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performance of a LiFePO4 cathode for lithium鄄ion batteries
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Abstract:摇 The effects of carbonaceous materials on the physical and electrochemical performance of LiFePO4 / C hy鄄
brids are reviewed. The major role, advantages and disadvantages of carbon鄄based materials in LiFePO4 / carbon hybrids
are discussed. The introduction of an in situ grown carbon coating would be beneficial to limiting the LiFePO4 particle
growth and increasing the electric conductivity. The structure and precursors of the in situ grown carbons have a great in鄄
fluence in the rate performance of the hybrids, which can be related to an improved electron and ion transfer rate. Depo鄄
sition of LiFePO4 into a carbonaceous matrix such as a templated membrane can increase the contact area between the ac鄄
tive materials and the electrolyte, which favors a fast ion transport. The addition of conductive carbon and graphene
would only effectively increase the electrical conductivity. In order to achieve an excellent electrochemical performance
of LiFePO4, it is necessary to take advantage of and to combine these approaches to optimize electron and ion transfer
rates. Also, it is most important to minimize the carbon content in LiFePO4 / carbon hybrids to increase volumetric energy
density and tap density when practical applications in electric vehicles are targeted.
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1摇 Introduction
With the rapid development of the automobile in鄄

dustry and the sustainable growth of the global econo鄄
my, the outputs and ownerships of automotives all
over the world will be sharply increased every year.
Then the energy consumption and the environmental
pollution aroused by the internal combustion engine of
vehicles will become more and more serious. In this
dilemma, the development of electric vehicle (EV)
industry is considered to be an optimal solution to
these problems in the transport sector. As a result,
the power system supplied to drive EVs becomes one
of hot research areas. In the light of the outstanding
commercial success of the lithium鄄ion batteries in
portable devices, a great international interest has
been focused on applying the lithium鄄ion battery tech鄄
nology to EVs. As a paramount component of lithi鄄
um鄄ion cell, electrode materials, especially cathode

materials, are attracting vast attention from science
and industry.
摇 摇 In recent years, lithium iron phosphate
(LiFePO4) with an olivine structure has been selected
as one of the promising cathode materials for EVs and
has become a focal point of extensive investigation.
This cathode material possesses several particular fea鄄
tures, such as potential low cost, environmental com鄄
patibility, non鄄toxicity and exceptional thermal stabil鄄
ity even at a full charged state[1鄄2], which perfectly
satisfy the requirements to replace the commercial
LiCoO2 . However, the major drawbacks of this elec鄄
trode material lie in its intrinsically poor electric con鄄
ductivity ( about 10-9 ~ 10-10 S·cm-1) and low Li+
transport velocity (approximately 10-14 cm2·s-1) [2鄄3] .
For this reason, LiFePO4 can only deliver relatively
high specific capacity at an extremely small current
density, which is difficult to meet the practical de鄄
mands for the high rate and pulse鄄power applications.
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Therefore, recent studies of LiFePO4 鄄derived cathode
materials were primarily oriented towards how to effi鄄
ciently increase the electrical conductivity and facili鄄
tate the lithium鄄ion transfer. Only in this way, excel鄄
lent rate capability and cycling stability could be
achieved. Correspondingly, a large number of strate鄄
gies have been proposed, such as tailoring the particle
size (down to the submicron level, even nanometer),
optimizing the morphology, decorating the surface
with conductive agents, forming LiFePO4 / carbon hy鄄
brids[4鄄7] and doping the host framework with alien
ions on the Li鄄ion site (M1鄄site) or / and the Fe鄄ion
site ( M2鄄site ) [8鄄18] via various synthesis meth鄄
ods[19鄄24] . However, whatever strategy is taken, mak鄄
ing a composite with carbon material is regarded as at
least an effortful way and the most important tech鄄
nique to enhance the specific capacity, rate capability
and the cycling stability of LiFePO4 .
摇 摇 There have been some excellent reviews on the
physicochemical and electrochemical performance of
LiFePO4 cathodes in terms of synthesis procedures,
mechanisms of lithiation / delithiation, solid solution
behavior, doping and surface modifications targeting
at its practical applications[25鄄27] . Nevertheless, little
attention has been paid to the categories of the availa鄄
ble carbon materials, the composite manner with car鄄
bon materials and their effects on the performance.
Therefore, we tried to summarize this part of research
work, hoping that it would be of use to understand
comprehensively the important role of the carbon ma鄄
terials in the LiFePO4 / C composite and to distinguish
clearly the differences among the effects of various
composite manners on the performance of LiFePO4 .
In this article, the effects of various carbon materials
and composite manners on the physical and electro鄄
chemical performance of LiFePO4 / carbon鄄based hy鄄
brids are reviewed.

2摇 Decorating the surface with carbon
Carbon coating is one of the most common ap鄄

proaches to enhancing the electrochemical perform鄄
ance of LiFePO4 . The major role of the carbon coat鄄
ing is not only to dramatically increase inter鄄granular
electric conductivity, but also to efficiently hinder
particle growth, reduce grain size and even optimize
the microstructure. The increase in the electric con鄄
ductivity would be beneficial to raising the utilization
of the active materials at useful rates. The refined par鄄
ticle size would be favorable for shortening the diffu鄄
sion distance of lithium ions and thus the lithium鄄ion
diffusion velocity would be improved. Moreover, a
porous and loose microstructure would be advanta鄄

geous to achieving unhindered contact of electrolyte
with particle exterior[19] . All these are key factors to
determine the electrochemical performances of
LiFePO4 . LiFePO4 and LiFePO4 / C composite materi鄄
als were synthesized via an inorganic鄄based sol鄄gel
method, proposed by us, using FeCl2·4H2O, Li2CO3

and H3PO4 as the raw materials and citric acid as the
carbon source. It was found that the bulk electric con鄄
ductivity for LiFePO4 was about 5. 29伊10-8 S·cm-1 .
After carbon coating, the electric conductivity is dra鄄
matically increased. When the residual carbon was
about 2. 3% by mass fraction, the bulk electric con鄄
ductivity was increased by 3 orders of magnitude, ap鄄
proximately 4. 14伊10-5 S·cm-1 . And with the contin鄄
ued increase in the residual carbon content, the elec鄄
tric conductivity was increased up to about 2. 82伊10-4

and 1. 44 伊10-3 S·cm-1 for the remaining carbon of
4. 5 and 15% by mass fraction, respectively. The re鄄
sults are similar to those reported by Bewaly
et al. [30] . At the same time, the carbon coating also
led to evident reduction of the particle size because of
a steric hindrance effect. The particle size was re鄄
duced from 1滋m to 92nm, 71nm and 44nm upon the
residual carbon contents of 2. 3, 4. 5 and 15% by
mass fraction, respectively ( as shown in Fig. 1 ) .
Correspondingly, the rate capability and cyclic stabili鄄
ty were greatly enhanced after amorphous carbon
coating ( as shown in Fig. 2a and 2b) . At 0. 1 C,
LiFePO4 only delivered a capacity of about
18mAh·g-1 and the capacity fading rate was remark鄄
ably high. Meanwhile, LiFePO4 with a residual car鄄
bon of 4. 5% exhibited a high specific capacity of
about 162. 7mAh·g-1 and excellent cycling stability.
In addition, it is worth mentioning that the pre鄄exist鄄
ing carbon materials or organic precursors might act as
potential reducing agents and thus could efficiently
prevent the oxidation of Fe2+ to Fe3+ during the course
of sintering[28鄄29] . However, the disadvantages of the
carbon coating are that cost was inevitably up and its
tap density was greatly down, which would directly
lead to a low volumetric energy density[25] . In addi鄄
tion, a thick carbon coating would not lead to a fur鄄
ther improvement of the lithium鄄ion diffusion and
would be detrimental to electrode electrochemical per鄄
formance[25] . In our experiment, as shown in
Fig. 2c, it was found that LiFePO4 with a carbon
coating of 4. 5nm (a residual carbon of 15% by mass
fraction) showed a poor rate capability, compared
with that of a carbon coating of 3. 3 nm ( a residual
carbon of 4. 5% by mass fraction) . Therefore, it is
of paramount importance to optimize the amount of
carbon coated on the surface of LiFePO4 to meet prac鄄
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tical requirements for EV applications in terms of the
cost and the electrochemical performance. Now,
there is a research trend targeted at minimizing the

carbon content while maximizing conductivity for
practical applications.

Fig. 1摇 FESEM photographs of the LiFePO4 / C composites with different mass fraction of carbon
(a) 0% carbon; (b) 2. 3% carbon; (c) 4. 5% carbon; (d) 15% carbon

Fig. 2摇 (a) The relationship between specific capacity and discharge rate of the LiFePO4 / C composites; (b) The discharge specific capacity
retention vs. the cycle number for the LiFePO4; (c) The discharge specific capacity retention vs. the cycle number for the LiFePO4 / C composite

The carbon coating could be easily accomplished
by an in situ pyrolysis of organic precursors during
sintering. For the purpose of the in situ carbon coat鄄
ing, various carbonaceous sources were employed,
for example, sucrose[18,31鄄34], glucose[35鄄36],
starch[37] , citric acid[12,23,38], lauric acid[19], ascorbic
acid[39] , adipic acid[40鄄41], L鄄ascorbic acid[42鄄43], pitch

carbon[31], polypropylene[44], polypyrrole[45], poly鄄
vinyl alcohol[46], polyethylene glycol[47鄄48], polythio鄄
phene[49] and polyacene[50] . It is commonly believed
that the electric conductivity and electrochemical per鄄
formance are strongly influenced by the pyrolysis tem鄄
perature and the type of the carbon source selected. In
general, the sample sintered at higher temperatures
( i. e. the upper 973K) showed a higher electric con鄄
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ductivity than that heat鄄treated at lower temperatures,
as a result of the increase of the graphitization degree
(sp2 鄄coordinated) of the pyrolytic products[25] . How鄄
ever, the high sintering temperature can easily cause
an unwanted crystal growth, which would undermine
the electrochemical performance of the sample.
Therefore, it is necessary to optimize the sintering
temperature. In addition, graphitized carbons ( sp2 鄄
coordinated) are more conductive than disordered car鄄
bons (sp3 鄄coordinated) and organic precursors with a
carbon鄄string structure are more conductive than the
others. Therefore, the selection of carbonaceous pre鄄
cursors is very important, deserving an in鄄depth in鄄
vestigation for the synthesis of LiFePO4 / C composite
cathodes with a high electric conductivity and an ex鄄
cellent electrochemical performance.
摇 摇 Besides, carbon coating could be carried out by
mechanical mixing with pre鄄existing carbon powders
as well. The alternative carbon powders are mainly
carbon black, acetylene and graphite. However, re鄄
search revealed that the sample with the in situ carbon
coating had better electrochemical performance than in
the powder mixing method[51] . Liu et al. [16] com鄄
pared the electrochemical behaviors of LiFePO4 using
acetylene and a sugar as carbon sources by the carbo鄄
thermal reduction method. It was found that the sam鄄
ple using a sugar with a carbon string structure as a
carbonaceous additive exhibited better electrochemical
performance. At 0. 1C, the sample delivered a specif鄄

ic capacity of about 159. 3 mAh·g-1 and the capacity
fading was about 2. 2% after 30 cycles.
摇 摇 Lastly, the carbon coating structure is another
important factor to influence the electrochemical per鄄
formance of LiFePO4 . Chen et al. [7] synthesized
LiFePO4 / C composite with nanometer carbonweb by
solid鄄state reaction using guluronic acid as the carbon
source. It was found that the carbonweb on the sur鄄
face of LiFePO4 particles was formed by carbonization
of organic precursor. And the formation of the car鄄
bonweb was attributed to the improvement of the elec鄄
tron and lithium鄄ion transportation ( as shown in
Fig. 3a) . For this reason, the sample exhibited an ex鄄
cellent electrochemical performance. At 1 C and 3 C,
the sample delivered specific capacities of about
120mAh·g-1 and 100 mAh·g-1, respectively. Re鄄
cently, Oh et al. [31] reported a double carbon coating
of LiFePO4, which was prepared by
Fe(NO3) 3·9H2O, Li2CO3 and H3PO4 as the raw ma鄄
terials, and sucrose and pitch as the carbon sources.
The carbonization of the two carbon precursors
formed the double carbon coating ( as shown in
Fig. 3b), which was attributed to an increase in the
electric conductivity, as high as 8. 8伊10-2 S·cm-1 .
The Li / C鄄LiFePO4 battery exhibited a high charge鄄
discharge reversibility in the temperature range -20益
to 60 益, a high tap density and an exceptional rate
capability due to this unique morphology.

Fig. 3摇 (a) SEM photograph for LiFePO4 / C with carbon鄄web[7] ; (b) SEM photograph for LiFePO4 / C with the doule carbon coating[31]

With the highquality carbon coatings, the adding
amount of conductive carbon during the fabrication of
cathode can be greatly reduced [52鄄53] . An ideal carbon
coating needs to be uniform, with a thickness of
2鄄3 nm and a loading of 1鄄3% by mass fraction[52, 54] .

3摇 Addition of conductive carbon
Because of low electric conductivity and poor

contact between the active materials and the collector,

a certain amount of electro鄄conductive additives ( i. e.
super P, graphite, Ketjen black or carbon nanotube)
were added during the preparation of the cathode.
Sometimes, a current collector pre鄄treated by coating
carbon was employed. The major role of the conduc鄄
tive carbon is to greatly improve the electric conduc鄄
tivity and the electrochemical performance. For this
purpose, several conductive carbon particles, i. e.
acetylene carbon, Ketjen black, carbon nanotubes and
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graphite, are widely used[44,55鄄57] . In this case, the
adding amount of conductive carbon and the mixing
procedure significantly affect the electrochemical per鄄
formance of the fabricated cells. For an electrochemi鄄
cal battery to deliver energy at high rates, all part of
the Li+ and electron path between cathode and anode
active materials have to be capable of sustaining this
current density[5] . Therefore, in order to facilitate the
electron transfer from the active material and the cur鄄
rent collector, a lot of conductive carbon needed to be
added. With the adding amount of conductive car鄄
bon, the sample would deliver higher capacity and
show better rate capability. This way, the true rate
capability of electrode material could be achieved.
However, it is inappropriate and meaningless for real
electrochemical batteries because of the great reduc鄄
tion of energy density. In this respect, the uniform
distribution and the mixing procedure of conductive
carbon still need further investigations.

4 摇 LiFePO4 deposited in carbonaceous
matrix

Another useful and promising strategy to enhance
lithium鄄ion diffusion kinetics is to boost the ability of
lithium ions to travel across the interface between the
active materials and the electrolyte, which is crucial
for ultrafast diffusion. It can be achieved by creating
large interfacial contact between the active material
and the surrounding electrolyte[5,58] . The existence of
the carbonaceous matrix can significantly restrict the
growth of LiFePO4, which would be beneficial to
shortening the diffusion path for lithium ions. On the
other hand, the carbon network can link embedded
LiFePO4 nanoparticles together to improve the charge
transfer rate, and most importantly, the sufficient po鄄
rosity of carbon materials can increase the immersion
of electrolyte and thus ensure the facile diffusion of
lithium ions for high鄄rate applications[58] . At the
same time, the carbon skeleton can also release the
strain induced by phase transition during the course of
insertion and extraction of lithium ions. Therefore, it
is a very promising and appealing method for high en鄄
ergy and power densities although the higher content
of the versatile carbon framework was inevitably in鄄
creasing cost. These versatile carbon materials can be
roughly classified into two kinds, hard carbon and
soft carbon, i. e. carbon monolith[59], colloidal crys鄄
tal[60], triblock co鄄polymer[59, 61], citric acid, glu鄄
cose[58] and so on. However, the disadvantages of
this method are mainly the higher cost and the more
complicated synthesis route.

摇 摇 Sides et al. [62] synthesized LiFePO4 / C compos鄄
ites with high rate capability by a template method.
The template membrane used was commercially avail鄄
able polycarbonate filters. A sol鄄gel method devel鄄
oped by Croce et al. [63] was used to deposit the LiFe鄄
PO4 nanofibers within the pores of this template. Af鄄
ter sintered, the polycarbonate was pyrolyzed into
amorphous carbon with a low graphitization degree.
The LiFePO4 / C composite showed carbon particles
dispersed through this matrix and the LiFePO4 nanofi鄄
bers were coated with thin carbon films (as shown in
Fig. 4a) . This unique structure was suitable for high鄄
rate applications, even at extreme rates, because the
diffusion distance of lithium鄄ion was restricted to the
radius of nanofibers and the carbon matrix provided a
good electric conductivity. Thus, the sample exhibi鄄
ted an excellent rate capability. At 3 C, the sample
delivered a capacity of 165mAh·g-1 and at 65 C, the
electrodes still retained 36% of its theoretical capaci鄄
ty. Recently, Yang et al. [64] employed the porous
carbon as support to synthesize LiFePO4 / C composite
and investigated the effects of the disordered micro鄄
porous carbon AC鄄K5 and ordered mesoporous carbon
CMK鄄3 on the electrochemical performance of LiFe鄄
PO4 in detail. As shown in Fig. 4b, sphere鄄like LiFe鄄
PO4 nanoparticles uniformly dispersed on the carbon
support. The carbon support formed a framework to
bind LiFePO4 particles together and provided a hin鄄
drance for the growth and aggregation of LiFePO4,
which was beneficial to improving the transport rate
for the lithium鄄ions and the electrons. Therefore, the
composite with microporous carbon demonstrated a
high rate performance with a discharge capacity of
60mAh·g-1 at 50C. Zhao et al. [58] synthesized a no鄄
vel structure in which the nanospherical LiFePO4 was
lodged in a 3D porous carbon framework using glu鄄
cose as carbon source by solid鄄state reaction ( shown
in Fig. 4c) . The sample possessed a considerably en鄄
hanced electric conductivity of ~ 10-2 S·cm-1 and an
amazing high surface area of 200. 5m2·g-1 . Owing to
this unique structure, the sample exhibited
69. 5mAh·g-1 at 20C. Dimesso et al. [65] investigated
the performance of 3D carbon foam / LiFePO4 compos鄄
ite as a function of the annealing time under inert at鄄
mosphere using the commercial carbon foams. As
shown in Fig. 4d, crystalline LiFePO4 was synthesized
in the sponge architecture. The presence of the carbon
layer improved the electronic conduction and high in鄄
ter鄄particle surface led to a low polarization overpo鄄
tential. Therefore, the sample showed good electro鄄
chemical performance delivering a specific capacity of
105mAh·g-1 at C / 25 after sintering for 5 h.
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Fig. 4摇 (a) TEM image for LiFePO4 / C nanocomposite synthesized by template dissolution method[61] ; (b) HR鄄TEM image for LiFePO4 / C
composite[64] ; (c) TEM observation of nanometer LiFePO4 dispersed in the continuous porous carbon matrix[58] ;

(d) HREM image of carbon foam鄄LiFePO4 composite[65]

5摇 LiFePO4 / carbon nanotube composite
Carbon nanotubes (CNTs) possess unique struc鄄

tural, electronic, mechanical and optical properties,
thus they are actively used as components of devices
in a variety of different fields. The importance of
constructing CNT鄄nanoparticle heterostructures is that
these composite can take advantage of and combine
the unique physicochemical properties of both CNTs
and nanoparticles in one discrete structure[66] . Com鄄
pared with single wall CNTs, multi鄄walled CNTs are
cheap and their electric conductivity is less affected by
chemical functionalization. Therefore, multi鄄walled
CNTs are usually employed to form composites with
LiFePO4 . Now, the effects of multi鄄walled CNTs on
the electrochemical performances of LiFePO4 have
been extensively investigated. In this system, the
main role of CNTs is to increase the electrical conduc鄄
tivity among the particles and between particles and
the current collector. The composites were synthe鄄
sized by simple mixing[47,67鄄70], ball鄄mixing[71鄄72], hy鄄
drothermal synthesis[73] and in situ formation from
ferrocene[74] and bio鄄inspired method[75] .
摇 摇 Liu et al. [68] investigated the effects of CNTs on
the electrochemical performance of C鄄LiFePO4 / graph鄄

ite batteries. They compared the effects of the two
kinds of conductive carbon, CNTs and carbon black.
In contrast, the sample with CNTs as additive exhibi鄄
ted better electrochemical performance with a capacity
retention of 99. 2% after 50 cycles because of smaller
polarization voltage. Kavan et al. [76] investigated the
electrochemical activation of LiFePO4 / multi鄄walled
CNT composite. CNTs were firstly dispersed in water
under short sonication. Then LiFePO4 powder was
added and stirred overnight. This assembly offers
unique electrochemical activation of LiFePO4 called
“nanotube wiring冶 [77鄄78] . It was found that the func鄄
tionalization of CNTs by oxidation with HNO3 is cru鄄
cial for enhancing the electrochemical activity of the
composite. The results indicated that the charge / dis鄄
charge reversibility was nearly 100% and the cycling
stability was unperturbed. In contrast, the composite
with pristine nanotubes showed rather low activity,
which is even lower than that of the composite with
high specific surface area carbon black. Muraliganth
et al. [70] synthesized nanoscale networking of LiFe鄄
PO4 naonrods with CNTs via a microwave鄄solvother鄄
mal route. The acid鄄treated multi鄄walled CNT net鄄
working increased the electrical conductivity signifi鄄
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cantly without blocking lithium鄄ion transfer during cy鄄
cling. Therefore, the sample showed an increase in
the specific capacity with a significant reduction in the
polarization loss. Owing to good contact among parti鄄
cles and between particles and the current collector,
the sample exhibited excellent capacity retention dur鄄
ing cycling.
摇 摇 In addition, Doeff et al. [74] synthesized the
LiFePO4 / multi鄄walled CNT composite by sol鄄gel
method or combustion synthesis, in which the multi鄄
walled CNTs were synthesized using pyromellitic acid
and graphitization catalysts ( iron nitrate or ferrocene)
in the final calcination step of LiFePO4 . It was found
that the increase in the sp2 / sp3 ratio ( graphene con鄄
tent) resulted in an improvement of composite con鄄
ductivity and electrochemical performances.

6摇 LiFePO4 / graphene composite
Recently, owing to the high conductivity and

flexibility, graphene has shown great potential appli鄄
cations in lithium鄄ion batteries[79鄄80] . And it is consid鄄
ered to play a very important role in increasing electri鄄
cal conductivity and improving the rate capability and
cycling stability. However, the combination manner
of graphene and LiFePO4 seems an important factor to
realize the key function of graphene.
摇 摇 Ding et al. [81] investigated the effect of graphene
on the electrochemical performance of LiFePO4,
which was synthesized by co鄄precipitation. However,
no significant improvement in the electrochemical per鄄
formance was observed, compared with that by the
conventional carbon coating. In this case, LiFePO4

particles were loosely loaded on the graphene sheets
(as shown in Fig. 5a) . The non鄄ideal results were
possibly related to their composite manner. Later,
Zhou et al. [82] created a 3D network of graphene
wrapping on the LiFePO4 particles via a hydrothermal
method. The graphene sheets were bridged into a 3D
conductive network ( as shown in Fig. 5b), which
supported the maximum fulfillment of its function be鄄
cause electrons could be easily transferred between the
particles and graphene. The results indicated that this
kind of graphene modification could give rise to an
excellent rate performance.

7摇 Concluding Remarks
The types of the available carbonaceous precur鄄

sors, the different composite manners and their effects
on the physical properties and the electrochemical per鄄
formance of the LiFePO4 / C composite were summa鄄
rized. The advantages and disadvantages of each
composite manner were also discussed. The introduc鄄

tion of the carbon materials with a higher graphitiza鄄
tion degree and carbon string structure would be bene鄄
ficial to dramatically increasing the electric conductiv鄄
ity. For targeting to achieve higher energy and power
densities, the in situ carbon coating and the LiFePO4

embedding within carbonaceous matrix might be
promising strategies because of an increase in specific
area and intimate contact. However, they do not have
enough conductivity to act as conductive additive.
The adding of the conductive carbon and the compos鄄
ite with carbon nanotubes and graphene can just great鄄
ly improve the electric conductivity rather than refi鄄
ning particle size. Therefore, combining these two
ways, the electric conductivity and the electrochemi鄄
cal performance of LiFePO4 / C composites would be
dramatically enhanced. However, most importantly,
when the practical applications are targeted, strict
control of the carbon content on the basis of optimi鄄
zing the performance is worthy of further investiga鄄
tion.

Fig. 5 摇 ( a) Morphology of LiFePO4 / graphene composite[81] ; ( b)
TEM image of LiFePO4 / graphene composite[82] Inset: a high鄄resolu鄄
tion TEM image illustrates the 3鄄5 monolayet thickness of the graphene鄄
sheets on the surface of each LiFePO4 nanoparticle
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碳质材料对磷酸铁锂正极材料物理和
电化学性能的影响

康飞宇1,2,摇 马摇 俊1,2,摇 李宝华1

(1. 清华大学深圳研究生院 新材料研究所,广东 深圳 518055;
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摘摇 要:摇 通过综述碳质材料对磷酸铁锂(LiFePO4)电极材料物理和电化学性能的影响,评述了碳质材料在不同

LiFePO4 / C 复合电极材料中的作用及其优缺点。 指出:炭膜的原位包覆和模板炭的引入,限制了 LiFePO4晶粒的生

长,进而提高了电极材料的电导率;而导电炭和石墨烯的引入,则是直接提高了电极材料的电导率;有机结合这两

种碳质材料的复合方式将会极大改善电极材料的电化学性能。 但是,为了提高电极材料的体积能量密度及其振实

密度,应该最大限度地降低碳质材料在 LiFePO4 / C 复合电极材料中的含量。
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