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   Abstract—The  existing  graph  convolution  methods  usually
suffer  high  computational  burdens,  large  memory requirements,
and  intractable  batch-processing.  In  this  paper,  we  propose  a
high-efficient  variational  gridded  graph  convolution  network
(VG-GCN)  to  encode  non-regular  graph  data,  which  overcomes
all  these  aforementioned  problems.  To  capture  graph  topology
structures  efficiently,  in  the  proposed  framework,  we  propose  a
hierarchically-coarsened  random  walk  (hcr-walk)  by  taking
advantage  of  the  classic  random  walk  and  node/edge
encapsulation.  The  hcr-walk  greatly  mitigates  the  problem  of
exponentially explosive sampling times which occur in the classic
version,  while  preserving  graph  structures  well.  To  efficiently
encode local hcr-walk around one reference node, we project hcr-
walk  into  an  ordered  space  to  form image-like  grid  data,  which
favors  those  conventional  convolution  networks.  Instead  of  the
direct  2-D  convolution  filtering,  a  variational  convolution  block
(VCB)  is  designed  to  model  the  distribution  of  the  random-
sampling  hcr-walk  inspired  by  the  well-formulated  variational
inference.  We  experimentally  validate  the  efficiency  and
effectiveness  of  our  proposed  VG-GCN,  which  has  high
computation  speed,  and  the  comparable  or  even  better
performance when compared with baseline GCNs.
    Index Terms—Graph  coarsening,  gridding,  node  classification,
random walk, variational convolution.
  

I.  Introduction

IN recent  years,  convolutional  neural  networks  (CNNs)  [1]
have  achieved  great  success  in  a  variety  of  machine

learning  tasks  such  as  object  detection  [2],  [3],  machine
translation  [4],  and  speech  recognition  [5].  Basically,  CNNs
aim  to  explore  the  local  correlation  through  neighborhood
convolution, and are rather sophisticated to encode Euclidean
structure data w.r.t. shape-gridded images and videos. In real-
world  applications,  however,  there  is  a  large  amount  of  non-
Euclidean  structure  data  such  as  social  networks  [6],  citation

networks  [7],  knowledge  graphs  [8],  protein-protein
interaction  [9],  and  time  series  system  [10]–[14],  which  are
usual non-grid data and cannot be habitually encoded with the
conventional convolution.

As graphs  are  natural  and frequently-used to  describe  non-
grid  data,  researchers  have  recently  attempted  to  introduce
convolution  filtering  into  graph  modeling,  which  is  called
graph  convolution  or  graph  convolution  network  (GCN).
Generally,  they  fall  into  two  categories:  spectral  based
approaches [15]–[22] and spatial based approaches [23]–[26].

O(N3) O(Ke)

K = 1 λmax = 2

Spectral  based  approaches  employ  the  recent  emerging
spectral graph theory to filter signals in the frequency domain
of graph topology. Bruna et al. [15] proposed the first spectral
convolution  neural  network  (Spectral  CNN),  which  defines
the  filter  as  a  set  of  learnable  parameters  to  process  graph
signals. Chebyshev Spectral CNN (ChebNet) [16] defines the
Chebyshev  polynomial  of  eigenvector  diagonal  as  the
convolutional  filter,  which  avoids  the  computation  of  the
graph  Fourier  basis,  reducing  the  computation  complexity
from  to  (where N is  the  number  of  nodes, e is
the number of edges, and K is the number of engine vectors).
Kipf and Welling [17]  proposed  the  most  commonly  used
GCN,  which  is  essentially  a  first-order  approximation  of
ChebNet  assuming  and  the  max-eigenvalue .
Wu et  al.  [22]  proposes  a  disordered  graph  convolutional
neural  network  (DGCNN)  based  on  the  Gaussian  Mixture
Model,  which  extends  CNN by  adding  a  preprocessing  layer
called  disordered  graph  convolutional  layer  (DGCL).  DGCL
uses a mixture of Gaussian functions to achieve the mapping
between the convolution kernel and nearby nodes in the graph.
Besides,  some  other  GCN  variants  have  also  been  proposed,
including  Hessian  GCN  (HesGCN)  [19]  and  Hypergraph  p-
Laplacian  GCN  (HpLapGCN)  [20].  Specifically,  HesGCN
and  HpLapGCN  belong  to  the  first-order  variant  of  GCN,
while TGCN [21] is the second-order approximation of GCN.

These  spectral  based  methods  above are  well-supported  by
the strong theory of graph signals, but they usually suffer high
computational  burdens  because  of  the  eigenvalue  decompo-
sition  on  graph  topology.  To  mitigate  this  problem,  the  fast
approximation  algorithm  [27]–[29]  defines  convolution
filtering  as  a  recursive  calculation  on  graph  topology,  which
actually may belong to the category of spatial convolution.

Spatial  based  approaches  often  use  explicitly  spatial  edge-
connection relations to aggregate those nodes locally adjacent
to one reference node. The local aggregation with mean/sum/
max  operation  on  neighbor  nodes  cannot  yet  satisfy  the
Weisfeiler-Lehman  (WL)  test  [30],  where  non-isomorphism
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graph structures need different filtering responses. The critical
reason  is  that  graph  topology  structures  are  degraded  to
certain-degree  confusion  after  aggregation,  even  though  the
recent graph attention networks (GAT) [31] attempts to adap-
tively/discriminatively  aggregate  local  neighbor  nodes  with
different  weights  learnt  by  the  attention  mechanism  between
one  central  node  and  its  neighbor  nodes.  Moreover,  spatial
based GCNs usually need to optimize the entire graph during
training  due  to  the  intractability  of  batch-processing,  which
will  result  in  high-memory  requirements  for  large-scale
graphs  and  thus  cannot  run  on  plain  platforms.  This  means
that,  when graph structures  change with newly-added/deleted
nodes  or  links,  the  GCN  models  should  be  well-restarted  or
even  re-trained  for  new  structures.  In  addition,  the  time
complexity  of  spatial  based  GCNs  will  be  exponentially
increased  with  the  receptive  field  size  (w.r.t.  the  hop  step l),
i.e.,  in  each  convolution  layer,  where m denotes
average  degree  of  nodes,  and d is  the  dimension  of  input
signal.

O(Nml)

m≫ 2

m̃
m̃
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In  this  paper,  we  propose  a  high-efficient  variational
gridded  graph  convolution  network  (VG-GCN)  with  high-
computation efficiency, low-memory cost, easy batch-process,
and  comparable  or  even  better  performance  when  compared
with  the  baseline  GCNs.  To  efficiently  capture  local
structures, we introduce the random sampling strategy through
random walks, which can well preserve graph topology under
randomly sampling sufficient walks [32], [33]. As the quantity
of  walks  has  the  exponentially-explosive  increase  with  the
walk  step,  i.e., ,  the  burden  of  sampling  sufficient
walks  tends  to  overwhelm the  entire  algorithm especially  for
the larger node degree .  Instead of the original random
walk,  specifically,  we  propose  a  hierarchically-coarsened
random  walk  (hcr-walk)  to  reduce  sampling  times.  The
strategy  of  hcr-walk  can  efficiently  reduce  traversal  edges
through  random  combinations  (to  form  hyper-edge)  of
connection  edges  during  walking.  As  a  result,  the  hcr-walk
balances  the  advantages  of  random  walk  as  well  as  node
aggregation.  Under  the  fixed  hyper-edge  number ,  the  hcr-
walk  will  fall  into  a  deep-first  traversal  on -tree,  whose
height  may  be  limited  in  the  radius  of  graph  to  cover  the
global receptive field. In view of the limited height, as well as
the  small  value,  a  small  amount  of  sampling  times  could
well preserve most information of topology structures as well
as node signals.

To  efficiently  encode  the  local  hcr-walk  around  each
reference node, we project the hcr-walk onto an ordered space
to form image-like grid-shape data, which better favors those
conventional  convolution  networks.  Thus,  a  2-D  convolution
filtering can be performed in the normalized hcr-walk space to
encode  the  correlation  of  within-walk  adjacencies  and  cross
adjacent  walks.  To  characterize  the  uncertainty  of  latent
feature  representation,  we  design  a  2-D  variational  convolu-
tion block (VCB) inspired by the recent variational inference,
rather  than  directly  adopting  2-D  convolution  filtering.  The
benefit  of  variational  convolution  is  that  the  probability
distribution of random sampled walks could be well modeled

and  the  performance  could  be  further  boosted.  The  proposed
hcr-walk can be framed in an end-to-end neural network with
high running speed even on large-scale graphs.

Our contributions are three-fold:
1)  We  propose  the  hcr-walk  to  describe  local  topology

structures  of  graphs,  which  can  efficiently  mitigate  the
problem of exponentially-explosive sampling times occurring
in the original random walk.

2)  We  project  the  hcr-walk  onto  the  grid-shape  space  and
then  introduce  2-D  variational  convolution  to  describe  the
uncertainty  of  latent  features,  which  makes  the  convolution
operation  on  graphs  more  efficient  and  flexible,  just  as  the
standard  convolution  on  images,  and  well  support  batch-
processing.

3) We experimentally validate the efficiency and effective-
ness  of  our  proposed  VG-GCN,  which  has  a  high-efficient
computation  speed,  and  comparable  or  even  better  perfor-
mance when compared with those baseline GCNs.  

II.  Related Work

In this section, we will introduce previous literatures which
are  related  to  our  work.  Generally,  they  can  be  divided  into
three  parts:  graph  convolutional  neural  networks,  random
walk, and variational inference.  

A.  Graph Convolutional Neural Networks
With  the  rapid  development  of  deep  learning,  more  and

more  graph  convolutional  neural  network  models  [34]–[37]
are  proposed  to  deal  with  the  irregular  data  structure  of
graphs. Compared with regular convolutional neural networks
on  structured  data,  this  is  a  challenge  since  each  node’s
neighborhood  size  varies  in  graphs,  while  the  regular
convolutional operation requires fixed local neighborhood. To
address this problem, the graph convolutional neural networks
fall  into  two  categories,  spectral-based  convolution  and
spatial-based  convolution.  Spectral-based  filtering  method
was  first  proposed  by  Bruna et  al. [15].  It  defines  the  filter
operators in spectral domain, and then implements a series of
convolution operations through the Laplace decomposition of
graphs.  Because  the  spectrum  filter  includes  the  process  of
matrix  eigenvalue  decomposition,  the  computational  comple-
xity  is  generally  high,  especially  for  graphs  with  a  large
number  of  nodes.  To  alleviate  the  computation  burden,
Defferrard et  al. [16]  proposed  a  local  spectral  filtering
method, which approximates the frequency responses with the
Chebyshev  polynomial.  Spatial-based  filtering  methods
simulate  the  image  processing  approach  of  regular
convolutional neural networks, and employ convolution based
on  nodes’ spatial  relations.  The  general  approach  of  spatial
convolution is to construct the regular neighborhood of nodes
through  sampling  (discarding  a  part  of  nodes  if  the  neighbor
number  exceeds  while  repeating  a  part  of  nodes  if  the
neighbor  number  is  insufficient),  and  then  carry  out  the
convolution  operation  with  the  convolution  kernel  of  rules.
According to  whether  the  data  to  be  predicted can be known
from  the  model  in  training  stages,  it  can  be  divided  into
transductive  learning  [38]  and  inductive  learning  [39].
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Specifically,  for  the  inductive  learning,  the  data  to  be
predicted is not accessible during training, and the data of the
model may be in an “open world”.  

B.  Graph Clustering
G

V1, . . . ,VK

Graph  clustering  aims  to  depart  a  complete  graph  to K
disjoint  subsets .  The  vertices  within  clusters  are
densely connected, while the vertices in different clusters are
sparsely  connected.  Graph  clustering  plays  an  important  role
in  community  detection  [40]–[42],  telecommunication
networks [43],  and email  analysis  [44].  He et  al.  [45]  propo-
sed  a  dubbed  contextual  correlation  preserving  multiview
featured graph clustering (CCPMVFGC) for discovering clus-
ters  in  graphs with  multiview vertex features.  To address  the
problem of identifying clusters in attributed graphs, Hu et al.
[46] proposed an inductive clustering algorithm (MICAG) for
attributed  graphs  from  an  alternative  view.  To  overcome  the
problem where common clustering models are only applicable
to  complex  networks  where  the  attribute  information  is
composed of attributes in binary form, Hu et al. [47] proposed
a  three-layer  node-attribute-value  hierarchical  structure  to
describe  the  attribute  information  in  a  flexible  and
interpretable manner.  

C.  Random Walk
Random  walk  is  an  effective  method  to  get  graph

embedding.  It  is  especially  useful  in  the  situation  that  the
graph is partially visible or the graph is too large to measure in
its  entirety.  Given  a  graph  composed  of  nodes  and  the
connection  between  nodes,  walk  paths  can  be  obtained  by
selecting the start nodes and then executing random walk with
certain sampling strategies. The commonly used random walk
strategies  generally  include  the  truncated  random  walk
[48]–[50] and the second-order random walk [51]. Analogous
to tasks in natural language processing where all the nodes in
a  graph  constitute  a  dictionary,  a  walk  path  is  regarded  as  a
sentence, and a node in the path is regarded as a word. Graph
embedding can be learned by adopting the continuous bag-of-
words  (CBOW)  model  [52]  or  the  Skip-gram  model  [53].
Specifically,  the  CBOW  model  uses  context  to  predict  the
central  node embedding,  while  the Skip-gram model  predicts
the  context  nodes  based  on  the  central  node  embedding.
Among them, Skip-gram model is  the most widely used one.
Skip-gram  aims  to  maximize  the  co-occurrence  probability
among  the  words  that  appear  within  a  window w.  Among
various  graph  embedding  methods  based  on  random  walk,
DeepWalk and node2vec are two typical examples.

vi log Pr(vi−k, . . . ,vi−1,vi+1, . . . ,
vi+k |Yi) 2k+1

1) DeepWalk: DeepWalk  preserves  the  high-order  proxi-
mity  between  nodes  by  maximizing  the  co-occurrence
probability  of  the  last k nodes  and  next k nodes  in  the  path
centered at vertex : maximizing 

,  where  is  the  walk  length.  It  produces  lots  of
walks and optimizes the logarithmic probability of all paths.

2) node2vec: node2vec controls the partial random walk on
the graph by two hyper-parameters p and q, which can be seen
as  providing  a  trade-off  between  breadth-first  (BFS)  and
depth-first (DFS) graph searching, and hence produces higher-
quality and more informative embedding than DeepWalk.  

D.  Variational Inference
Variational  inference  is  a  fast  and  effective  method  from

machine learning that approximates probability densities for a
large  amount  of  data.  In  Bayesian  statics,  the  inference  of
unknown  quantities  can  be  regarded  as  the  calculation  of
posterior  probability,  which  is  usually  difficult  to  calculate.
The  usual  approach  is  to  make  an  approximation  using  the
Markov Chain Monte Carlo (MCMC) algorithm [54], which is
slow for large amounts of data due to the sampling. Different
from MCMC, the idea behind variational  inference is  to  first
posit a family of densities based on latent variables, and then
to find the member of that family which is close to the target.
Specifically,  the  degree  of  closeness  is  usually  described  by
the  Kullback-Leibler  (KL)  divergence.  Moreover,  Kingma
and Welling [55]  proposed  the  reparameterization  trick  to
solve  the  non-differentiable  problem  in  optimization  caused
by the sampling of the involved latent variables.  

III.  VG-GCN

In this section, we will introduce our VG-GCN in detail. We
first  define the notations used in this  paper and overview the
entire  architecture  of  VG-GCN,  then  introduce  the  main
modules  of  VG-GCN,  including  hcr-walk,  gridding,  and
variational convolution.  

A.  Notations
G = {V,E,X} V,E

N = |V|
e = |E|

G
X ∈ RN×d = [xT

1 ; . . . ;xT
N] xi

Y ∈ RN×c

A ∈ RN×N

A(i, j)

T = T0+T1+ · · ·+Th T0
T1 · · ·Th

h = 2 m̃

k1× k2

We  use  to  represent  a  graph  where 
denote  the  sets  of  nodes  and  edges,  respectively,  and  the
numbers of the node and edge sets are denoted as  and

.  Each  node  is  associated  with  a d-dimension
signal/feature vector, so the signals of graph  form a matrix

 where  is the signal vector of the i-th
node.  For  the  semi-supervised  node  classification,  the
expected  output  is  a  label  matrix  in  which c is  the
total  class  number.  To  describe  the  adjacent  relationship
among  nodes,  the  adjacency  matrix  is  defined  as 
where the element  located at the i-th row and j-th column
indicates  the  connection  weight  between  the i-th  and j-th
nodes. In hcr-walk, we use L to represent the maximum walk
steps, T for  the  sampling  times  from  each  starting  nodes
( ,  where  for  original  graph,  and

 for  different  hierarchical  coarsening  graphs.  In  our
experiments ), and  for the maximum number of edges
of  the  anchor  nodes.  The  average  value  of  node  degrees  is
denoted  by m.  Besides,  in  variational  convolution,  the  2-D
kernel size of convolutional filters is denoted as .  

B.  Overview
The  overall  network  framework  is  shown  in Fig. 1,  where

the  input  is  the  graph-structured  data.  To  illustrate  the
convolution  process,  we  take  the  corresponding  local
subgraph  (i.e.,  local  receptive  field)  around  one  node  as  an
example.  In  order  to  aggregate  topological  information  of
different levels of nodes, we execute graph coarsening on the
input  graph  according  to  different  coarsen  ratios,  and  then
random walk on these hierarchical graphs to capture the local
structures;  see Section III-C. Through random walk based on
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hierarchically  coarsening,  the  hcr-walk  could  effectively
mitigate  the  problem  of  exponentially-explosive  increases  of
sampled  walks  incurred  in  the  original  random  walk  as
sufficient  sampling  could  well  guarantee  to  cover  graph
structures.  Next,  the  sampled  walks  are  adaptively  gridded
into  an  ordered  space  through the  computation  of  correlation
to the first principal component of random-walks; see Section
III-D. The gridding walks are spanned to a 2-D plane of ,
which  thus  favors  the  conventional  convolution.  If  stacking
multi-dimensional signals,  the gridded representation of local
subgraph is a 3-D tensor of . Thus, the high-efficient
and  powerful  CNNs  run  on  images  can  be  extended  for  this
case to encode the correlation of within-walk adjacencies and
cross  adjacent  walks.  To  describe  the  variations  of  latent
feature representation, we introduce variational inference into
the  2-D  convolution  process,  referred  to  as  the  variation
convolution block, to encode the distribution of random-walks
therein.  Finally,  the  output  features  of  variation  convolution
are  passed  through  a  fully  connected  layer  and  a  softmax
function for node classification.  

C.  Hierarchically-Coarsened Random Walk
The random sampling strategy is introduced to characterize

the topology structure of local receptive fields. There are two
critical questions which need to be solved: i) random sampling
should well preserve topology property of original graph, and
ii)  sampling  times  should  be  as  few  as  possible  for  high-
efficient  computation  as  well  as  low-memory  requirement.
The first condition dedicates to the accuracy of representation,
while  the  second  one  focuses  on  the  efficiency  of  learning.
Random  walk  can  satisfy  the  first  condition  well  under  the
sufficient  samplings,  but  the  sampling  complexity  heavily
depends  on  node  degrees  during  traversals  on  graph.  Given

mt

m = 10 t = 8
10 000 000

the  average  node  degree m and  walk  length t,  the
combinatorial  number  of  walks  is ,  which  has  the
exponentially-explosive  quantity  when m is  a  bit  large
(especially  density  graph)  even  for  a  small  walk  step.  For
example,  suppose  and ,  the  combinatorial  walks
can reach the number of  for each staring node. In
order  to  guarantee  the  accuracy  in  the  first  condition,  the
practical  sampling  times  might  be  huge  even  if  a  small
sampling  ratio  is  taken.  It  will  cause  high-computation
burdens and require high storage space.

G1 = {V1,E1,X1}
p1

G1 G2 = {V2,E2,X2}
|V1| |V2| G1 G2

|V1| |V2| |V2| = ⌈|V1| × p1⌉ ⌈·⌉
G1

|V2| p1

G1

E1

G2

V2
(i) V2

( j)

G2 m1

m2 G1

To  address  this  problem,  we  extend  the  random  walk  to
hierarchically-coarsened  random  walk  by  leveraging  the
powerful  topology  preservation  ability  of  random  walk  and
the  high  efficiency  of  random  aggregation.  The  schematic
diagram  of  graph  coarsening  is  shown  in Fig. 2.  If  we  use

 to  denote  the  original  graph  before
coarsening and  to denote the coarsen ration, the coarsening
graph  for  can  be  represented  as ,  where

 and  represent  the  numbers  of  nodes  in  and .
Specifically,  and  satisfy , where 
means  round  up  to  an  integer.  We  randomly  seeded  with

 cluster seeds based on the coarsen ratio , and the nodes
in  converge to each cluster seed according to the adjacency
relationship  in .  The  connection  relation  of  coarsening
graph  is  defined  by  the  connection  and  the  number  of
connections among the clusters. For example,  and 
denote node i and node j in , they are composed of  and

 nodes in 
 

V2
(i) = {V1

(k1),V1
(k1+1), . . . ,V1

(k1+m1−1)}
V2

( j) = {V1
(k2),V1

(k2+1), . . . ,V1
(k2+m2−1)}. (1)

Considering that the number of connections between cluster
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Fig. 2.     Graph coarsening with the coarsen ratio of 0.3.
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A2
(i, j) V2

(i) V2
( j)

nodes  is  not  consistent,  we  processed  the  coarsening  graph
into a weighted graph (For consistency, the original unweight-
ed  graph  can  convert  to  the  weighted  graph  according  to  the
node’s degree). The weight  between  and  can
be computed as
 

A2
(i, j) =

∑
v∈V2

(i),u∈V2
( j)
E1

(u,v)

∑
v∈V2

(i),u∈V1

E1
(u,v) . (2)

The feature of the node in coarsening graph is related to the
nodes  belonging  to  the  cluster.  In  graph  learning  task,  the
larger the degree of the node, the more important the node (for
example,  in  social  networks,  large  degree  nodes  represent
popular  users  and  play  a  more  important  role  in  pattern
mining).  Therefore,  the degree of  nodes in the cluster  can be
used as the weight of their feature synthesis
 

X2
(i) =

∑
v∈V2

(i)

Dv∑
u∈V2

(i)
Du

X1
(v) (3)

Dv

Ai Gi

where  denotes  the  degree  of  node v.  We  construct  the
hierarchical  coarsening  graphs  by  coarsening  the  input
original  graph  according  to  different  coarsen  ratios,  and  then
execute  random  walk  on  the  original  graph  and  hierarchical
graphs. We employ the alias sampling method [56] to sample
truncated  random  walks  from  the  discrete  probability
distribution  in  for  hierarchical  graph ,  and  concatenate
the paths which belong to the same start  node.  The walks on
different  hierarchical  graphs  can  aggregate  the  graph
topologies  with  few  sampling  times,  high-efficient  compu-
tation, and low-memory requirement.  

D.  Gridding

d×T ×L

One problem of  the  classic  random walk is  the  irregularity
along  different  paths  caused  by  random  sampling,  which
makes  it  rather  challenging  to  exploit  the  underlying  local
correlation  across  adjacent  walks.  To  solve  this  problem,  we
perform  gridding  on  the  output  features  of  random-walks  to
project  them  into  an  ordered  space.  Based  on  this  operation,
the  gridding  paths  are  spanned  to  a  2-D  plane  based  on  two
axes, i.e., T and L,  representing the time of sampling and the
number of  walk step,  respectively.  The operation of  gridding
brings one notable benefit that the high-efficient and powerful
CNNs run on images can be extended for the paths to jointly
encode  the  correlation  of  within-walk  adjacencies  and  cross
adjacent  walks.  For  multi-dimensional  signals,  the  gridded
representation  of  local  subgraph  may  be  a  3-D  tensor  of

, which is also suitable for the application of CNN.

D ∈ Rd×T×L

{d1, . . . ,dT }
di ∈ R(d×L)

To adaptively capture the correlation among random paths,
we conduct  gridding from the perspective of  distribution and
consider each sampled path based on its correlation to the first
principal  component  of  hcr-walk.  For  the  hcr-walk  on  one
node with the representation denoted as ,  we first
split it into a set of path samples denoted as  along
the  sampling  time  axis T,  where  is  the  vectorized
representation  of  the i-th  path  sample.  For  gridding,  the
clustering center of path samples is first calculated as
 

dc =
1
T

T∑
i=1

di. (4)

Then,  the  correlation  between  the i-th  path  sample  and  the
cluster center is defined as follows:
 

S i =
dT

i dc

∥di∥× ∥dc∥
. (5)

Then,  the  path  of  each  node  is  gridded  based  on  its
corresponding value correlation related to the cluster center.  

E.  Variational Convolution

D̃
H = f (D̃) D̃ ∈ Rb×d×T×L

f (·)

k× k
k1× k2

L = 2

Variational  convolution  is  used  to  characterize  the
uncertainty  of  latent  feature  representation,  which  is  inspired
by  the  variational  inference.  We  stack  multiple  2-D
convolutional  layers  on  the  ordered  grid-like  feature  map :

,  where  is  the  output  of  gridding
operation, and  denotes the convolutional layers. We view
the  path  number T and  the  walk  length L as  the  height  and
width  in  one  image,  and  use  the  feature  dimension d to
represent  the  in-channel  of  convolutional  layers.  Because  of
the  dimensions  of T and L contain  the  practical  structure
significance of the graph, instead of the standard convolution
kernel  ( ),  we  employ  an  irregular  convolution  kernel
( )  to  better  aggregate  the  neighborhood  structure
information  sampled  by  the  hcr-walk  and  the  node
information  in  different  size  of  receptive  field.  For  one  start
node, the irregular kernel collects the depth information from
the L dimension  and  the  breadth  information  from  the T
dimension,  which  performs  as  the  local  aggregation  process
with  an  increasing  receptive  field.  Ideally,  if  and  the
central  node’s  first  neighbor  number  is T,  our  convolutional
layer is equal to one layer of GCN.

vi Hi

Hi

Hi

For each start  node ,  we get the feature representation 
from  stacked  convolutional  layers.  Then,  we  adopt  VCB  to
describe  the  probability  distribution  of  node’s  aggregated
feature  representation .  The  structure  of  VCB  is  shown  in
Fig. 3.  According  to  the  theory  of  variational  inference,  the
marginal likelihood of  can be written as
 

log pθ(Hi) = KL(qϕ(Z|Hi)||pθ(Z|Hi))+L(θ,ϕ;Hi). (6)

 

ϵ~N(0,1)

H

U

∑

Z H
^

 
Fig. 3.     Variational convolution block (VCB).
 

L(θ,ϕ;Hi)

The  first  term  denotes  the  KL  divergence  of  the
approximate  from  the  true  posterior,  and  the  second  term

 is called the variational lower bound. According to
the conditional probability formula
 

pθ(Z|Hi) =
pθ(Z,Hi)

pθ(Hi)
(7)

and the definition of KL divergence
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KL(qϕ(Z|Hi)||pθ(Z|Hi)) = Eqϕ log
qϕ(Z|Hi)
pθ(Z|Hi)

. (8)

Then, (6) can be rewritten as
 

L(θ,ϕ;Hi) = −KL(qϕ(Z|Hi)||pθ(Z))

+Eqϕ(Z|H)[log pθ(Hi|Z)]. (9)

Z = g(H, ϵ), ϵ ∼ N(0,1)

Z
Z ∼ N(0,1)

Hi

We can use Monte Carlo sampling [57] to approximate the
expectation  of  the  second  logarithmic  likelihood  term  in  (9),
and  adopt  reparameterization  trick  ( )
to  make  the  process  of  calculating  parameter  gradient  be
differentiable.  Let  the  prior  of  denote  the  standard  normal
distribution: , the resulting estimator for this model
and datapoint  is
 

L(θ,ϕ;Hi) ≃
1
2

J∑
j=1

(1+ log(Σ2
j )−U2

j −Σ2
j )

+Eqϕ(Z|H)[log pθ(Hi|Z)] (10)

Z = g(H, ϵ) = U+Σ⊙ ϵ ϵ ∼ N(0,1)

U
Σ

where , and . Different from
common  variational  models,  we  creatively  use  the  two-
dimensional  convolution  kernel  to  generate  mean  matrix 
and covariance matrix .
 

U(x,y)
j = σ(b j+

k1−1∑
p=0

k2−1∑
q=0

wpq
j H(x+p)(y+q)) (11)

 

Σ
(x,y)
j = e

σ(b j+
k1−1∑
p=0

k2−1∑
q=0

wpq
j H(x+p)(y+q))

(12)

(x,y)
(T,L) k1 k2

wpq
j (p,q)

where j denotes  the j-th  feature  map,  denotes  the  local
position  of ,  and  are  the  height  and  width  of  the
kernel, and  is the value at the position  of the kernel
connect to the j-th feature map.  

IV.  Algorithm and Analysis

A X

Ŷ L
L1 L2

Our VG-GCN algorithm flow is shown in Algorithm 1. VG-
GCN is  an  end-to-end  online  learning  model.  The  inputs  are
the  adjacency  matrices  and  feature  matrices  of  the
starting nodes, and the outputs are the corresponding predicted
labels .  The  loss  function  of  the  model  consists  of  two
parts: cross-entropy loss  and variational lower bound  in
(10).
 

L1 = −
n∑

i=1

yi log(ŷi), L2 =L(θ,ϕ;Hi) (13)

 

L =L1+αL2 (14)

αwhere  is a hyper parameter.

Algorithm 1 VG-GCN

G0 = {V0,E0,X0}
A0 p = {p1, p2}

T = T0 +T1 +T2 inds ∈ Rn Y ∈ Rn×c

W

Input: Original  input  graph ,  weighted  adjacency
matrix ,  coarsen  ratio  set ,  walk  length L,  repeat  times

,  start  nodes  index ,  train  data  labels 
and model parameters .

Ŷ ∈ Rn×cOutput: Start nodes’ labels prediction: 

G1 = {V1,E1,X1}
G2 = {V2,E2,X2}

A1 A2

1)  Construct  hierarchical  coarsening  graphs  and
 by  graph  coarsening  operation  according  to

coarsening ratio set p,  calculate the hierarchical  weighted adjacency
matrix  and 

inds

Ti Gi

Xi(i = 0,1,2)

Di ∈ Rn×d×Ti×L

D ∈ Rn×d×T×L

2) Execute random walk for start nodes  with L walk length and
repeat  times on hierarchical graphs , gather path nodes’ features
from .  Concatenate  the  different  feature  maps

 from different hierarchical graphs, get the feature map

3) for epoch in range[0, num_epochs] do
D D̃4) Gridding , get the regular and sorted feature map 

D̃
H = f (D̃)

5)  Execute  2-D  convolution  operations  on  the  feature  map ,
, f is stacked convolution layers

H U Σ

ϵ

ϵ ∼ N(0,1) Z = U+Σ⊙ ϵ

6) Adopt VCB to , simulate the mean  and covariance matrix 
by  convolution  kernels,  and  sample  noise  from  standard  normal
distribution ( ). Calculate the latent variable 

Ŷ Z Ŷ Z×Wk +bk)7)  Predict  nodes’ labels  with :  = SoftMax( , k
denotes k-th layer

L =L1 +αL28)  Calculate  model  loss  (see  (13)),  back  propagation
to update parameters.

9) end

O(nT L
∑K

k=1 dkdk1k2)

dk k1 k2

O(Nml∑K
k=1 dkd)

N ≫ n n = 1060
N = 19 717

For each starting node, we sample T paths with length L in
hcr-walks, so as to ensure that the neighborhood nodes could
be covered as much as possible. The complexity of VG-GCN
is , where n is the number of nodes to be
processed (i.e., training set and testing set), k is the k-th layer,

 is  the  output  dimension  of  the k-th  layer,  and  and 
denote  the  height  and  width  of  convolution  kernels,
respectively. The complexity of GCN is  and

 in  commons  (i.e.,  in  Pubmed  dataset,  and
), indicates the speed of our proposed VG-GCN.  

V.  Experiments

In  this  section,  we  comprehensively  evaluate  the
effectiveness  of  our  method  on  five  widely  used  public
datasets:  Cora,  Citeseer,  Pubmed  [58],  AMZ  PHOTOS  [59],
and NELL [60]. We first briefly introduce these datasets, then
report  our  experimental  results  on  them  and  compare  the
performance  with  other  state-of-the-art  methods.  Finally,  we
conduct an ablation study to dissect the proposed model.  

A.  Datasets
Five  public  graph-structured  datasets  are  employed  to

evaluate  our  proposed  method,  including  three  citation
network datasets (i.e., Cora, Citeseer, Pubmed), a co-purchase
dataset (i.e., AMZ PHOTOS), and a knowledge graph dataset
(i.e.,  NELL).  For  fair  compassion,  the  dataset  split  protocols
of these citation networks strictly follow the widely used ones
in  [60].  The  overall  information  about  these  five  datasets  is
listed in Table I.

2708 5429

1) Cora: Cora is a citation network about machine learning
papers  categorized  into  seven  classes:  case-based,  genetic
algorithm,  neural  network,  probabilistic  method,  reinforce-
ment  learning,  principle  learning,  and  theoretical.  In  total,
Cora  contains  nodes  and  edges,  where  each  node
can  be  described  by  a 1433 dimensional  vector  consisting  of
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0/1-valued elements.  The average degree of  nodes in  Cora is
about four. For the protocol on this dataset, there are 5.2% of
nodes labeled for training (20 nodes in each class, 140 nodes
in total), 500 nodes for validating, and 1000 nodes for testing.

2)  Citeseer: Citeseer  depicts  a  citation  network  of  3327
nodes  and  4732  links,  where  the  nodes  are  divided  into  six
classes.  Each  node  can  be  described  by  a 3703 dimensional
0/1-valued vector. For evaluation, 3.6% nodes are labeled for
training (20 nodes  in  each class,  120 nodes  in  total),  and the
numbers  of  nodes  in  the  validation  and  test  sets  are  500  and
1000, respectively, which are as same as those in Cora. Each
node in Citeseer is connected by three nodes in average.

3)  AMZ  PHOTOS: AMZ  PHOTOS  is  a  Co-purchase
dataset.  It  contains  7487  nodes  of  8  classes  with  119  043
edges.  Each  node  is  described  by  a  745  dimensions  vector,
and the average degree of nodes is 32. This dataset is split by
200/4800/2487 for train/val/test.

4) Pubmed: Pubmed contains 19 717 nodes of three classes
with  44  338  edges.  Each  node  is  described  by  a  term  frequ-
ency-inverse  document  frequency  (TF-IDF)  vector  drawn
from  a  dictionary  with  500  terms.  For  the  widely  accepted
protocol  on  this  dataset,  there  are  only  0.3% of  nodes  for
training (20 nodes in each class, 60 nodes in total), 500 nodes
for validating, and 1000 nodes for testing. The average degree
of each node is about five.

eh,r,et eh et

eh,r,et eh,r1

et,r2

5) NELL: NELL dataset is extracted from the never ending
language  learning  (NELL)  knowledge  graph  [61].  Each
relation  in  NELL  links  the  selected  entities  (9897  in  total)
with  text  descriptions  in  ClueWeb09  [62],  and  can  be
described with a triplet ( ) where  and  are the head
and tail entity vector, and r denotes the relation between them.
By  splitting  every  triplet  ( )  into  two  edges  ( )  and
( ), a graph of 65 755 nodes (including relations and enti-
ties) and 266 144 edges can be obtained, where each node can
be described by a 61 278 dimensional vector and approxima-
tely connected by four nodes.  

B.  Baseline Methods
To verify the superiority of our proposed VG-GCN model,

various  state-of-the-art  methods  are  used  for  performance
comparison.  Basically,  the  results  of  these  baseline  methods
are obtained either according to their reported performance in
previously  literatures,  or  through conducting  the  experiments
based on their released public codes. For the baseline methods
of  our  implementation,  sophisticated  hyper-parameter  fine-
grained tuning is performed to report their performances.

DeepWalk [48] is a generative model for graph embedding,
which  samples  multiple  walk  paths  from  a  graph  by  the
truncated  random  walk,  and  learns  the  representation  by
regarding the paths as sentences, and path nodes as tokens in
natural  language  processing  (NLP).  The  source  code  for
DeepWalk is publicly available1. Planetoid [60] is inspired by
the  Skipgram  [53]  model  from  NLP,  and  it  embeds  a  graph
through  both  positive  and  negative  samplings  while
considering  the  node  information  and  graph  structure.  The
source code of Planetoid is available2. Chebyshev [16] designs
a  fast  localized  graph  convolution  by  employing  localized
filters  with  polynomial  parametrization,  and  adopts  graph
coarsening procedure to group together similar vertices. Graph
convolutional  networks  (GCN)  [17]  updates  the  feature
expression of the central node by synthesizing the information
of the gradually expanding sensing nodes in the field. GCN’s
source  code  is  publicly  available3.  Graph  attention  networks
(GAT)  [31]  applies  the  attention  mechanism  to  graph
convolution.  It  calculates  the  attention  coefficient  between
central  node  and  its  neighborhood  nodes  to  express  the
different  contribution  of  neighbor  connections.  Moreover,
GAT has an additional  sparse version which is  also involved
as  the  baseline.  For  these  two  versions  of  GAT,  the
performance  is  reported  in Table II.  GAT’s  source  code  is
publicly  available4.  Dual  graph  convolutional  networks
(DGCN)  [63]  executes  dual  graph  convolution  based  on  the
adjacency  matrix  and  positive  pointwise  mutual  information
(PPMI)  matrix,  respectively,  and  combines  the  output  of
different  convolved data  transformations.  The source code of
DGCN  is  publicly  available5.  Graph  learning-convolutional
networks (GLCN) [64] learns a discriminative S to replace the
adjacency  matrix A for  graph  convolution  based  on  the
topological between nodes and on high-dimensional manifold.
gLGCN  [65]  adds  the  local  invariance  constraint  to  the  loss
function  that  the  same  label  samples  should  have  the  same
data  distribution.  Hypergraph  neural  networks  (HGNN)  [66]
designs  a  hypergraph  structure,  where  one  edge  can  connect
multiple  nodes.  Then,  robust  node  representation  can  be
learned by aggregating the node information to the hyper-edge
and then returning the integrated information to each node.  

C.  Experiment Setting
The  parameters  of  our  VG-GCN  model  are  traversed  in

certain  ranges  and  finally  set  when  the  best  performance  on
the validation set is obtained. For the basic architecture of the
VG-GCN model,  there  are  two convolutional  layers  in  VCB.
The coarse layers number is 2 and the coarse ratios are 0.8 and
0.4,  respectively.  In  the  hcr-walk  process,  the  number  of
walks, denoted as T, is set to 15, and the hcr-walk length L is

 

TABLE I 

Graph Datasets Information

Dataset Nodes Edges Degrees Features Labels

Cora 2708 5429 4 1433 7

Citeseer 3327 4732 3 3703 6

AMZ PHOTOS 7487 119 043 32 745 8

Pubmed 19 717 44 338 5 500 3

NELL 65 755 266 144 4 61 278 210
 

  
1 https://github.com/phanein/deepwalk
2 https://github.com/kimiyoung/planetoid
3 https://github.com/tkipf/gcn
4 https://github.com/PetarV-/GAT
5 https://github.com/ZhuangCY/DGCN
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5×3
1×1

5.  For  the  convolutional  layers,  the  sizes  of  convolution
kernels  are  set  to ,  while  in  the  VCB  the  convolution
kernel  sizes  are  both  set  to  to  produce  the  mean  and
covariance matrices, respectively. During the training process,
we run the model for 500 epochs with the learning rate of 0.01
and dropout rate of 0.5 for tuning the network parameters.  

D.  Experiment Results
The  experimental  results  of  our  proposed  VG-GCN on  the

three  citation  datasets  (Cora,  Citeseer,  and  Pubmed),  one  co-
purchase dataset  (AMZ PHOTOS), and large-scale dataset  of
knowledge  graph  (NELL)  are  reported  in Table II.  These
performances  are  also  compared  with  various  state-of-the-art
methods,  where  the  metric  of  accuracy  is  employed  for
quantitative evaluation of the semi-supervised node classifica-
tion.  Our  VG-GCN  obtains  the  best  results  on  AMZ
PHOTOS,  Pubmed,  and  NELL  datasets  (there  are  0.05%
performance  gain  on  AMZ PHOTOS,  1.2% on  Pubmed,  and
4.2% on  NELL),  and  achieves  the  competitive  performances
on the Cora and Citerseer datasets.

We  calculated  the  average  and  variance  of  node  degree  of
five datasets. We found that the degree variances of two small
datasets  (Cora  and  Citeseer)  are  small  (27.3  and  11.4,
respectively), while the other three large scale datasets (AMZ
PHOTOS,  Pubmed,  and  NELL)  have  the  larger  degree
variances (55.2, 1852.3, and 2262.6, respectively). Therefore,
we  speculate  that  the  reason  our  VG-GCN  does  not  achieve
the best performance on the two small datasets may be that the
two  dataset  have  fewer  random  walk  patterns  and  are  more
likely to fall into over-smoothing during the training process.
This  also  shows that  our  hierarchical  coarsening and random
walk can model complex data patterns.

Besides the competitive performance, it should be especially
noticed  that  our  model  is  more  advantageous  in  computation
efficiency  compared  with  all  other  baseline  methods.  We
present the time costs of our VG-GCN for running one epoch

on Cora and Pubmed datasets in Table III, and compare them
with GAT, DGCN, and GCN. For Cora, the smallest  dataset,
GAT takes about 7 s per epoch while its sparse version takes
1  s,  and  DGCN  takes  about  0.5  s  per  epoch.  The  time
consumed by our VG-GCN is 0.05 s, which is much less than
those  of  GAT  and  DGCN,  while  almost  the  same  as  GCN.
However, on the large graph Pubmed (19 717 nodes), our VG-
GCN takes about 0.04 s per epoch, and is the fastest compared
with the sparse GAT of 2.5 s per epoch, DGCN of 3.2 s, and
GCN of 0.6 s.
 

TABLE III 

Each Epoch Time Cost on Cora and Pubmed, Compared With
GAT, DGCN, and GCN

Method Cora Pubmed

GAT 7 s 10 s

GAT_sparse 1 s 2.5 s

DGCN 0.5 s 3.2 s

GCN 0.05 s 0.6 s

VG-GCN 0.05 s 0.04 s

 
 

The  convergence  of  our  VG-GCN  on  the  Nell  datasets  is
shown  in Fig. 4,  and  is  compared  with  that  of  DGCN which
also achieves a considerable performance. Both VG-GCN and
DGCN are trained 1000 epochs on NELL dataset.  According
to Fig. 4, our VG-GCN can converge faster and obtains better
performances.  In  terms  of  running  time  and  accuracy
comparisons,  our  VG-GCN  takes  about  6  minutes  with  the
accuracy of 79.1%. In contrast, DGCN takes about 2.8 hours,
which  is  29.2  times  that  of  VG-GCN,  while  obtaining  an
accuracy of 74.9%, which is 4.2% lower.
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Fig. 4.     The convergence on NELL datasets, compared with DGCN.
   

E.  Ablation Study and Parameter Sensitivity
As the proposed VG-GCN achieves promising performance

with  high  computational  efficiency,  it  is  interesting  for  us  to
dissect  the  model  to  evaluate  the  contribution  of  each  part.
Moreover,  it  is  also  meaningful  to  evaluate  the  sensitivity  of
those critical parameters in the VG-GCN model to make clear

 

TABLE II 

Performance of Graph Node Classification, Compared
With DeepWalk, Planetoid, Chebyshev, GCN, GAT,

DGCN, GLCN, GLGCN, and HGNN Methods

Method Cora Citeseer AMZ PHOTOS Pubmed NELL

DeepWalk [48] 67.2% 43.2% 78.82% 65.3% 58.1%

Planetoid [60] 75.7% 64.7% 68.34% 77.2% –

Chebyshev [16] 81.2% 69.8% 79.32% 74.4% –

GCN [17] 81.4% 70.5% 92.08% 79.0% 66.0%

GAT [31] 83.0% 72.5% 53.40% 79.0% –

DGCN [63] 82.5% 72.6% 91.07% 79.3% 74.9%

GLCN [64] 85.5% 72.0% 91.25% 78.3% –

gLGCN-F 82.2% 70.8% – 79.2% –

gLGCN-L 82.7% 71.3% – 79.2% –

gLGCN-F-L [65] 83.3% 71.4% – 79.3% –

HGNN [66] 81.6% – – 80.1% –

VG-GCN 82.7% 71.5% 92.13% 81.3% 79.1%
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how their variation influences the performance. Therefore, we
conduct several additional experiments:

1) Comparison between the hcr-walk and random walk. To
verify  the  superiority  of  the  proposed  hcr-walk  over  random
walk, we simply replace the hcr-walk unit  with random-walk
on original graph, and test the performance on the four public
datasets. The results are shown in Table IV.
 

TABLE IV 

Comparison Between Hcr-Walk and Random-Walk

Dataset Random-walk Hcr-walk

Cora 81.8% 82.5%

Citeseer 71.0% 71.5%

Pubmed 79.9% 81.4%

NELL 77.9% 79.5%
 
 

2) Evaluation of VCB. To evaluate the effectiveness of the
proposed  VCB,  we compare  its  performance  with  the  classic
convolutional  layer  and  MLP-VCB on  the  four  datasets,  and
the  results  are  shown  in Table V.  Specifically,  MLP-VCB
means that the calculation of mean and covariance matrices in
VCB are revised to be obtained through multilayer perception
instead of convolutional layers.
 

TABLE V 

Comparison Of Convolutional Layers, MLP-VCB, and VCB

Dataset Convolutional layers MLP-VCB VCB

Cora 81.3% 81.4% 82.5%

Citeseer 70.4% 70.9% 71.6%

Pubmed 79.6% 79.9% 81.0%

NELL 77.4% 78.2% 79.5%

 
 

Based on the results of the multiple experiments above, we
can get the following observations:

1) Hcr-walk outperforms classic random walk and promotes
the node classification performance. On all the four evaluated
datasets,  the  classification  accuracies  of  our  hcr-walk  are
higher  than  those  of  random  walk.  The  performance  gain
verifies  the  effectiveness  of  our  hcr-walk,  which  constructs
coarsening  graphs,  while  avoiding  an  explosive  growth  of
walk paths with increasing walk steps.

2) VCB is effective to promote the node classification task.
Comparing  with  both  convolutional  layers  and  MLP-VCB,
VCB obtains  better  node  classification  performances  with  an
average  performance  gain  of  about  1% on  the  four  public
datasets.  The  performance  improvement  verifies  the  superio-

rity of VCB, which encodes the comprehensive correlation of
within-walk adjacencies and cross adjacent walks.

k1,k2Kernel  size ,  hcr-walk  numbers T and  length L,  and
coarsening  ratio p are  hyper  parameters  in  VG-GCN.  To
analyze  the  sensitivity  and  value  selection  of  each  hyper
parameter,  we  designed  the  following  comparative  experi-
ments.

1) Kernel  Size: The  non-square  2D  convolution  kernel  is
employed in hcr-walk convolution. The different classification
performance  with  different  kernel  sizes  on  three  citation
datasets  is  plotted in Fig. 5.  From the experimental  results  of
Fig. 5,  the  irregular  convolution  kernel  with  size  (5,  3)  has
better  performance  on  three  datasets.  Specifically,  (5,  3)
means  the  cross-path  filtering  height  is  5  and  within-path
filtering width is 3.
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Fig. 5.     Classification performance with different  kernel  sizes  on three
citation datasets.
 

T = 20,L = 5 T = 12,L = 6

2) Hcr-Walk  Numbers  and  Length: The  parameter
sensitivity experiments with the hcr-walk numbers T and hcr-
walk length L belonging to one start node are shown in Figs. 6
and 7.  For  Cora  dataset,  15  hcr-walks  are  sampled  for  each
node,  and  the  length  of  5  is  the  most  appropriate.
( )  and  ( )  are  the  best  combinations
of parameters for Citeseer and Pubmed datasets, respectively.

3) Coarsening  Ratio: The  hierarchically-coarsened  random
walk  is  employed  to  leverage  the  powerful  topology
preservation ability of random walk and the high efficiency of
random  aggregation.  We  experimentally  compare  the  effects
of  one  coarsening  layer,  two  coarsening  layers  and  different
coarsening  ratios p on  the  classification  accuracy  of  Cora
dataset  in Table VI.  For  the  two  coarsening  layers,  the
coarsening  ratio  of  the  second  layer  is  half  of  the  first.  Two
coarsening  layers  with  ratios  of  (0.8,  0.4)  achieve  the  best
performance.

 

TABLE VI 

Sensitivity of Coarsen Layer Number and Coarse Ratio on Model Performance on Cora Dataset. For Two Coarsen
Layers, We Set the Coarsen Ratio of Second Layer is Half of First Layer

One layer 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Accuracy 79.9% 80.8% 81.4% 80.9% 82.0% 82.0% 81.3% 81.0% 81.2%

Two layers (0.9, 0.45) (0.8, 0.4) (0.7, 0.35) (0.6, 0.3) (0.5, 0.25) (0.4, 0.2) (0.3, 0.15) (0.2, 0.1) (0.1, 0.05)

Accuracy 81.7% 82.9% 81.2% 80.2% 81.7% 81.2% 82.0% 81.3% 81.9%
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[2,8]
4) Convolution Layers: The number of variational convolu-

tion  layer  is  traversed  in  on  Cora  dataset,  and  the
experiments  results  are  listed  in Fig. 8.  The  experimental
results show that the too deep network can not surely achieve
higher  classification  accuracy,  and  may  cause  performance
degradation which may be due to the over-smoothing.

In  order  to  show  that  our  VG-GCN  can  better  capture  the
graph local invariance than other methods (GCN), we perform
a  standard  set  of “evolving” t-SNE  [67]  plots  of  the  test  set
embeddings on Cora dataset, given in Fig. 9. The raw features
come from the node original feature matrix, and the GCN and

our  VG-GCN  embeddings  come  from  the  output  of  the  last
layer respectively.  Intuitively,  our VG-GCN is best  placed to
clearly  separate  different  categories  of  nodes.  And  from  the
perspective  of  quantitative  analysis,  the  Silhouette  score  [68]
of our VG-GCN is the largest (The larger the Silhouette score,
the better the clustering effect).
  

VI.  Conclusion

In this paper, we proposed a VG-GCN framework for node
classification.  We  developed  the  random  walk  and  proposed
the  hcr-walk  to  effectively  avoid  possible  exponential  explo-
sion of walk paths as the path length increases, and cover the
whole  neighborhood by coarsening graphs.  In  order  to  main-
tain the permutation invariance of the generated paths belong-
ing  to  the  same  node  of  each  epoch,  we  sorted  them  after
projection  and  constructed  a  grid-like  feature  map  for  2-D
convolution. Moreover, we designed a 2-D convolution variati-
onal  inference  block  to  learn  the  probability  distribution
characteristics  of  latent  variables  in  two-dimensional  space.
As  a  result,  VG-GCN learns  the  aggregation  pattern  of  node
topological  neighborhood  in  an  inductive  way,  which  can  be
easily  extended  to  the  inference  problem of  unknown  nodes.
Meanwhile,  VG-GCN can process large scale  graphs quickly
with  the  tensor  graph  structure  and  consumes  less  memory.
Experiments  on  a  variety  of  public  datasets  verified  the
effectiveness of our method for solving the node classification
problem.
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Fig. 6.     The results of VG-GCN model with different hcr-walk numbers on
Cora, Citeseer, and Pubmed datasets.
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Fig. 7.     The  results  of  VG-GCN  model  with  different  hcr-walk  lengths  on
Cora, Citeseer, and Pubmed datasets.
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Fig. 8.     The  results  of  different  variational  convolution  layers  on  Cora
dataset.
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Fig. 9.     t-SNE embeddings of the nodes in the test set of Cora citation network from the raw features (left), GCN model (middle), and our VG-GCN model
(right). Our VG-GCN performs the best clustering effect of embedding among the three plot, and the Silhouette scores support evidence.
 

 1706 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 10, OCTOBER 2021



References
 Y.  LeCun,  L.  Bottou,  Y.  Bengio,  P.  Haffner, et  al., “Gradient-based
learning  applied  to  document  recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[1]

 J.  Redmon,  S.  Divvala,  R.  Girshick,  and  A.  Farhadi, “You  only  look
once:  Unified,  real-time  object  detection,” in Proc.  Computer  Vision
and Pattern Recognition, 2016, pp. 779–788.

[2]

 S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time  object  detection  with  region  proposal  networks,” in Proc.
Advances in Neural Information Processing Systems, 2015, pp. 91–99.

[3]

 T.  Luong,  H.  Pham,  and  C.  D.  Manning, “Effective  approaches  to
attention-based  neural  machine  translation,” in Proc. Empirical
Methods in Natural Language Processing, 2015, pp. 1412–1421.

[4]

 G.  Hinton,  L.  Deng,  D.  Yu,  G.  Dahl,  A.-r.  Mohamed,  N.  Jaitly,  A.
Senior,  V.  Vanhoucke,  P.  Nguyen,  B.  Kingsbury, et  al., “Deep  neural
networks  for  acoustic  modeling  in  speech  recognition,” IEEE  Signal
Processing Magazine, vol. 29, 2012.

[5]

 F.  Orsini,  D.  Baracchi,  and  P.  Frasconi, “Shift  aggregate  extract
networks,” Frontiers in Robotics and AI, p. 42, 2018.

[6]

 J.  M.  Kleinberg,  R.  Kumar,  P.  Raghavan,  S.  Rajagopalan,  and  A.  S.
Tomkins, “The  web as  a  graph:  Measurements,  models,  and  methods,”
in Proc. Int.  Computing and Combinatorics  Conf.,  Springer,  1999,  pp.
1–17.

[7]

 D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, “Scene graph generation by
iterative  message  passing,” in Proc.  IEEE Conf.  Computer  Vision  and
Pattern Recognition, 2017, pp. 5410–5419.

[8]

 K.  M.  Borgwardt,  H.-P.  Kriegel,  S.  Vishwanathan,  and  N.  N.
Schraudolph, “Graph  kernels  for  disease  outcome  prediction  from
proteinprotein  interaction  networks,” in Biocomputing.  World
Scientific, 2007, pp. 4–15.

[9]

 X. Luo, H. Wu, H. Yuan, and M. Zhou, “Temporal pattern-aware QoS
prediction via biased non-negative latent factorization of tensors,” IEEE
Trans. Cybernetics, vol. 50, no. 5, pp. 1798–1809, 2019.

[10]

 T. D. Pham, K. Wardell,  A. Eklund, and G. Salerud, “Classification of
short  time  series  in  early  Parkinson’s  disease  with  deep  learning  of
fuzzy  recurrence  plots,” IEEE/CAA J. Autom. Sinica,  vol. 6,  no. 6,
pp. 1306–1317, 2019.

[11]

 L.  Wei  and  E.  Keogh, “Semi-supervised  time  series  classification,” in
Proc.  12th  ACM  SIGKDD  Int.  Conf.  Knowledge  Discovery  and  Data
Mining, 2006, pp. 748–753.

[12]

 D.  Wu,  X.  Luo,  M.  Shang,  Y.  He,  G.  Wang,  and  X.  Wu, “A
datacharacteristic-aware  latent  factor  model  for  web  services  QoS
prediction,” IEEE Trans. Knowledge and Data Engineering, 2020.

[13]

 X.  Luo,  M.  Zhou,  S.  Li,  Y.  Xia,  Z.-H.  You,  Q.  Zhu,  and  H.  Leung,
“Incorporation  of  efficient  second-order  solvers  into  latent  factor
models  for  accurate  prediction  of  missing  QoS  data,” IEEE  Trans.
Cybernetics, vol. 48, no. 4, pp. 1216–1228, 2017.

[14]

 J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally  connected  networks  on  graphs,” arXiv  preprint  arXiv:
1312.6203, 2013.

[15]

 M.  Defferrard,  X.  Bresson,  and  P.  Vandergheynst, “Convolutional
neural  networks  on  graphs  with  fast  localized  spectral  filtering,” in
Proc. Advances  in  Neural  Information  Processing  Systems,  2016,  pp.
3844– 3852.

[16]

 T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learning Representations,
2017.

[17]

 R.  Li,  S.  Wang,  F.  Zhu,  and  J.  Huang, “Adaptive  graph  convolutional
neural  networks,” in Proc. 32nd  AAAI  Conf.  Artificial  Intelligence,
2018.

[18]

 S.  Fu,  W.  Liu,  D.  Tao,  Y.  Zhou,  and  L.  Nie, “Hesgcn:  Hessian  graph
convolutional networks for semi-supervised classification,” Information
Sciences, vol. 514, pp. 484–498, 2020.

[19]

 S. Fu, W. Liu, Y. Zhou, and L. Nie, “Hplapgcn: Hypergraph p-laplacian
graph convolutional networks,” Neurocomputing, vol. 362, pp. 166–174,
2019.

[20]

 F.  Sichao,  L.  Weifeng,  L.  Shuying,  and  Z.  Yicong, “Two-order  graph
convolutional  networks  for  semi-supervised  classification,” IET Image
Processing, vol. 13, no. 14, pp. 2763–2771, 2019.

[21]

 B.  Wu,  Y.  Liu,  B.  Lang,  and  L.  Huang, “DGCNN:  Disordered  graph
convolutional  neural  network  based  on  the  gaussian  mixture  model,”
Neurocomputing, vol. 321, pp. 346–356, 2018.

[22]

 S. Franco, G. Marco, T. Ah Chung, H. Markus, and M. Gabriele, “The
graph  neural  network  model,” IEEE Trans. Neural Networks,  vol. 20,
no. 1, Article No. 61, 2009.

[23]

 W.  L.  Hamilton,  R.  Ying,  and  J.  Leskovec, “Inductive  representation
learning  on  large  graphs,” in Proc.  Neural  Information  Processing
Systems, 2017.

[24]

 J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Proc. Advances in Neural Information Processing Systems, 2016, pp.
1993–2001.

[25]

 P.  W.  Battaglia,  J.  B.  Hamrick,  V.  Bapst,  A.  Sanchez-Gonzalez,  V.
Zambaldi,  M.  Malinowski,  A.  Tacchetti,  D.  Raposo,  A.  Santoro,  R.
Faulkner, et  al., “Relational  inductive biases,  deep learning,  and graph
networks,” Computing Research Repository, 2018.

[26]

 F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The  graph  neural  network  model,” IEEE  Trans.  Neural  Networks,
vol. 20, no. 1, pp. 61–80, 2008.

[27]

 Y.  Li,  D.  Tarlow,  M.  Brockschmidt,  and  R.  Zemel, “Gated  graph
sequence  neural  networks,” in Proc. Int.  Conf.  Learning
Representations, 2016.

[28]

 H.  Dai,  Z.  Kozareva,  B.  Dai,  A.  Smola,  and  L.  Song, “Learning
steadystates  of  iterative  algorithms  over  graphs,” in Proc. Int.  Conf.
Machine Learning, 2018, pp. 1114–1122.

[29]

 K. Xu,  W. Hu,  J.  Leskovec,  and S.  Jegelka, “How powerful  are  graph
neural networks?” in Proc. Int. Conf. Learning Representations, 2019.

[30]

 P.  Veličković,  G.  Cucurull,  A.  Casanova,  A.  Romero,  P.  Liò,  and  Y.
Bengio, “Graph  attention  networks,” in Proc. Int.  Conf.  Learning
Representations, 2018.

[31]

 L.  Lovász, “Random  walks  on  graphs:  A  survey,  combinatorics,  Paul
Erdos  is  eighty,” Lecture Notes in Mathematics,  vol. 2,  no. 1,  pp. 1–46,
1993.

[32]

 X.  Hong,  T.  Zhang,  Z.  Cui,  C.  Xu,  L.  Zhang,  and  J.  Yang, “Fast
hyperwalk  gridded  convolution  on  graph,” in Proc. Chinese  Conf.
Pattern  Recognition  and  Computer  Vision, Springer,  2020,  pp.  197–
208.

[33]

 H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between
labeled  graphs,” in Proc.  20th  Int.  Conf.  Machine  Learning,  2003,  pp.
321–328.

[34]

 N.  Shervashidze,  S.  Vishwanathan,  T.  Petri,  K.  Mehlhorn,  and  K.
Borgwardt, “Efficient  graphlet  kernels  for  large  graph comparison,” in
Proc. Artificial Intelligence and Statistics, 2009, pp. 488–495.

[35]

 P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proc. 21st
ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2015,
pp. 1365–1374.

[36]

 C.  Morris,  K.  Kersting,  and  P.  Mutzel, “Glocalized  weisfeiler-lehman
graph kernels: Global-local feature maps of graphs,” in Proc. IEEE Int.
Conf. Data Mining, 2017, pp. 327–336.

[37]

 M. Ceci, A. Appice, N. Barile, and D. Malerba, “Transductive learning
from relational data,” in Proc. Int. Workshop on Machine Learning and
Data Mining in Pattern Recognition, 2007, pp. 324–338.

[38]

 R. S. Michalski, “A theory and methodology of inductive learning,” in
Machine Learning. Springer, 1983, pp. 83–134.

[39]

 S.  Fortunato, “Community  detection  in  graphs,” Physics Reports,
vol. 486, no. 3–5, pp. 75–174, 2010.

[40]

 A. Lancichinetti and S. Fortunato, “Community detection algorithms: A
comparative  analysis,” Physical  Review  E,  vol.  80,  no.  5,  p.  056117,
2009.

[41]

 L. Bai,  X.  Cheng,  J.  Liang,  and Y.  Guo, “Fast  graph clustering with  a
new description model for community detection,” Information Sciences,
vol. 388, pp. 37–47, 2017.

[42]

 M.  Schwartz, Telecommunication  Networks:  Protocols,  Modeling  and
Analysis. Addison-Wesley Longman Publishing Co., Inc., 1986.

[43]

 A. Chapanond, M. S. Krishnamoorthy, and B. Yener, “Graph theoretic
and  spectral  analysis  of  enron  email  data,” Computational &
Mathematical Organization Theory, vol. 11, no. 3, pp. 265–281, 2005.

[44]

 T.  He,  Y.  Liu,  T.  H.  Ko,  K.  C.  Chan,  and  Y.-S.  Ong, “Contextual
correlation  preserving  multiview  featured  graph  clustering,” IEEE

[45]

HONG et al.: VARIATIONAL GRIDDED GRAPH CONVOLUTION NETWORK FOR NODE CLASSIFICATION 1707 

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/JAS.2019.1911774
http://dx.doi.org/10.1016/j.ins.2019.11.019
http://dx.doi.org/10.1016/j.ins.2019.11.019
http://dx.doi.org/10.1016/j.neucom.2019.06.068
http://dx.doi.org/10.1049/iet-ipr.2018.6224
http://dx.doi.org/10.1049/iet-ipr.2018.6224
http://dx.doi.org/10.1016/j.neucom.2018.09.008
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1007/BFb0077189
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/JAS.2019.1911774
http://dx.doi.org/10.1016/j.ins.2019.11.019
http://dx.doi.org/10.1016/j.ins.2019.11.019
http://dx.doi.org/10.1016/j.neucom.2019.06.068
http://dx.doi.org/10.1049/iet-ipr.2018.6224
http://dx.doi.org/10.1049/iet-ipr.2018.6224
http://dx.doi.org/10.1016/j.neucom.2018.09.008
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1007/BFb0077189
http://dx.doi.org/10.1016/j.physrep.2009.11.002


Trans. Cybernetics, vol. 50, no. 10, pp. 4318–4331, 2019.
 L.  Hu,  S.  Yang,  X.  Luo,  and  M.  Zhou, “An  algorithm  of  inductively
identifying  clusters  from  attributed  graphs,” IEEE Trans. Big Data,
2020. DOI: 10.1109/TBDATA.2020.2964544

[46]

 L.  Hu,  K.  C.  Chan,  X.  Yuan,  and  S.  Xiong, “A  variational  Bayesian
framework  for  cluster  analysis  in  a  complex  network,” IEEE  Trans.
Knowledge and Data Engineering, vol. 32, no. 11, pp. 2115–2128, 2019.

[47]

 B.  Perozzi,  R.  Al-Rfou,  and S.  Skiena, “Deepwalk:  Online  learning of
social  representations,” in Proc.  20th  ACM  SIGKDD  Int.  Conf.
Knowledge Discovery and Data Mining, 2014, pp. 701–710.

[48]

 H.  Zhang,  X.  Shang,  H.  Luan,  M.  Wang,  and  T.-S.  Chua, “Learning
from  collective  intelligence:  Feature  learning  using  social  images  and
tags,” ACM Transactions on Multimedia Computing,  Communications,
and Applications, vol. 13, no. 1, p. 1, 2017.

[49]

 S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep network
representation,” Network, vol. 11, no. 9, p. 12, 2016.

[50]

 A.  Grover  and  J.  Leskovec, “node2vec:  Scalable  feature  learning  for
networks,” in Proc.  22nd  ACM  SIGKDD  Int.  Conf.  Knowledge
Discovery and Data Mining, 2016, pp. 855– 864.

[51]

 L.  Qiu,  Y.  Cao,  Z.  Nie,  Y.  Yu,  and  Y.  Rui, “Learning  word
representation  considering  proximity  and  ambiguity,” in Proc.  28th
AAAI Conf. Artificial Intelligence, 2014.

[52]

 T.  Mikolov,  I.  Sutskever,  K.  Chen,  G.  S.  Corrado,  and  J.  Dean,
“Distributed  representations  of  words  and  phrases  and  their
compositionality,” in Proc. Advances in Neural Information Processing
Systems, 2013, pp. 3111–3119.

[53]

 C. J. Geyer, “Introduction to Markov chain Monte Carlo,” Handbook of
Markov Chain Monte Carlo, vol. 20116022, p. 45, 2011.

[54]

 D.  P.  Kingma  and  M.  Welling, “Auto-encoding  variational  Bayes,”
arXiv: Machine Learning, 2013.

[55]

 L. Devroye, “Sample-based non-uniform random variate generation,” in
Proc. 18th Conf. Winter Simulation, 1986, pp. 260–265.

[56]

 C.  Robert  and  G.  Casella, Monte  Carlo  Statistical  Methods.  Springer
Science & Business Media, 2013.

[57]

 P.  Sen,  G.  Namata,  M.  Bilgic,  L.  Getoor,  B.  Galligher,  and  T.
EliassiRad, “Collective  classification  in  network  data,” AI Magazine,
vol. 29, no. 3, pp. 93–93, 2008.

[58]

 J. Klicpera, S. Weißenberger, and S. Günnemann, “Diffusion improves
graph learning,” arXiv preprint arXiv: 1911.05485, 2019.

[59]

 Z.  Yang,  W.  W.  Cohen,  and  R.  Salakhutdinov, “Revisiting
semisupervised  learning  with  graph  embeddings,” in Proc. Int.  Conf.
Machine Learning, 2016.

[60]

 A. Carlson,  J.  Betteridge,  B.  Kisiel,  B.  Settles,  E.  R.  Hruschka,  and T.
M.  Mitchell, “Toward  an  architecture  for  never-ending  language
learning,” in Proc. 24th AAAI Conf. Artificial Intelligence, 2010.

[61]

 B. Dalvi,  A. Mishra, and W. W. Cohen, “Hierarchical semi-supervised
classification with incomplete class hierarchies,” in Proc. 9th ACM Int.
Conf. Web Search and Data Mining, 2016, pp. 193–202.

[62]

 C.  Zhuang  and  Q.  Ma, “Dual  graph  convolutional  networks  for
graphbased  semi-supervised  classification,” in Proc. Int.  World  Wide
Web Conf. Steering Committee, 2018, pp. 499–508.

[63]

 B. Jiang, Z. Zhang, D. Lin, and J. Tang, “Graph learning-convolutional
networks,” in Proc. Computer Vision and Pattern Recognition, 2019.

[64]

 B. Jiang and D.  Lin, “Graph laplacian regularized graph convolutional
networks  for  semi-supervised  learning,” arXiv  preprint  arXiv:
1809.09839, 2018.

[65]

 Y.  Feng,  H.  You,  Z.  Zhang,  R.  Ji,  and  Y.  Gao, “Hypergraph  neural
networks,” in Proc. AAAI Conf. Artificial Intelligence, vol. 33, 2019, pp.
3558–3565.

[66]

 L.  V.  Der  Maaten  and  G.  E.  Hinton, “Visualizing  data  using  t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[67]

 P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation  of  cluster  analysis,” Journal  of  Computational  and  Applied
Mathematics, vol. 20, no. 1, pp. 53–65, 1987.

[68]

Xiaobin  Hong received  the  B.S.  degree  from  the
School of Computer Science and Technology, Anhui
University,  in  2018,  and  the  M.Sc.  degree  from  the
School  of  Computer  Science  and  Engineering,
Nanjing  University  of  Science  and  Technology,  in
2021.  His  research  interests  include  graph  neural
networks,  graph  embedding  learning,  and  their
application in the social network.

Tong Zhang received the B.S. degree in information
science and technology from Southeast University in
2011, the M.S. degree from the Research Center for
Learning Science, Southeast University, in 2014, and
the  Ph.D.  degree  from  the  School  of  Information
Science  and  Engineering,  Southeast  University,  in
2018. He is now working in the School of Computer
Science  and  Engineering,  Nanjing  University  of
Science  and  Technology.  His  research  interests
include pattern recognition, affective computing, and

computer vision.

Zhen Cui received the B.S., M.S., and Ph.D. degrees
from  Shandong  Normal  University,  Sun  Yatsen
University,  and  Institute  of  Computing  Technology
(ICT), Chinese Academy of Sciences, in 2004, 2006,
and 2014, respectively. He was a Research Fellow in
the  Department  of  Electrical  and  Computer
Engineering  at  National  University  of  Singapore
(NUS) from 2014 to 2015. He also spent half a year
as  a  Research  Assistant  on  Nanyang  Technological
University  (NTU)  from  Jun.  2012  to  Dec.  2012.

Currently, he is a Professor of Nanjing University of Science and Technology.
His  research  interests  mainly  include  deep  learning,  computer  vision  and
pattern recognition.

Jian  Yang received  the  Ph.D.  degree  from  Nanjing
University  of  Science  and  Technology  (NUST),  on
the  subject  of  pattern  recognition  and  intelligence
systems  in  2002.  In  2003,  he  was  a  Postdoctoral
Researcher at the University of Zaragoza. From 2004
to 2006, he was a Postdoctoral Fellow at Biometrics
Centre  of  Hong Kong Polytechnic  University.  From
2006  to  2007,  he  was  a  Postdoctoral  Fellow  at
Department  of  Computer  Science  of  New  Jersey
Institute  of  Technology.  Now,  he  is  a  Chang-Jiang

Professor in the School of Computer Science and Technology of NUST. He is
the  author  of  more  than  100  scientific  papers  in  pattern  recognition  and
computer vision. His journal papers have been cited more than 4000 times in
the  Web  of  Science,  and  9000  times  in  the  Web  of  Scholar  Google.  His
research  interests  include  pattern  recognition,  computer  vision  and  machine
learning. He is/was an Associate Editor of Pattern Recognition Letters, IEEE
Trans. Neural Networks and Learning Systems, and Neurocomputing. He is a
Fellow of IAPR.

 1708 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 10, OCTOBER 2021

http://dx.doi.org/10.1109/TBDATA.2020.2964544
https://doi.org/10.1109/TBDATA.2020.2964544
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.1109/TBDATA.2020.2964544
https://doi.org/10.1109/TBDATA.2020.2964544
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.1109/TBDATA.2020.2964544
https://doi.org/10.1109/TBDATA.2020.2964544
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.1109/TBDATA.2020.2964544
https://doi.org/10.1109/TBDATA.2020.2964544
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.1109/TBDATA.2020.2964544
https://doi.org/10.1109/TBDATA.2020.2964544
http://dx.doi.org/10.1609/aimag.v29i3.2157

	I Introduction
	II Related Work
	A Graph Convolutional Neural Networks
	B Graph Clustering
	C Random Walk
	D Variational Inference

	III VG-GCN
	A Notations
	B Overview
	C Hierarchically-Coarsened Random Walk
	D Gridding
	E Variational Convolution

	IV Algorithm and Analysis
	V Experiments
	A Datasets
	B Baseline Methods
	C Experiment Setting
	D Experiment Results
	E Ablation Study and Parameter Sensitivity

	VI Conclusion

