gradient descent, while guaranteeing the sparsity in
convolutional networks, which significantly reduces
the training time compared with other activation
functions. The above operations lead to the results
ofU = [U 1, . . . ,U i , . . . ,U

k−m
d +1]T .

ThenMax pooling (pool) is chosen here:

pool(U i ) := p
max
�=1

U �+(i−1)e ,

∀i = 1, 2, . . . ,
k − m
d

+ 1, (7)

where p is the pooling size and e is the stride
size.

After convolution and pooling, the data are fed
into a flattened layer (Flatt); data are transformed
into a 1D structure in Flatt, denoted as F =
[F1, F2, . . . , Fq ]; q is the length of the data af-
ter the flattened layer to facilitate data processing in
the fully connected layers (FCNs). Then, the FCNs
combined with the ReLU activation function is uti-
lized to realize the dimensionality reduction, which
can be written as:

O = ReLU(W · F ), (8)

where W are the weights of the FCNs, O =
[O1, O2, . . . , ON] is the output of the FCNs and
‘·’ is the dot product.N is the number of faulty types
in the classification task andN= 1 in the regression
task.

The output-activation function (act) uses a soft-
max function for the classification problem or a sig-
moid function for the regression problem. For clas-
sification, the estimated result ŷ = act(O) can be
shown as:

ŷn = e On

�N
j=1e O j

, for n = 1, 2, . . . N. (9)

And, for regression, ŷ = act(O) is:

ŷ = 1
1 + e−O . (10)

In the training process, to minimize the differ-
ence between the predicted scores and the ground
labels in the training data, cross-entropy Lce and
least-squares Lls are chosen as the loss function for
the classification problem and the regression prob-
lem, respectively, which are defined in Equations
(11) and (12):

Lce = − 1
q

q∑
i=1

N∑
n=1

1{ y (i ) = n} log ŷ (i )

+ (1 − 1{ y (i ) = n}) log(1 − ŷ (i )),

(11)

Lls = 1
q

�
q
i=1

(
y (i ) − ŷ (i )

)2
, (12)

where y (i ) is the real output of the ith training mea-
surement and q the total number of training mea-
surements.The term 1{ y (i ) = n} in Equation (11)
is the logical expression that always returns either
0 or 1.

Once the loss function has been chosen, we
use standard optimizers such as Stochastic Gradient
Descent (SGD) [42] or Adam [43] for param-
eter training in back-propagation to update the
weights. The final CNNmodel weights refresh until
the predefined maximum iteration to yield a lower
loss.

Interpretation of the CNN model for
manufacturing data
In order to interpret how the CNN model learns
from manufacturing data, we consider a time-series
signalwith themost common formofmanufacturing
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data, which is modeled as the sum of harmonically
related sinusoidal functions:

v(i ) =
∑N

n=1
an sin

(
2π Fn x(i ) + φn

)

+u (i ) , for x(i ) ∈ [0, 0.4] and

i = 0, 1, . . . , 4095, (13)

where v(i ) is the magnitude of the ith measurements
and u is the Gaussian noise. The magnitudes of the
time-series signal v(i ) corresponds to four coeffi-
cients: the sinusoid frequencies Fn , the amplitudes
an , the phasesφn ∈ [0, 2π] and theGaussian noise
u , respectively.

To provide a clear interpretation of convolu-
tional layers, we conducted binary-classification
(class A and class B) experiments by chang-
ing one of the four coefficients, while keep-
ing the other three coefficients unchanged
(Fig. 4). For each binary-classification task,
we duplicated 100 times the class A signal
vA = [v(0)

A , . . . , v
(i )
A , . . . , v

(4095)
A ]T and class

B signal vB = [v(0)
B , . . . , v

(i )
B , . . . , v

(4095)
B ]T

as the samples for training and test. Randomly,
90% of samples are used for model training and
the other 10% for samples test; 100% accuracy is
obtained. Class A and B signals are processed to
the convolutional operation using Equations (4–7)
to obtain the features for visualization. Figure 4
analyses the extracted features in the frequency
domain or the polar coordinate corresponding to
different coefficients in Equation (13).

Cross-validation
The random-subsets approach is used for dividing
the training set and the test set in all the classification
tasks. For the data sets that have small sample sizes,
such as tool-broken data, blades-processing data and
gearboxdata,we randomly split thedata set into 80%
(training) and 20% (test). For other classification
tasks with large sample sizes, we randomly split the
data set into 90% for training and 10% for test. For
theCWRUdata (Case 1), bearing data (Case 4) and
gearbox data (Case 7), two other cross-validation
methods (i.e. contiguous block and independent se-
quence) are used to verify the effectiveness of the
framework. The contiguous-block method utilizes
the latter part of samples, which are reconstructed
fromone long time series as the test set and the other
part as the training set. For the contiguous-block
method, a 10%, 20%, 30%, 40%and50% test scheme
is used.The first (100–X)% of part of the time series
is used for training and the rest (X% of the data) is
used for the test.The independent-sequencemethod

divides the training set and the test set as indepen-
dent time series. For three prediction tasks, leave-
one-out cross-validation is used. For instance,NASA
battery data have three degradation batteries and we
randomly use two for training and the other one for
test each time, then three models in total are trained
to validate the three-battery data.

Robustness analysis
In order to verify the robustness of the proposed
method in each classification task, additive white
Gaussian noise with power P, which is proportional
to the power of the original sample P0 with a coef-
ficient S, is added to each sample. The noise power
P can be derived from the following expression:

P = S% · P0 = S% · 1
k

·
k∑

j = 1

(I j )2, (14)

where I is the raw data sample and k is the length of
the raw data. The random-subsets method of cross-
validation is used in each classification application
and the according accuracy variance with the power
of the noise is given in each application.

Data-availability statement
The bearing-fault and aircraft-girder data sets can be
downloaded at the Manufacturing Network Plat-
form that we built: http://mad-net.org:8765/. The
CRWU-bearing data set is available at http://www.
eecs.cwru.edu/laboratory/bearing.TheNASA tool-
wear data set can be downloaded fromhttps://ti.arc.
nasa.gov/tech/dash/groups/pcoe/prognostic-data-
repository/. NASA and CALCE battery data sets
are available at http://ti.arc.nasa.gov/project/
prognostic-data-repository and https://web.calce.
umd.edu/batteries/data.htm#, respectively. The
hydraulic-system data set is available at https://
archive.ics.uci.edu/ml/datasets/Condition+moni
toring+of+hydraulic+systems#. The experimental
data including gearbox, aero-engine-blade-
processing data sets and tool-broken data sets
are available from the corresponding author upon
request.
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