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Abstract Space-filling designs are widely used in computer experiments. They are frequently evaluated by the

orthogonality and distance-related criteria. Rotating orthogonal arrays is an appealing approach to constructing

orthogonal space-filling designs. An important issue that has been rarely addressed in the literature is the

design selection for the initial orthogonal arrays. This paper studies the maximin L2-distance properties of

orthogonal designs generated by rotating two-level orthogonal arrays under three criteria. We provide theoretical

justifications for the rotation method from a maximin distance perspective and further propose to select initial

orthogonal arrays by the minimum G2-aberration criterion. New infinite families of orthogonal or 3-orthogonal

U-type designs, which also perform well under the maximin distance criterion, are obtained and tabulated.

Examples are presented to show the effectiveness of the constructed designs for building statistical surrogate

models.
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1 Introduction

Computer experiments are being increasingly applied in scientific and industrial research [6, 18]. One

of the primary goals of a computer experiment is to build a rapidly computable surrogate model to

approximate an expensive-to-run computer simulation code. The performance of a surrogate model relies

heavily on the space-filling properties of the experimental design. Latin hypercube designs (LHDs) are

widely used in computer experiments due to their maximum projection property for investigating each

factor [12]. U-type designs, which allow flexibility in the number of levels, have also been proposed as

extensions of LHDs in computer or physical experiments [2]. To improve the space-filling properties of

an LHD or a U-type design, many different types of space-filling measures have been proposed (see, for

examples, [9, 12,13,17,34]).
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Among various space-filling criteria, the maximin distance [8] and orthogonality [15] are two of the most

widely used during the last few decades. The maximin distance criterion aims to maximize the minimum

distance between any two runs of a design. Some advances on this topic can be found in [1, 25, 29, 33].

The orthogonality criterion optimizes designs by minimizing the correlations among factors. It can be

viewed as a useful stepping stone to space-filling designs [2]. There are fruitful construction methods

for orthogonal designs [12]. Among them, Steinberg and Lin [20] were the first to propose constructing

orthogonal LHDs by rotating groups of factors of orthogonal arrays. This method, which we call the

rotation method, is simple and exhibits great theoretical beauty. In recent years renewed interest have

been seen in this method (see, e.g., [11, 16, 23] for developments on orthogonal LHDs and [22, 24] for

generalizations to orthogonal U-type designs).

The two criteria, the orthogonality and maximin distance, have some connections [26, 27]; however,

they may not agree with each other in all the circumstances. In a pioneering work, Joseph and Hung [10]

proposed orthogonal-maximin LHDs which simultaneously optimize the two criteria. Such designs are

ideal for computer experiments. A statistical justification is given under the Gaussian process modeling

(also known as kriging). Suppose that the real function of the computer simulation code is y(x), where

x = (x1, . . . , xm). It is common to fit a universal kriging model with linear trends

Y (x) = β0 +
m∑

k=1

βkxk + Z(x) (1.1)

as the surrogate model to approximate y(x), where β0, . . . , βm are some unknown constants, Z(x) is a

stationary Gaussian process with the mean 0 and covariance function σ2R(·). A popular choice for the

correlation function R(·) is the exponential, i.e.,

R(xi − xj ; θ) = exp

(
− θ

m∑
k=1

|xik − xjk|p
)
, θ ∈ (0,∞), p ∈ (0, 2].

When p = 2, R(·) is called the Gaussian correlation function. The maximum entropy criterion is to find a

design that maximizes the determinant of the variance-covariance matrix of the responses [10,19]. Joseph

and Hung [10] showed that orthogonal-maximin designs are asymptotically optimal under the maximum

entropy criterion as θ → ∞. Thus, orthogonal-maximin designs are expected to perform well under the

kriging model (1.1).

Although orthogonal-maximin designs are appealing, their construction is challenging. The existing

algorithm construction in [10] can be computationally inefficient when the target design is large. There

is no guarantee that the resulting designs will truly be orthogonal and maximin. Hence, it is crucial to

develop efficient algebraic constructions. This paper aims to investigate whether the rotation method

can generate designs with both orthogonality and good distance properties. The designs generated by

rotating orthogonal arrays are naturally orthogonal. However, observations have indicated that the

choice of the initial orthogonal array can substantially affect the final design’s space-filling properties

(see Section 3 and later examples). Therefore, the orthogonal arrays in the rotation method need to be

carefully selected. To address this issue, we show some properties of orthogonal designs generated by

rotating two-level orthogonal arrays under three maximin distance measures. Based on these theoretical

results, we propose to use the minimum G2-aberration criterion [5] to select initial orthogonal arrays in

the rotation method. As a result, new infinite families of orthogonal or 3-orthogonal U-type designs,

which also perform well under the maximin distance criterion, are obtained and tabulated.

The main contribution of this work is threefold. First, the original rotation method proposed by [23] is

for LHDs. We generalize it to U-type designs incorporating LHDs as a special case. Second, the existing

literature on the rotation method focuses on orthogonal designs only [16, 20, 22, 23]. This paper studies

the properties of such orthogonal designs under the maximin distance criteria for the first time. We show

that the rotation of two-level orthogonal arrays yields orthogonal U-type designs with the best inter-site

L2-distance variance among all the U-type designs of the same size. This provides a new justification for

the rotation method from a maximin distance viewpoint. We also establish explicit connections between
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the final design’s distance measures and the initial orthogonal array’s properties for the rotation method.

Third, we propose a new construction method for space-filling designs by rotating minimumG2-aberration

orthogonal arrays and show its maximin distance optimality. The obtained designs outperform existing

designs under both the orthogonality and maximin criteria. They are also expected to perform well in

building Gaussian process models with linear trends in computer experiments.

The rest of this paper is organized as follows. In Section 2, we introduce some notation and background.

In Section 3, we provide motivating examples that compare the distance properties of several orthogonal

LHDs by the rotation method. In Section 4, we present the main results. We first generalize the rotation

method in [23] to orthogonal U-type designs, then obtain several theoretical properties of the rotation

method under three distance-related criteria, and finally construct several new families of orthogonal-

maximin designs by rotating minimum G2-aberration orthogonal arrays. In Section 5, we provide an

application to demonstrate the effectiveness of our designs in building statistical surrogate models. In

Section 6, we conclude the paper with some discussions. All the proofs are deferred to Appendix A.

2 Notation and maximin distance measures

An s-level design with n runs and m factors, denoted by (n, sm), is represented by an n × m matrix

taking values from s equally spaced numbers. Without loss of generality, suppose that the s levels are

{j − (s− 1)/2 | j = 0, . . . , s− 1}

such that their mean is zero. An (n, sm) design D is called a U-type design if each of the s levels appears

equally often in each column. In particular, a Latin hypercube design is a U-type design with s = n

and is denoted by LHD(n,m). A two-level orthogonal array of strength t > 2 and index λ, denoted by

OA(n,m, 2, t), is a U-type (n, 2m) design such that in each of its n × t subarrays every possible t-tuple

occurs exactly λ = n/2t times. It is noteworthy that the two levels of an OA(n,m, 2, t) are ±1/2 in this

paper, instead of ±1 or {0, 1} as per convention.

Let D = (xik) be a U-type (n, sm) design and ρjk be the sample correlation between the j-th and k-th

columns in D. By [15], the mean squared correlation of D is defined as

ρ2(D) =

(
m

2

)−1 m−1∑
j=1

m∑
k=j+1

ρ2jk.

A design D is called orthogonal if ρ2(D) = 0. If D is orthogonal and satisfies the constraint that the

sum of elementwise products of any three columns (no matter whether they are distinct or not) is zero,

then D is called 3-orthogonal. Orthogonality or 3-orthogonality is the favourable property for computer

experimental designs [12].

The L2-distance between the i-th row xi = (xi1, . . . , xim) and the j-th row xj = (xj1, . . . , xjm) in D

is defined as d(xi,xj) =
∑m

k=1(xik − xjk)
2. Here, the squared Euclidean distance is adopted to ensure

that d(xi,xj) is an integer and is additive, i.e.,

d(xi,xj) =

m∑
k=1

d(xik, xik).

We consider three distance-based criteria, all aiming at optimizing {d(xi,xj) | xi,xj ∈ D, 1 6 i < j 6 n},
i.e., the set of all

(
n
2

)
inter-site distances in D. The first one is employed to maximize

d(D) = min{d(xi,xj) | xi,xj ∈ D, 1 6 i < j 6 n},

which is the original maximin distance criterion proposed by [8]. For a U-type (n, sm) design, it is easy

to verify that the average of all the
(
n
2

)
distances is

d̄ =

(
n

2

)−1 ∑
16i<j6n

d(xi,xj) = nm(s2 − 1)/(6n− 6), (2.1)
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which implies a useful upper bound of the minimum distance [35].

Lemma 2.1. For a U-type (n, sm) design D = (xij),

d(D) 6 ⌊d̄⌋ = ⌊nm(s2 − 1)/(6n− 6)⌋,

where ⌊x⌋ denotes the largest integer not exceeding x.

In particular, for LHD(n,m) the upper bound becomes ⌊n(n+1)m/6⌋. Based on Lemma 2.1, we define

deff(D) = d(D)/⌊d̄⌋ as the distance efficiency for evaluating a U-type design D.

The minimum distance is a the-larger-the-better metric. We also consider two the-smaller-the-better

criteria. One is used to minimize

ϕq(D) =

(
n

2

)−1 ∑
16i<j6n

qd(xi,xj), q ∈ (0, 1).

This metric was used in [34] and can be viewed as an extension of the maximin distance criterion. The

other is used to minimize the distance variance, or equivalently,

V (D) =
∑

16i<j6n

(d(xi,xj)− d̄)2.

Minimizing V (D) is a natural criterion which is originated from the fact that a maximin distance design

tends to optimize the second moment of all the pairwise distances. This metric has also been justified

by [26,29].

3 Motivating examples

This section presents two motivating examples in which the maximin distance properties of several

orthogonal LHDs are compared.

Example 3.1. Steinberg and Lin [20] constructed an orthogonal LHD(16, 12). Denote this design by

E (see Table 1). Its original levels are divided by two in order to adapt our setting. Let E1, E2, E3

and E4 be four 16×8 subdesigns selecting columns indexed by {2, 3, 4, 6, 7, 8, 10, 12}, {1, 2, 3, 4, 5, 6, 7, 8},
{1, 2, 3, 4, 9, 10, 11, 12} and {5, 6, 7, 8, 9, 10, 11, 12} from E, respectively. Let E5 be the orthogonal

LHD(16, 8) in [20, Example 2] with the original levels divided by two. The design E5 shares the same first

4 columns as E, and its last 4 columns are shown in Table 1. All of the Ei (i = 1, . . . , 5) are orthogonal

LHD(16, 8)s, but have different space-filling properties. Table 2 compares the distance variances, ϕq

values (q = 0.99), minimum L2-distances and the corresponding distance efficiencies of the five designs.

Designs E2, E3, E4 and E5 have the same distance variance and are better than E1. Designs E2 and E3

have the same ϕq value. Design D5 is the best under all the criteria; furthermore, it is also 3-orthogonal.

All of these observations can be explained theoretically by Theorems 4.3 and 4.5 and (ii) and (iii) of

Corollary 4.11.

Example 3.2. Let E∗ be the LHD(16, 12) given in Table 3. This design is new, and one can check

that it is orthogonal. In fact, it is also an orthogonal LHD constructed by the rotation method (see

Example 4.9). Compared with Steinberg and Lin’s LHD E in Table 1, E∗ is more space-filling under the

maximin distance criterion. We have

V (E) = V (E∗) = 5.595× 105,

ϕq(E) = 5.322× 10−3 > ϕq(E
∗) = 4.969× 10−3 (q = 0.99),

d(E) = 425 < d(E∗) = 510

and

deff(E) = 0.781 < deff(E
∗) = 0.938.
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Table 1 Steinberg and Lin’s orthogonal LHD(16, 12) E (left) and orthogonal LHD(16, 8) E5 (right, only the last 4 columns

are presented, and the first 4 columns are the same as E), where the levels have been multiplied by two

1 2 3 4 5 6 7 8 9 10 11 12

−15 5 9 −3 7 11 −11 7 −9 3 −15 5

−13 1 1 13 −7 −11 11 −7 −1 −13 −13 1

−11 7 −7 −11 13 −1 −1 −13 9 −3 15 −5

−9 3 −15 5 −13 1 1 13 1 13 13 −1

−7 −11 11 −7 11 −7 7 11 5 15 −3 −9

−5 −15 3 9 −11 7 −7 −11 13 −1 −1 −13

−3 −9 −5 −15 1 13 13 −1 −5 −15 3 9

−1 −13 −13 1 −1 −13 −13 1 −13 1 1 13

1 13 13 −1 −9 3 −15 5 11 −7 7 11

3 9 5 15 9 −3 15 −5 3 9 5 15

5 15 −3 −9 −3 −9 −5 −15 −11 7 −7 −11

7 11 −11 7 3 9 5 15 −3 −9 −5 −15

9 −3 15 −5 −5 −15 3 9 −7 −11 11 −7

11 −7 7 11 5 15 −3 −9 −15 5 9 −3

13 −1 −1 −13 −15 5 9 −3 7 11 −11 7

15 −5 −9 3 15 −5 −9 3 15 −5 −9 3

5 6 7 8

−15 5 9 −3

−1 −13 −13 1

7 11 −11 7

9 −3 15 −5

11 −7 7 11

5 15 −3 −9

−3 −9 −5 −15

−13 1 1 13

13 −1 −1 −13

3 9 5 15

−5 −15 3 9

−11 7 −7 −11

−9 3 −15 5

−7 −11 11 −7

1 13 13 −1

15 −5 −9 3

Table 2 Comparison of five orthogonal LHD(16, 8)s

Design E1 E2 E3 E4 E5

10−5V (Ei) 15.168 8.704 8.704 8.704 8.704

102ϕq(Ei) 5.264 3.927 3.927 3.601 3.069

d(Ei) 76.000 170.000 170.000 255.000 340.000

deff(Ei) 0.210 0.470 0.470 0.704 0.939

Table 3 A new orthogonal LHD(16, 12) E∗, where the levels have been multiplied by two

1 2 3 4 5 6 7 8 9 10 11 12

−15 −5 −9 −3 −15 −5 −9 −3 −15 −5 −9 −3

−13 −1 −1 13 9 3 −15 −5 7 −11 11 7

−11 −7 7 −11 3 −9 −5 15 13 1 1 −13

−9 −3 15 5 −5 15 −3 9 −5 15 −3 9

−7 11 −11 −7 −3 9 5 −15 −1 13 13 1

−5 15 −3 9 5 −15 3 −9 9 3 −15 −5

−3 9 5 −15 15 5 9 3 3 −9 −5 15

−1 13 13 1 −9 −3 15 5 −11 −7 7 −11

1 −13 −13 −1 −1 13 13 1 5 −15 3 −9

3 −9 −5 15 7 −11 11 7 −13 −1 −1 13

5 −15 3 −9 13 1 1 −13 −7 11 −11 −7

7 −11 11 7 −11 −7 7 −11 15 5 9 3

9 3 −15 −5 −13 −1 −1 13 11 7 −7 11

11 7 −7 11 11 7 −7 11 −3 9 5 −15

13 1 1 −13 1 −13 −13 −1 −9 −3 15 5

15 5 9 3 −7 11 −11 −7 1 −13 −13 −1
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4 Main results

This section shows the main results of the maximin distance properties of the orthogonal designs via the

rotation. To the best of our knowledge, Sun and Tang’s method in [23] is the most powerful rotation

method, and it includes several previous methods as special cases. Thus, we focus on the method in [23]

for rotating two-level orthogonal arrays. Their original construction is for orthogonal LHDs. First, we

generalize it in order to make it adaptable for orthogonal U-type designs in Subsection 4.1.

4.1 The method of rotating orthogonal arrays

Anm×mmatrix R is called a rotation matrix of orderm if RTR is proportional to the identity matrix Im.

Generally, the rotation method first selects an n×m fractional factorial design, D, and then rotates its

factors by R to produce a new design E = DR.

For u, v = 2, 3, . . . , recursively define

R10 =

(
2 −1

1 2

)
, Ru0 =

(
22

(u−1) −1

1 22
(u−1)

)
⊗R(u−1)0,

Q1 =

(
1 0

0 −1

)
, Qu = Q1 ⊗Qu−1

and

Ru1 =

(
2Ru0 −Qu

Qu 2Ru0

)
, Ruv =

(
2Ru(v−1) −Qu+v−1

Qu+v−1 2Ru(v−1)

)
,

where ⊗ is the Kronecker product. Then Ruv is a rotation matrix of order 2u+v for u > 1 and v > 0.

Lemma 4.1. Suppose that D = (D1, . . . , Dk) is an OA(λ22
u

, k2u, 2, t) with t > 2 and u > 1 such

that each Dj is a full factorial of 2u factors and index λ. An orthogonal U-type (n, sm) design with

n = λ22
u+v, s = 22

u+v and m = k2u+v (v > 0) can be constructed by using the rotation matrix Ruv.

Furthermore, if t > 3, the constructed design is 3-orthogonal.

The proofs of Lemma 4.1 and later results are provided in Appendix A. When λ = 1, Lemma 4.1 yields

orthogonal LHDs, which corresponds to the two-level case of [23, Theorem 1].

The construction details for the orthogonal designs in Lemma 4.1 are now described. If v = 0, letting

R = Ik ⊗ Ru0, we see that E = DR is an orthogonal U-type (n, sm) design with n = λ22
u

, s = 22
u

and m = k2u. Specifically, the case of λ = 1 is exactly the rotation method in [20]. If v > 1, the

construction includes two steps. First, enlarge D iteratively to obtain an OA(n,m, 2, t), denoted by Dv,

with n = λ22
u+v and m = k2u+v, by doubling each Dj v times, i.e.,

Dv = (Dv
1 , . . . , D

v
k) and Dv

j =

(
1 1

1 −1

)
⊗D

(v−1)
j , (4.1)

where D0
i denotes Di. Then rotate Dv by R to obtain an orthogonal U-type (n, sm) design, as desired in

Lemma 4.1, where R = Ik ⊗Ruv.

4.2 Distance variance optimality

This and the next two subsections are devoted to investigating the properties of orthogonal designs via

Lemma 4.1 under the distance variance, ϕq(D) and d(D) criteria, respectively. We start by establishing

a novel decomposition and a lower bound of distance variance for a general U-type design.

Theorem 4.2. For a U-type (n, sm) design D = (xij),

V (D) = 72−1n2m(m− 1)(s2 − 1)2ρ2(D) + n
n∑

i=1

d2(xi, 0)− C(n,m, s), (4.2)
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where d(xi, 0) =
∑m

k=1 x
2
ik and

C(n,m, s) = [144(n− 1)]−1n2m[(m− 2)n+m+ 2](s2 − 1)2.

Furthermore,

V (D) > [72(n− 1)]−1n2m(n−m− 1)(s2 − 1)2 (4.3)

with the equality holding if and only if D is orthogonal and any row is L2-equidistant from the origin.

By the rotation method, the constructed orthogonal U-type (n, sm) design in Lemma 4.1 is E = DvR,

where Dv is an OA(n,m, 2, t) defined in (4.1) and R = Ik ⊗ Ruv. Clearly, any row x in Dv has d(x, 0)

= m/4. Because the rotation is isometric, all the rows in E are also equidistant from the origin. Hence,

by Theorem 4.2, the following statement holds.

Theorem 4.3. Let E be an orthogonal U-type (n, sm) design with n = λ22
u+v, s = 22

u+v and

m = k2u+v (v > 1) constructed by the rotation method in Lemma 4.1. Then E has the minimum

L2-distance variance and achieves the lower bound in (4.3) among all the U-type (n, sm) designs.

Theorem 4.3 indicates that all the designs generated by rotating two-level orthogonal arrays are optimal

under the distance variance criterion. It provides a new theoretical justification for the rotation method

from a distance-based viewpoint.

Example 4.4 (Example 3.1 continued). LetD = (D1, D2, D3) be the regular OA(16, 12, 2, 2) from [20].

Each Di is a full 24 factorial, where D1 has four independent columns a1, a2, a3 and a4, D2 has interaction

columns a1a2, a1a3, a1a2a3 and a1a4 and D3 has interaction columns a2a3, a2a4, a1a2a4 and a2a3a4.

The design E in Example 3.1 (see Table 1) is actually constructed by E = DR, where R = I3 ⊗ R20.

The designs E2, E3 and E4 are also rotations of orthogonal arrays, i.e., E2 = (D1R20, D2R20),

E3 = (D1R20, D3R20) and E4 = (D2R20, D3R20). Let D4 consist of four three-factor interaction columns.

The design E5 in Table 1 is constructed by E5 = (D1R20, D4R20). By Theorem 4.3 we know that each

Ei (i = 2, 3, 4, 5) is optimal with the minimum distance variance among all the LHD(16, 8)s. The design

E1 is inferior to E2, E3, E4 and E5 under the distance variance criterion. Theorem 4.3 also indicates

that E1 cannot be constructed by rotating any two-level orthogonal array.

4.3 Maximin ϕq-optimality

Subsection 4.2 shows that any orthogonal design produced by rotating a two-level orthogonal array is

optimal under the distance variance criterion. However, different initial orthogonal arrays of the same

size can be selected. To further distinguish them, we turn to the ϕq criterion.

Theorem 4.5. Suppose that D is an OA(λ22
u

, k2u, 2, t) with t > 2 satisfying the condition in

Lemma 4.1. Let E be the orthogonal U-type (n, sm) design with n = λ22
u+v, s = 22

u+v and m = k2u+v

(v = 0, 1, 2, . . .) constructed using D by the rotation method. We have

ϕq(E) = (n− 1)−1[(2−vn− 1)ϕq̃(D) + n(1− 2−v)(q)αm/2],

where q̃ = q2
vα and α = (s2 − 1)/3.

Theorem 4.5 implies that the initial orthogonal array D in the rotation method determines the ϕq(E)

values of all the orthogonal designs constructed by D. To acquire the best orthogonal design E, we need

to choose a D with the minimum ϕq̃(D) value.

Let D be an (n, 2m)-design and the corresponding full analysis of variance (ANOVA) model be

Y = X0α0 +X1α1 + · · ·+Xmαm + ϵ,

where Y is the vector of n responses, α0 is the intercept, X0 is an n×1 vector of 1’s, αj is the vector of all

the j-factor interactions, Xj is the n×
(
m
j

)
matrix given by the collection of products of j columns from 2D

and ϵ is the vector of random errors. Define Aj(D) = n−2XT
0 XjX

T
j X0, j = 0, . . . ,m. It is obvious that

A0(D) = 1. The generalized wordlength pattern of D is the vector (A1(D), A2(D), . . . , Am(D)) (see [28]).

The minimum G2-aberration criterion sequentially minimizes A1(D), A2(D), . . . , Am(D) (see [5]).
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The next lemma is a result similar to [7, Theorem 1]. It follows from [34, Theorem 2] under the case

of s = 2.

Lemma 4.6. Let D be an (n, 2m) design. Then

ϕq(D) = (n− 1)−1n

(
1 + q

2

)m m∑
i=0

(
1− q

1 + q

)i

Ai(D)− (n− 1)−1, (4.4)

where A0(D) = 1.

Lemma 4.6 shows that for two-level designs, ϕq can be linearly expressed by the generalized wordlength

pattern. Because [(1 − q)/(1 + q)]i is positive and decreases geometrically with i, minimizing ϕq tends

to agree with the minimum G2-aberration criterion for two-level designs. Combining Theorem 4.5 with

Lemma 4.6 shows that using minimum G2-aberration orthogonal arrays in the rotation method tends to

yield better orthogonal designs under the maximin criterion.

By choosing specific q values, we see that an exact equivalence can be established between the minimum

G2-aberration criterion and ϕq(D) in Lemma 4.6.

Corollary 4.7. Let D be an (n, 2m) design. If

n2M/(n2M + 2) 6 q < 1,

where

M =

(
m

⌊m/2⌋

)
,

then ϕq(D) is minimized if and only if D is a minimum G2-aberration design.

Theorem 4.5 and Corollary 4.7 together imply that for given v > 0, there always exists a δ > 0 such

that for 1−δ < q < 1, minimizing ϕq of the orthogonal U-type (n, sm) design with n = λ22
u+v, s = 22

u+v

and m = k2u+v is equivalent to finding a minimum G2-aberration orthogonal array D for the rotation

method.

Example 4.8 (Example 4.4 continued). Let Ei (i = 2, 3, 4, 5) be the orthogonal LHD(16, 8)s

in Example 4.4. Designs (D1, D2) and (D1, D3) have the same generalized wordlength pattern

(0, 0, 5, 5, 2, 2, 1, 0). By Theorem 4.5 and Lemma 4.6, E2 and E3 have the same ϕq value. The generalized

wordlength pattern of (D2, D3) is (0, 0, 4, 5, 4, 2, 0, 0), and thus (D2, D3) is a better choice than (D1, D2)

and (D1, D3) as initial orthogonal arrays for the rotation. The design (D1, D4) has the generalized

wordlength pattern (0, 0, 0, 14, 0, 0, 0, 1). It actually satisfies the condition in [3, Theorem 3], which

means that it has minimum G2-aberration. This explains why E5 yields the smallest ϕq value in

Table 2. Furthermore, (D1, D4) has strength three, and therefore the 3-orthogonality of E5 follows

from Lemma 4.1.

Using the rotation method in Lemma 4.1 for v = 1, we can also obtain four orthogonal LHD(32, 16)s,

denoted by E1
i (i = 2, 3, 4, 5) from the above OA(16, 8, 2, 2)s. By Theorem 4.5, the ϕq value of E1

i is

determined by the generalized wordlength pattern of the initial OA(16, 8, 2, 2). Taking q = 0.99, we have

ϕq(E
1
5) < ϕq(E

1
4) < ϕq(E

1
2) = ϕq(E

1
3).

Example 4.9 (Example 3.2 continued). The regular OA(16, 12, 2, 2) D = (D1, D2, D3) for generating

E has the generalized wordlength pattern (0, 0, 17, 38, 44, 52, 54, 33, 12, 4, 1, 0). Let D∗ be the nonregular

OA(16, 12, 2, 2) given in Table 4, which is actually constructed by using the method in [3, Theorem 3],

up to some permutations of columns. It can be verified that the subdesigns indexed by columns 1–4, 5–8

and 9–12 of D∗, respectively, are all the full factorials. The LHD E∗ is constructed by E∗ = D∗R, where

R = I3 ⊗ R20. The generalized wordlength pattern of D∗ is (0, 0, 16, 39, 48, 48, 48, 39, 16, 0, 0, 1) and D∗

has minimum G2-aberration by [3, Theorem 3]. This justifies that ϕq(E
∗) < ϕq(E) in Example 3.2.

Using Lemma 4.1 for v > 1, we can further obtain two orthogonal LHD(2v+4, 3 ·2v+2)s from D and D∗.

By Theorem 4.5, their ϕq values are completely determined by the generalized wordlength patterns of D

and D∗, respectively.
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Table 4 A nonregular OA(16, 12, 2, 2), where the levels have been multiplied by two

1 2 3 4 5 6 7 8 9 10 11 12

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 1 1 1 −1 −1 1 −1 1 1

−1 −1 1 −1 1 −1 −1 1 1 1 1 −1

−1 −1 1 1 −1 1 −1 1 −1 1 −1 1

−1 1 −1 −1 −1 1 1 −1 −1 1 1 1

−1 1 −1 1 1 −1 1 −1 1 1 −1 −1

−1 1 1 −1 1 1 1 1 1 −1 −1 1

−1 1 1 1 −1 −1 1 1 −1 −1 1 −1

1 −1 −1 −1 −1 1 1 1 1 −1 1 −1

1 −1 −1 1 1 −1 1 1 −1 −1 −1 1

1 −1 1 −1 1 1 1 −1 −1 1 −1 −1

1 −1 1 1 −1 −1 1 −1 1 1 1 1

1 1 −1 −1 −1 −1 −1 1 1 1 −1 1

1 1 −1 1 1 1 −1 1 −1 1 1 −1

1 1 1 −1 1 −1 −1 −1 −1 −1 1 1

1 1 1 1 −1 1 −1 −1 1 −1 −1 −1

4.4 Maximin distance optimality

The Hamming distance between two rows in a design is the number of positions where they differ. For

two-level designs, the L2-distance and the Hamming distance are equivalent. Using all the Hamming

distances of a design, Xu [30] introduced a criterion equivalent to the minimum G2-aberration criterion,

namely, the minimum moment aberration criterion. The idea of [30] offers some insights with respect to

finding good space-filling designs under the maximin L2-distance criterion by the rotation method.

Theorem 4.10. Suppose that D is an OA(λ22
u

, k2u, 2, t) with t > 2 satisfying the condition in

Lemma 4.1. Let E be the orthogonal U-type (n, sm) design with n = λ22
u+v, s = 22

u+v and m = k2u+v

(v = 0, 1, 2, . . .) constructed using D by the rotation method. We have

d(E) = (s2 − 1)2vd(D)/3

and

deff(E) > (n− 1)d(D)/(nk2u−1).

Theorem 4.10 shows that a two-level orthogonal array D with the larger Hamming distance in the

rotation method guarantees a better orthogonal design under the maximin L2-distance criterion. This

also agrees with the findings in the previous subsection. By the connection between the Hamming distance

distribution and the generalized wordlength pattern [30], a minimum G2-aberration design tends to be

a maximin Hamming distance design. Therefore, we propose to use minimum G2-aberration designs as

initial orthogonal arrays in the rotation method.

A design D is called mirror-symmetric if the reflection of D about the origin is itself. Applying

Theorem 4.10 to some special minimum G2-aberration orthogonal arrays obtains the following corollary.

Corollary 4.11. The following U-type (n, sm) designs or LHD(n,m)s, denoted by E, can be

constructed using orthogonal arrays D by the rotation method.

(i) If D is an OA(4λ, 4λ− 2, 2, 2) obtained by deleting one column of a saturated two-level orthogonal

array, then orthogonal U-type designs E with n = λ2v+2, s = 2v+2 and m = (2λ−1)2v+1 (v = 0, 1, 2, . . .)

can be constructed. Furthermore, d(E) = (2λ− 1)(s2 − 1)2v/3 and deff(E) > 1− 1/n → 1 as n → ∞.

(ii) If D is an OA(λ22
u

, λ22
u−1, 2, 3) satisfying the condition in Lemma 4.1, then orthogonal U-

type designs E with n = λ22
u+v, s = 22

u+v and m = λ22
u+v−1 (v = 0, 1, 2, . . .) can be constructed.

Furthermore,

(a) E is mirror-symmetric and 3-orthogonal;
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(b) d(E) = λ(s2−1)22
u+v−2/3, deff(E) > 1−1/n → 1 as n → ∞, and E is an exact maximin distance

design among all the mirror-symmetric U-type (n, sm) designs.

(iii) If D is the OA(16, 8, 2, 3) given by (D1, D4) in Example 4.8, then orthogonal LHD(n,m)s E with

n = 2v+4 and m = 2v+3 (v = 0, 1, 2, . . .) can be constructed. Furthermore, d(E) = (22v+8 − 1)2v+2/3 and

deff(E) > 1− 1/n = 1− 2−v−4 → 1 as n → ∞.

(iv) If D is the OA(16, 12, 2, 2) given in Table 4, then orthogonal LHD(n,m)s E with n = 2v+4

and m = 3 · 2v+2 (v = 0, 1, 2, . . .) can be constructed. Furthermore, d(E) = (22v+8 − 1)2v+1 and

deff(E) > 1− 1/n = 1− 2−v−4 → 1 as n → ∞.

Remark 4.12. (i) The orthogonal arrays D in (i)–(iv) of Corollary 4.11 all have minimum G2-

aberration by [3, Theorem 3].

(ii) The 3-orthogonal LHD E in Example 4.8 corresponds to the special case of Corollary 4.11(iii)

with v = 0. By [27], all the 3-orthogonal LHDs in Corollary 4.11(iii) are exact maximin distance designs

among all the mirror-symmetric LHD(2v+4, 2v+3)s for v = 0, 1, 2, . . . Orthogonal LHDs of the same sizes

as in Corollary 4.11(iii) can also be obtained by the method of [21] or by using an OA(4, 2, 2, 2), i.e., a

full factorial of 4 runs and 2 factors, as D in the rotation method. One can check that all of them are

3-orthogonal LHDs with the same L2-distance distributions.

(iii) The LHD(16, 12) E∗ in Example 4.9 corresponds to the special case of Corollary 4.11(iv) with

v = 0.

Corollary 4.11 constructs several infinite families of orthogonal or 3-orthogonal U-type designs which

also perform well under the maximin distance criterion. Table 5 shows some small-sized orthogonal U-

type (n, sm) designs with n = λs and λ 6 4 as rotated minimum G2-aberration designs. The cases of

λ = 1 correspond to LHDs. We see that all of these designs have large distance efficiencies.

In addition to Table 5, there are many other sources of minimum G2-aberration orthogonal arrays that

can be used as D in the rotation method. Butler presented over 80 minimum G2-aberration orthogonal

arrays with run sizes n equaling 16, 24, 32, 48, 64 and 96 (see [3, Table 1]). For example, when n = 48,

such designs are available with m equaling 22–26, 35–38, 40–42 and 44–47. All of these designs or their

subarrays with an even number of columns can be used in the rotation method. It is also worth noting that

the minimum G2-aberration criterion is a special case of the generalized minimum aberration criterion

proposed by [28]. More algebraic and algorithmic constructions of optimal or nearly-optimal large-sized

orthogonal arrays under the minimum G2-aberration criterion can be found in [31] and the references

therein.

Table 5 Some small-sized maximin distance orthogonal U-type (n, sm) designs with n = λs and λ 6 4

λ n s m Rotation matrix d(E) deff(E) 3-orthogonal Source

1 4 2 R10 5 0.833 Yes Corollary 4.11(i) or Corollary 4.11(ii)

1 8 4 R11 42 0.875 Yes Corollary 4.11(i) or Corollary 4.11(ii)

1 16 8 R12 340 0.939 Yes Corollary 4.11(iii)

1 16 12 R20 510 0.938 Corollary 4.11(iv)

1 32 16 R13 2,728 0.969 Yes Corollary 4.11(iii)

1 32 24 R21 4,092 0.969 Corollary 4.11(iv)

2 8 4 4 R10 10 0.909 Yes Corollary 4.11(ii)

2 8 4 6 R10 15 0.882 Corollary 4.11(i)

2 16 8 8 R11 84 0.944 Yes Corollary 4.11(ii)

2 16 8 12 R11 126 0.940 Corollary 4.11(i)

3 12 4 10 R10 25 0.926 Corollary 4.11(i)

3 24 8 20 R11 210 0.959 Corollary 4.11(i)

4 16 4 8 R10 20 0.952 Yes Corollary 4.11(ii)

4 16 4 14 R10 35 0.946 Corollary 4.11(i)

4 32 8 16 R11 168 0.971 Yes Corollary 4.11(ii)

4 32 8 28 R10 294 0.970 Corollary 4.11(i)



Wang Y P et al. Sci China Math July 2023 Vol. 66 No. 7 1603

Table 6 deff values (the larger the better) and ρ2 values (the smaller the better) of different LHD(n,m)s

(n,m) (8, 4) (16, 8) (16, 12) (32, 16) (32, 24)

SLHD 0.875 0.770 0.858 0.806 0.902

deff OM 0.875 0.729 0.803 0.715 0.807

Rotation 0.875 0.939 0.938 0.969 0.969

SLHD 0.000 0.538 1.222 0.365 0.568

102ρ2 OM 0.000 0.089 0.072 0.042 0.070

Rotation 0.000 0.000 0.000 0.000 0.000

Below we compare the obtained LHDs of sizes (n,m) equaling (8, 4), (16, 8), (16, 12), (32, 16) and

(32, 24) with designs of the same sizes generated by two standard methods under the orthogonality and

maximin L2-distance criteria. The first are maximin LHDs produced by the R package SLHD [1] and

the second are orthogonal-maximin (OM) LHDs achieved by the simulated annealing algorithm in [10].

Each algorithm was run 100 times with default settings, and the best design was selected. For the

orthogonal-maximin algorithm, the L2-distance was used, and the weight parameter was set to w = 0.5.

Table 6 shows the deff and ρ2 values of these designs, where “Rotation” denotes the design obtained by

the rotation and bold fonts represent the best results. We see that expect for the case of (n,m) = (8, 4)

where the three methods generate the same design, the designs obtained by the rotation are the best

under both deff and ρ2 measures.

5 Application and comparison

This section provides an application of the proposed design method to a computer experiment. We use a

24-dimensional function modified from [14] as the computer simulation code. The output y is determined

by

y(x) = y∗1(x1, . . . , x8) + y∗2(x9, . . . , x18) + y∗3(x19, . . . , x24), (5.1)

where x ∈ R24, y∗i = (yi −min yi)/(max yi −min yi), i = 1, 2, 3 and

y1(x1, . . . , x8) =
2πx3(x4 − x6)

ln(x2/x1)[1 + 2x3x7/(ln(x2/x1)x2
1x8) + x3/x5]

,

y2(x9, . . . , x18) = 0.036x0.758
9 x0.0035

10

(
x11

cos2 x12

)0.6

x0.006
13 x0.04

14

(
100x15

cosx12

)−0.3

(x16x17)
0.49 + x9x18,

y3(x19, . . . , x24) =
( 12x20

x19+x20
+ 0.74)x24(x23 + 9)

x24(x23 + 9) + x21
+

11.35x21

x24(x23 + 9) + x21
+

0.74x21x24(x23 + 9)

[x24(x23 + 9) + x21]x22
.

Here, y1(·) is the borehole function with 8 inputs, y2(·) is an aircraft wing function with 10 inputs,

and y3(·) is an output transformerless (OTL) circuit function with 6 inputs. These functions have been

frequently used by [6] and many others, and more details can be found in [14].

We evaluate the performance of the constructed LHD(32, 24) in Table 5 by the rotation method in

building statistical surrogate models. Four other types of space-filling designs with 32 rows and 24 columns

are compared: (i) the maximin LHD(32, 24) used in Table 6 generated by the R package SLHD [1]; (ii) the

orthogonal-maximin LHD(32, 24) used in Table 6 generated by the simulated annealing algorithm in [10];

(iii) a 32-level uniform design generated by the R package UniDOE [32]; (iv) a maximum projection

design generated by the R package MaxPro [9]. For each design, we first rescale its levels to [0, 1]. Next,

we conduct permutations on column labels and reflections within columns for a random subset of inputs.

Then we use the design points as inputs to generate the responses by evaluating the function (5.1).

Finally, we fit a universal kriging model with the linear trends and Gaussian correlation function, i.e.,

the model (1.1) with p = 2, to approximate the true function (5.1).
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Figure 1 Box plots of normalized RMSEs for the constructed LHD(32, 24) (Rotation), the maximin LHD(32, 24) (SLHD),

the orthogonal-maximin LHD(32, 24) (OM), the uniform design (UD) and the maximum projection design (MaxPro)

To judge predictor performance, a random LHD(N, 24) with N = 105 is used as the test data and the

normalized root mean squared error (RMSE), i.e.,

Normalized RMSE =

√√√√N−1
∑N

i=1(ŷ(xi)− y(xi))2

N−1
∑N

i=1(ȳ − y(xi))2
,

is used as the statistical performance measure. Here, ŷ(·) is the fitted kriging model, xi (i = 1, . . . , N)

are the test data points, and ȳ is the mean response of the data used to build the kriging model. Figure 1

shows the box plots of normalized RMSEs for each design over 500 random permutations and reflections.

We see that the LHD(32, 24) (Rotation) constructed by the proposed rotation method outperforms the

other designs. This meets our expectations as the constructed design is strictly orthogonal (ρ2 = 0) and

has the largest distance efficiency in Table 6. These properties, as shown by [10] in terms of the maximum

entropy criterion, can improve the performance of the kriging predictor (1.1).

6 Concluding remarks

The rotation method is powerful for constructing orthogonal designs. Based on the connections between

the initial two-level orthogonal arrays and their rotations, we show some maximin distance properties of

the orthogonal designs by the rotation method. To acquire better orthogonal and 3-orthogonal designs

under the maximin distance criterion, we propose to use minimum G2-aberration fractional factorial

designs as initial designs. Several new families of orthogonal-maximin designs are constructed, and an

application of the design is given. The obtained designs are particularly suitable for building statistical

surrogate models in computer experiments.

Note that the rotation method in [23] can also be applied to s-level orthogonal arrays where s > 2,

and it would be natural to ask whether the similar properties to those in the two-level case hold for the

s-level case. Unfortunately, under the distance variance criterion, numerical examples indicate that the

orthogonal design via rotating an s-level orthogonal array is not necessarily optimal. Under the ϕq and

maximin L2-distance criteria, it is also difficult to build direct links between the Hamming distance of

the initial orthogonal array and the L2-distance of the final design as in the two-level case. The issue of

how to choose appropriate orthogonal arrays for the s-level case will be an interesting topic for future

research.
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Appendix A Proofs

Proof of Lemma 4.1. If D has strength two, then the result follows by a similar argument of [23]. If D

has strength three, then it is well known that Dv, i.e., the v-time double of D defined in (4.1), is also a

strength three orthogonal array. Hence, it follows from [22, Theorem 1] that E = DvR is 3-orthogonal,

where R = Ik ⊗Ruv.

To prove Theorem 4.2, we need the following two lemmas which are due to [26].

Lemma A.1. For a U-type (n, sm) design D = (xik) and any i = 1, . . . , n,

n∑
j=1

d(xi,xj) = nm(s2 − 1)/12 + nd(xi, 0). (A.1)

Lemma A.2. For a U-type (n, sm) design D = (xik), we have

ρ2(D) = 36[n2m(m− 1)(s2 − 1)2]−1h(D) + 1, (A.2)

where

h(D) =

n∑
i=1

n∑
j=1

d2(xi,xj)− 2n−1
n∑

i=1

[ n∑
j=1

d(xi,xj)

]2
.

Proof of Theorem 4.2. Equation (4.2) follows from substituting (2.1) and (A.1) into (A.2) and some

algebra. It remains to show (4.3). By (4.2), V (D) is minimized if ρ2(D) and
∑n

i=1 d
2(xi, 0) are

simultaneously minimized. A lower bound of ρ2(D) is zero and is attained if and only if D is orthogonal.

A lower bound of
∑n

i=1 d
2(xi, 0) is also easy to obtain using the Cauchy-Schwarz inequality. The level

balance property implies that
n∑

i=1

d(xi, 0) = nm(s2 − 1)/12,

and hence,
n∑

i=1

d2(xi, 0) > n−1

( n∑
i=1

d(xi, 0)

)2

= nm2(s2 − 1)2/144

with the equality holding if and only if d(xi, 0) = m(s2 − 1)/12 for any 1 6 i 6 n. By the above two

bounds, the result is proved.

Proof of Theorem 4.5. Let D0 = (xij) be an (n0, 2
m0) design and D̃0 = (x̃i′j′) be the double of D.

Then D̃0 is a (2n0, 2
2m0) design and it is easy to verify that for 1 6 i′ < j′ 6 2n0,

d(x̃i′ , x̃j′) =


2d(xi′ ,xj′), 1 6 i′ < j′ 6 n0,

2d(xi′−n0 ,xj′−n0), n0 + 1 6 i′ < j′ 6 2n0,

m0, otherwise.

(A.3)

In the rotation method, the design Dv in (4.1) is the column juxtaposition of Dv
j (j = 1, . . . , k), and

each Dv
j is obtained by iteratively doubling each Dj v times. Therefore, from (A.3), we know that the

distance distributions of Dv, and correspondingly, E = DvR, are both completely determined by the

initial orthogonal array D = (xij), where R = Ik ⊗ Ruv. More specifically, among all the
(
n
2

)
distances

in Dv, (
n

2

)
− 2v

(
n/2v

2

)
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of them take the value m/2, and the remaining

2v
(
n/2v

2

)
of them repeat each of the values 2vd(xi,xj) (1 6 i < j 6 n/2v) 2v times.

Based on the above argument, we have

ϕq(D
v) =

(
n

2

)−1[
2v

∑
16i<j6n/2v

q2
vd(xi,xj) +

((
n

2

)
− 2v

(
n/2v

2

))
qm/2

]

=
n/2v − 1

n− 1
ϕq2v (D) +

n− n/2v

n− 1
qm/2.

Finally, the conclusion follows by RTR = αIm and

ϕq(E) = ϕq(D
vR) = ϕqα(D

v),

where α = (22
u+1+2v − 1)/3 = (s2 − 1)/3.

Proof of Corollary 4.7. For an (n, 2m) design D, let U be a subset of column indices 1, . . . ,m. The

J-characteristic of the corresponding columns in U is defined by JU =
∑n

i=1

∏
k∈U xik. Then by [5], Ai(D)

can be represented by using J-characteristics as

Ai(D) = n−1
∑
|U|=i

|JU |2.

This implies that

0 6 Ai(D) 6
(
m

i

)
and n2Ai(D) is a nonnegative integer for 1 6 i 6 m. Therefore, there exists a positive integer

M =

(
m

⌊m/2⌋

)
such that 0 6 Ai(D) 6 M for any 1 6 i 6 m.

For two (n, 2m) designs D and D′, suppose that D has less generalized aberration than D′, i.e., there

exists some 1 6 j 6 m such that Ai(D) = Ai(D
′) for 1 6 i 6 j − 1 and Aj(D) < Aj(D

′). We then have

1 6 n2Aj(D
′)− n2Aj(D) 6 n2M

and

ϕq(D
′)− ϕq(D) = (n− 1)−1n

(
1 + q

2

)m m∑
i=j

(
1− q

1 + q

)i

(Ai(D
′)−Ai(D))

= [n(n− 1)]−1

(
1− q

2

)m m∑
i=j

(
1 + q

1− q

)m−i

(n2Ai(D
′)− n2Ai(D)).

The condition n2M/(n2M + 2) 6 q < 1 is equivalent to (1 + q)/(1− q) > n2M + 1. Therefore,

m∑
i=j

(
1 + q

1− q

)m−i

(n2Ai(D
′)− n2Ai(D))

>
(
1 + q

1− q

)m−j

−
m∑

i=j+1

(
1 + q

1− q

)m−i

n2M

>
(
1 + q

1− q

)m−j

−
m∑

i=j+1

(
1 + q

1− q

)m−i(
1 + q

1− q
− 1

)
= 1,

which implies ϕq(D
′)−ϕq(D) > 0. Conversely, it is also easy to verify that if (1+q)/(1−q) > n2M+1, then

ϕq(D
′)− ϕq(D) > 0 implies that D has less generalized aberration than D′. The conclusion follows.
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Proof of Theorem 4.10. Let D = (xij). From the proof of Theorem 4.5 we know that among all the(
n
2

)
distances in E, (

n

2

)
− 2v

(
n/2v

2

)
of them take the value m(s2 − 1)/6, and the remaining 2v

(
n/2v

2

)
of them repeat each of the values

2v(s2 − 1)d(xi,xj)/3 (1 6 i < j 6 n/2v) 2v times. The result then follows from Lemma 2.1 and the fact

that for a two-level orthogonal array of strength two, d(xi,xj) 6 m/2v+1 (1 6 i < j 6 n/2v).

To prove Corollary 4.11, we need the following two lemmas. Lemma A.3 is [4, Theorem 3] and

Lemma A.4 is [27, Theorem 1].

Lemma A.3. Foldover designs are the only (regular or nonregular) two-level factorial designs of

strength three or more with n/3 6 m 6 n/2 factors.

Lemma A.4. Let D = (XT,−XT)T be a mirror-symmetric U-type (n, sm) design with n = 2m.

(i) If D is orthogonal, then D has the maximin L2-distance among all the mirror-symmetric U-type

(n, sm) designs.

(ii) If D has the maximin L2-distance with d2(D) = (s2 − 1)m/6, then D is orthogonal.

Proof of Corollary 4.11. (i) It is well known that a saturated two-level orthogonal array, say,

OA(4λ, 4λ − 1, 2, 2), is Hamming equidistant with the distance 2λ. Because D is obtained by deleting

one column of an OA(4λ, 4λ − 1, 2, 2), we must have d(D) = 2λ − 1. The result then follows from

Theorem 4.10.

(ii) Because D has strength three, by Lemma A.3, D must be mirror-symmetric. This also means that

d(D) = λ22
u−2 by Lemma A.4. Part (i) then follows from Lemma 4.1. Part (ii) follows from Lemma A.4

and Theorem 4.10.

(iii) The result follows directly from (i) or (ii).

(iv) The result follows from d(D) = 6, Theorem 4.10 and the fact that d̄ (referring to (2.1)) is an

integer for E.
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