

Variational Gridded Graph Convolution Network
for Node Classification

Xiaobin Hong, Tong Zhang, Zhen Cui, and Jian Yang

 Abstract—The existing graph convolution methods usually
suffer high computational burdens, large memory requirements,
and intractable batch-processing. In this paper, we propose a
high-efficient variational gridded graph convolution network
(VG-GCN) to encode non-regular graph data, which overcomes
all these aforementioned problems. To capture graph topology
structures efficiently, in the proposed framework, we propose a
hierarchically-coarsened random walk (hcr-walk) by taking
advantage of the classic random walk and node/edge
encapsulation. The hcr-walk greatly mitigates the problem of
exponentially explosive sampling times which occur in the classic
version, while preserving graph structures well. To efficiently
encode local hcr-walk around one reference node, we project hcr-
walk into an ordered space to form image-like grid data, which
favors those conventional convolution networks. Instead of the
direct 2-D convolution filtering, a variational convolution block
(VCB) is designed to model the distribution of the random-
sampling hcr-walk inspired by the well-formulated variational
inference. We experimentally validate the efficiency and
effectiveness of our proposed VG-GCN, which has high
computation speed, and the comparable or even better
performance when compared with baseline GCNs.
 Index Terms—Graph coarsening, gridding, node classification,
random walk, variational convolution.

I. Introduction

IN recent years, convolutional neural networks (CNNs) [1]
have achieved great success in a variety of machine

learning tasks such as object detection [2], [3], machine
translation [4], and speech recognition [5]. Basically, CNNs
aim to explore the local correlation through neighborhood
convolution, and are rather sophisticated to encode Euclidean
structure data w.r.t. shape-gridded images and videos. In real-
world applications, however, there is a large amount of non-
Euclidean structure data such as social networks [6], citation

networks [7], knowledge graphs [8], protein-protein
interaction [9], and time series system [10]–[14], which are
usual non-grid data and cannot be habitually encoded with the
conventional convolution.

As graphs are natural and frequently-used to describe non-
grid data, researchers have recently attempted to introduce
convolution filtering into graph modeling, which is called
graph convolution or graph convolution network (GCN).
Generally, they fall into two categories: spectral based
approaches [15]–[22] and spatial based approaches [23]–[26].

O(N3) O(Ke)

K = 1 λmax = 2

Spectral based approaches employ the recent emerging
spectral graph theory to filter signals in the frequency domain
of graph topology. Bruna et al. [15] proposed the first spectral
convolution neural network (Spectral CNN), which defines
the filter as a set of learnable parameters to process graph
signals. Chebyshev Spectral CNN (ChebNet) [16] defines the
Chebyshev polynomial of eigenvector diagonal as the
convolutional filter, which avoids the computation of the
graph Fourier basis, reducing the computation complexity
from to (where N is the number of nodes, e is
the number of edges, and K is the number of engine vectors).
Kipf and Welling [17] proposed the most commonly used
GCN, which is essentially a first-order approximation of
ChebNet assuming and the max-eigenvalue .
Wu et al. [22] proposes a disordered graph convolutional
neural network (DGCNN) based on the Gaussian Mixture
Model, which extends CNN by adding a preprocessing layer
called disordered graph convolutional layer (DGCL). DGCL
uses a mixture of Gaussian functions to achieve the mapping
between the convolution kernel and nearby nodes in the graph.
Besides, some other GCN variants have also been proposed,
including Hessian GCN (HesGCN) [19] and Hypergraph p-
Laplacian GCN (HpLapGCN) [20]. Specifically, HesGCN
and HpLapGCN belong to the first-order variant of GCN,
while TGCN [21] is the second-order approximation of GCN.

These spectral based methods above are well-supported by
the strong theory of graph signals, but they usually suffer high
computational burdens because of the eigenvalue decompo-
sition on graph topology. To mitigate this problem, the fast
approximation algorithm [27]–[29] defines convolution
filtering as a recursive calculation on graph topology, which
actually may belong to the category of spatial convolution.

Spatial based approaches often use explicitly spatial edge-
connection relations to aggregate those nodes locally adjacent
to one reference node. The local aggregation with mean/sum/
max operation on neighbor nodes cannot yet satisfy the
Weisfeiler-Lehman (WL) test [30], where non-isomorphism

Manuscript received January 10, 2021; revised March 5, 2021 and April 4,

2021; accepted April 17, 2021. This work was supported by the Natural
Science Foundation of Jiangsu Province (BK20190019, BK20190452), the
National Natural Science Foundation of China (62072244, 61906094), and
the Natural Science Foundation of Shandong Province (ZR2020LZH008).
This work was partly collaborated with State Key Laboratory of High-
end Server and Storage Technology. Recommended by Associate Editor Xin
Luo. (X. B. Hong and T. Zhang contributed equally to this work.
Corresponding author: Zhen Cui.)

Citation: X. B. Hong, T. Zhang, Z. Cui, and J. Yang, “Variational gridded
graph convolution network for node classification,” IEEE/CAA J. Autom.
Sinica, vol. 8, no. 10, pp. 1697–1708, Oct. 2021.

The authors are with the Key Laboratory of Intelligent Perception and
Systems for High-Dimensional Information of Ministry of Education, School
of Computer Science and Engineering, Nanjing University of Science and
Technology, Nanjing 210094, China (e-mail: xbhong@njust.edu.cn;
tong.zhang@njust.edu.cn; zhen.cui@njust.edu.cn; csjyang@njust.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2021.1004201

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 10, OCTOBER 2021 1697

http://ieeexplore.ieee.org
https://doi.org/10.1109/JAS.2021.1004201

O(Nmld2)

graph structures need different filtering responses. The critical
reason is that graph topology structures are degraded to
certain-degree confusion after aggregation, even though the
recent graph attention networks (GAT) [31] attempts to adap-
tively/discriminatively aggregate local neighbor nodes with
different weights learnt by the attention mechanism between
one central node and its neighbor nodes. Moreover, spatial
based GCNs usually need to optimize the entire graph during
training due to the intractability of batch-processing, which
will result in high-memory requirements for large-scale
graphs and thus cannot run on plain platforms. This means
that, when graph structures change with newly-added/deleted
nodes or links, the GCN models should be well-restarted or
even re-trained for new structures. In addition, the time
complexity of spatial based GCNs will be exponentially
increased with the receptive field size (w.r.t. the hop step l),
i.e., in each convolution layer, where m denotes
average degree of nodes, and d is the dimension of input
signal.

O(Nml)

m≫ 2

m̃
m̃

m̃

In this paper, we propose a high-efficient variational
gridded graph convolution network (VG-GCN) with high-
computation efficiency, low-memory cost, easy batch-process,
and comparable or even better performance when compared
with the baseline GCNs. To efficiently capture local
structures, we introduce the random sampling strategy through
random walks, which can well preserve graph topology under
randomly sampling sufficient walks [32], [33]. As the quantity
of walks has the exponentially-explosive increase with the
walk step, i.e., , the burden of sampling sufficient
walks tends to overwhelm the entire algorithm especially for
the larger node degree . Instead of the original random
walk, specifically, we propose a hierarchically-coarsened
random walk (hcr-walk) to reduce sampling times. The
strategy of hcr-walk can efficiently reduce traversal edges
through random combinations (to form hyper-edge) of
connection edges during walking. As a result, the hcr-walk
balances the advantages of random walk as well as node
aggregation. Under the fixed hyper-edge number , the hcr-
walk will fall into a deep-first traversal on -tree, whose
height may be limited in the radius of graph to cover the
global receptive field. In view of the limited height, as well as
the small value, a small amount of sampling times could
well preserve most information of topology structures as well
as node signals.

To efficiently encode the local hcr-walk around each
reference node, we project the hcr-walk onto an ordered space
to form image-like grid-shape data, which better favors those
conventional convolution networks. Thus, a 2-D convolution
filtering can be performed in the normalized hcr-walk space to
encode the correlation of within-walk adjacencies and cross
adjacent walks. To characterize the uncertainty of latent
feature representation, we design a 2-D variational convolu-
tion block (VCB) inspired by the recent variational inference,
rather than directly adopting 2-D convolution filtering. The
benefit of variational convolution is that the probability
distribution of random sampled walks could be well modeled

and the performance could be further boosted. The proposed
hcr-walk can be framed in an end-to-end neural network with
high running speed even on large-scale graphs.

Our contributions are three-fold:
1) We propose the hcr-walk to describe local topology

structures of graphs, which can efficiently mitigate the
problem of exponentially-explosive sampling times occurring
in the original random walk.

2) We project the hcr-walk onto the grid-shape space and
then introduce 2-D variational convolution to describe the
uncertainty of latent features, which makes the convolution
operation on graphs more efficient and flexible, just as the
standard convolution on images, and well support batch-
processing.

3) We experimentally validate the efficiency and effective-
ness of our proposed VG-GCN, which has a high-efficient
computation speed, and comparable or even better perfor-
mance when compared with those baseline GCNs.

II. Related Work

In this section, we will introduce previous literatures which
are related to our work. Generally, they can be divided into
three parts: graph convolutional neural networks, random
walk, and variational inference.

A. Graph Convolutional Neural Networks
With the rapid development of deep learning, more and

more graph convolutional neural network models [34]–[37]
are proposed to deal with the irregular data structure of
graphs. Compared with regular convolutional neural networks
on structured data, this is a challenge since each node’s
neighborhood size varies in graphs, while the regular
convolutional operation requires fixed local neighborhood. To
address this problem, the graph convolutional neural networks
fall into two categories, spectral-based convolution and
spatial-based convolution. Spectral-based filtering method
was first proposed by Bruna et al. [15]. It defines the filter
operators in spectral domain, and then implements a series of
convolution operations through the Laplace decomposition of
graphs. Because the spectrum filter includes the process of
matrix eigenvalue decomposition, the computational comple-
xity is generally high, especially for graphs with a large
number of nodes. To alleviate the computation burden,
Defferrard et al. [16] proposed a local spectral filtering
method, which approximates the frequency responses with the
Chebyshev polynomial. Spatial-based filtering methods
simulate the image processing approach of regular
convolutional neural networks, and employ convolution based
on nodes’ spatial relations. The general approach of spatial
convolution is to construct the regular neighborhood of nodes
through sampling (discarding a part of nodes if the neighbor
number exceeds while repeating a part of nodes if the
neighbor number is insufficient), and then carry out the
convolution operation with the convolution kernel of rules.
According to whether the data to be predicted can be known
from the model in training stages, it can be divided into
transductive learning [38] and inductive learning [39].

 1698 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 10, OCTOBER 2021

Specifically, for the inductive learning, the data to be
predicted is not accessible during training, and the data of the
model may be in an “open world”.

B. Graph Clustering
G

V1, . . . ,VK

Graph clustering aims to depart a complete graph to K
disjoint subsets . The vertices within clusters are
densely connected, while the vertices in different clusters are
sparsely connected. Graph clustering plays an important role
in community detection [40]–[42], telecommunication
networks [43], and email analysis [44]. He et al. [45] propo-
sed a dubbed contextual correlation preserving multiview
featured graph clustering (CCPMVFGC) for discovering clus-
ters in graphs with multiview vertex features. To address the
problem of identifying clusters in attributed graphs, Hu et al.
[46] proposed an inductive clustering algorithm (MICAG) for
attributed graphs from an alternative view. To overcome the
problem where common clustering models are only applicable
to complex networks where the attribute information is
composed of attributes in binary form, Hu et al. [47] proposed
a three-layer node-attribute-value hierarchical structure to
describe the attribute information in a flexible and
interpretable manner.

C. Random Walk
Random walk is an effective method to get graph

embedding. It is especially useful in the situation that the
graph is partially visible or the graph is too large to measure in
its entirety. Given a graph composed of nodes and the
connection between nodes, walk paths can be obtained by
selecting the start nodes and then executing random walk with
certain sampling strategies. The commonly used random walk
strategies generally include the truncated random walk
[48]–[50] and the second-order random walk [51]. Analogous
to tasks in natural language processing where all the nodes in
a graph constitute a dictionary, a walk path is regarded as a
sentence, and a node in the path is regarded as a word. Graph
embedding can be learned by adopting the continuous bag-of-
words (CBOW) model [52] or the Skip-gram model [53].
Specifically, the CBOW model uses context to predict the
central node embedding, while the Skip-gram model predicts
the context nodes based on the central node embedding.
Among them, Skip-gram model is the most widely used one.
Skip-gram aims to maximize the co-occurrence probability
among the words that appear within a window w. Among
various graph embedding methods based on random walk,
DeepWalk and node2vec are two typical examples.

vi log Pr(vi−k, . . . ,vi−1,vi+1, . . . ,
vi+k |Yi) 2k+1

1) DeepWalk: DeepWalk preserves the high-order proxi-
mity between nodes by maximizing the co-occurrence
probability of the last k nodes and next k nodes in the path
centered at vertex : maximizing

, where is the walk length. It produces lots of
walks and optimizes the logarithmic probability of all paths.

2) node2vec: node2vec controls the partial random walk on
the graph by two hyper-parameters p and q, which can be seen
as providing a trade-off between breadth-first (BFS) and
depth-first (DFS) graph searching, and hence produces higher-
quality and more informative embedding than DeepWalk.

D. Variational Inference
Variational inference is a fast and effective method from

machine learning that approximates probability densities for a
large amount of data. In Bayesian statics, the inference of
unknown quantities can be regarded as the calculation of
posterior probability, which is usually difficult to calculate.
The usual approach is to make an approximation using the
Markov Chain Monte Carlo (MCMC) algorithm [54], which is
slow for large amounts of data due to the sampling. Different
from MCMC, the idea behind variational inference is to first
posit a family of densities based on latent variables, and then
to find the member of that family which is close to the target.
Specifically, the degree of closeness is usually described by
the Kullback-Leibler (KL) divergence. Moreover, Kingma
and Welling [55] proposed the reparameterization trick to
solve the non-differentiable problem in optimization caused
by the sampling of the involved latent variables.

III. VG-GCN

In this section, we will introduce our VG-GCN in detail. We
first define the notations used in this paper and overview the
entire architecture of VG-GCN, then introduce the main
modules of VG-GCN, including hcr-walk, gridding, and
variational convolution.

A. Notations
G = {V,E,X} V,E

N = |V|
e = |E|

G
X ∈ RN×d = [xT

1 ; . . . ;xT
N] xi

Y ∈ RN×c

A ∈ RN×N

A(i, j)

T = T0+T1+ · · ·+Th T0
T1 · · ·Th

h = 2 m̃

k1× k2

We use to represent a graph where
denote the sets of nodes and edges, respectively, and the
numbers of the node and edge sets are denoted as and

. Each node is associated with a d-dimension
signal/feature vector, so the signals of graph form a matrix

 where is the signal vector of the i-th
node. For the semi-supervised node classification, the
expected output is a label matrix in which c is the
total class number. To describe the adjacent relationship
among nodes, the adjacency matrix is defined as
where the element located at the i-th row and j-th column
indicates the connection weight between the i-th and j-th
nodes. In hcr-walk, we use L to represent the maximum walk
steps, T for the sampling times from each starting nodes
(, where for original graph, and

 for different hierarchical coarsening graphs. In our
experiments), and for the maximum number of edges
of the anchor nodes. The average value of node degrees is
denoted by m. Besides, in variational convolution, the 2-D
kernel size of convolutional filters is denoted as .

B. Overview
The overall network framework is shown in Fig. 1, where

the input is the graph-structured data. To illustrate the
convolution process, we take the corresponding local
subgraph (i.e., local receptive field) around one node as an
example. In order to aggregate topological information of
different levels of nodes, we execute graph coarsening on the
input graph according to different coarsen ratios, and then
random walk on these hierarchical graphs to capture the local
structures; see Section III-C. Through random walk based on

HONG et al.: VARIATIONAL GRIDDED GRAPH CONVOLUTION NETWORK FOR NODE CLASSIFICATION 1699

T ×L

d×T ×L

hierarchically coarsening, the hcr-walk could effectively
mitigate the problem of exponentially-explosive increases of
sampled walks incurred in the original random walk as
sufficient sampling could well guarantee to cover graph
structures. Next, the sampled walks are adaptively gridded
into an ordered space through the computation of correlation
to the first principal component of random-walks; see Section
III-D. The gridding walks are spanned to a 2-D plane of ,
which thus favors the conventional convolution. If stacking
multi-dimensional signals, the gridded representation of local
subgraph is a 3-D tensor of . Thus, the high-efficient
and powerful CNNs run on images can be extended for this
case to encode the correlation of within-walk adjacencies and
cross adjacent walks. To describe the variations of latent
feature representation, we introduce variational inference into
the 2-D convolution process, referred to as the variation
convolution block, to encode the distribution of random-walks
therein. Finally, the output features of variation convolution
are passed through a fully connected layer and a softmax
function for node classification.

C. Hierarchically-Coarsened Random Walk
The random sampling strategy is introduced to characterize

the topology structure of local receptive fields. There are two
critical questions which need to be solved: i) random sampling
should well preserve topology property of original graph, and
ii) sampling times should be as few as possible for high-
efficient computation as well as low-memory requirement.
The first condition dedicates to the accuracy of representation,
while the second one focuses on the efficiency of learning.
Random walk can satisfy the first condition well under the
sufficient samplings, but the sampling complexity heavily
depends on node degrees during traversals on graph. Given

mt

m = 10 t = 8
10 000 000

the average node degree m and walk length t, the
combinatorial number of walks is , which has the
exponentially-explosive quantity when m is a bit large
(especially density graph) even for a small walk step. For
example, suppose and , the combinatorial walks
can reach the number of for each staring node. In
order to guarantee the accuracy in the first condition, the
practical sampling times might be huge even if a small
sampling ratio is taken. It will cause high-computation
burdens and require high storage space.

G1 = {V1,E1,X1}
p1

G1 G2 = {V2,E2,X2}
|V1| |V2| G1 G2

|V1| |V2| |V2| = ⌈|V1| × p1⌉ ⌈·⌉
G1

|V2| p1

G1

E1

G2

V2
(i) V2

(j)

G2 m1

m2 G1

To address this problem, we extend the random walk to
hierarchically-coarsened random walk by leveraging the
powerful topology preservation ability of random walk and
the high efficiency of random aggregation. The schematic
diagram of graph coarsening is shown in Fig. 2. If we use

 to denote the original graph before
coarsening and to denote the coarsen ration, the coarsening
graph for can be represented as , where

 and represent the numbers of nodes in and .
Specifically, and satisfy , where
means round up to an integer. We randomly seeded with

 cluster seeds based on the coarsen ratio , and the nodes
in converge to each cluster seed according to the adjacency
relationship in . The connection relation of coarsening
graph is defined by the connection and the number of
connections among the clusters. For example, and
denote node i and node j in , they are composed of and

 nodes in

V2
(i) = {V1

(k1),V1
(k1+1), . . . ,V1

(k1+m1−1)}
V2

(j) = {V1
(k2),V1

(k2+1), . . . ,V1
(k2+m2−1)}. (1)

Considering that the number of connections between cluster

2 3 4 2
2 3 4 6

1

1 2 3 4 2

1

1

1

1 2 3 4 11

C

1

1

1

1

1

1

1 2 3 4 5

1 2 1

X

Z

Variational convolution PredictionGridded walks

Gridding

1 2 3 4 5

1 2 1

1 6 7 8 9

17 11

17 11

1 6 7 8 9

Random walk

ϕ

𝒢
1

𝒢
2

G0 G1 G2Fig. 1. The framework of our proposed VG-GCN. The description can be found in Section III-B. Specifically, denotes the origin graph, and , are the

coarsened graphs with different coarsening ratios.

1

2

7 0

6

4

3

5

24

22

13

20

1221 18
11

25

15

16

17

14

9

23

10

78

0

6

5
1

19

2

34

9

10

78

0

6

51

2

3
4

11
12

13

14

15

16

17

18

19
20

21

22

23

24

25

Graph

Coarsening

Fig. 2. Graph coarsening with the coarsen ratio of 0.3.

 1700 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 10, OCTOBER 2021

A2
(i, j) V2

(i) V2
(j)

nodes is not consistent, we processed the coarsening graph
into a weighted graph (For consistency, the original unweight-
ed graph can convert to the weighted graph according to the
node’s degree). The weight between and can
be computed as

A2
(i, j) =

∑
v∈V2

(i),u∈V2
(j)
E1

(u,v)

∑
v∈V2

(i),u∈V1

E1
(u,v) . (2)

The feature of the node in coarsening graph is related to the
nodes belonging to the cluster. In graph learning task, the
larger the degree of the node, the more important the node (for
example, in social networks, large degree nodes represent
popular users and play a more important role in pattern
mining). Therefore, the degree of nodes in the cluster can be
used as the weight of their feature synthesis

X2
(i) =

∑
v∈V2

(i)

Dv∑
u∈V2

(i)
Du

X1
(v) (3)

Dv

Ai Gi

where denotes the degree of node v. We construct the
hierarchical coarsening graphs by coarsening the input
original graph according to different coarsen ratios, and then
execute random walk on the original graph and hierarchical
graphs. We employ the alias sampling method [56] to sample
truncated random walks from the discrete probability
distribution in for hierarchical graph , and concatenate
the paths which belong to the same start node. The walks on
different hierarchical graphs can aggregate the graph
topologies with few sampling times, high-efficient compu-
tation, and low-memory requirement.

D. Gridding

d×T ×L

One problem of the classic random walk is the irregularity
along different paths caused by random sampling, which
makes it rather challenging to exploit the underlying local
correlation across adjacent walks. To solve this problem, we
perform gridding on the output features of random-walks to
project them into an ordered space. Based on this operation,
the gridding paths are spanned to a 2-D plane based on two
axes, i.e., T and L, representing the time of sampling and the
number of walk step, respectively. The operation of gridding
brings one notable benefit that the high-efficient and powerful
CNNs run on images can be extended for the paths to jointly
encode the correlation of within-walk adjacencies and cross
adjacent walks. For multi-dimensional signals, the gridded
representation of local subgraph may be a 3-D tensor of

, which is also suitable for the application of CNN.

D ∈ Rd×T×L

{d1, . . . ,dT }
di ∈ R(d×L)

To adaptively capture the correlation among random paths,
we conduct gridding from the perspective of distribution and
consider each sampled path based on its correlation to the first
principal component of hcr-walk. For the hcr-walk on one
node with the representation denoted as , we first
split it into a set of path samples denoted as along
the sampling time axis T, where is the vectorized
representation of the i-th path sample. For gridding, the
clustering center of path samples is first calculated as

dc =
1
T

T∑
i=1

di. (4)

Then, the correlation between the i-th path sample and the
cluster center is defined as follows:

S i =
dT

i dc

∥di∥× ∥dc∥
. (5)

Then, the path of each node is gridded based on its
corresponding value correlation related to the cluster center.

E. Variational Convolution

D̃
H = f (D̃) D̃ ∈ Rb×d×T×L

f (·)

k× k
k1× k2

L = 2

Variational convolution is used to characterize the
uncertainty of latent feature representation, which is inspired
by the variational inference. We stack multiple 2-D
convolutional layers on the ordered grid-like feature map :

, where is the output of gridding
operation, and denotes the convolutional layers. We view
the path number T and the walk length L as the height and
width in one image, and use the feature dimension d to
represent the in-channel of convolutional layers. Because of
the dimensions of T and L contain the practical structure
significance of the graph, instead of the standard convolution
kernel (), we employ an irregular convolution kernel
() to better aggregate the neighborhood structure
information sampled by the hcr-walk and the node
information in different size of receptive field. For one start
node, the irregular kernel collects the depth information from
the L dimension and the breadth information from the T
dimension, which performs as the local aggregation process
with an increasing receptive field. Ideally, if and the
central node’s first neighbor number is T, our convolutional
layer is equal to one layer of GCN.

vi Hi

Hi

Hi

For each start node , we get the feature representation
from stacked convolutional layers. Then, we adopt VCB to
describe the probability distribution of node’s aggregated
feature representation . The structure of VCB is shown in
Fig. 3. According to the theory of variational inference, the
marginal likelihood of can be written as

log pθ(Hi) = KL(qϕ(Z|Hi)||pθ(Z|Hi))+L(θ,ϕ;Hi). (6)

ϵ~N(0,1)

H

U

∑

Z H
^

Fig. 3. Variational convolution block (VCB).

L(θ,ϕ;Hi)

The first term denotes the KL divergence of the
approximate from the true posterior, and the second term

 is called the variational lower bound. According to
the conditional probability formula

pθ(Z|Hi) =
pθ(Z,Hi)

pθ(Hi)
(7)

and the definition of KL divergence

HONG et al.: VARIATIONAL GRIDDED GRAPH CONVOLUTION NETWORK FOR NODE CLASSIFICATION 1701

KL(qϕ(Z|Hi)||pθ(Z|Hi)) = Eqϕ log
qϕ(Z|Hi)
pθ(Z|Hi)

. (8)

Then, (6) can be rewritten as

L(θ,ϕ;Hi) = −KL(qϕ(Z|Hi)||pθ(Z))

+Eqϕ(Z|H)[log pθ(Hi|Z)]. (9)

Z = g(H, ϵ), ϵ ∼ N(0,1)

Z
Z ∼ N(0,1)

Hi

We can use Monte Carlo sampling [57] to approximate the
expectation of the second logarithmic likelihood term in (9),
and adopt reparameterization trick ()
to make the process of calculating parameter gradient be
differentiable. Let the prior of denote the standard normal
distribution: , the resulting estimator for this model
and datapoint is

L(θ,ϕ;Hi) ≃
1
2

J∑
j=1

(1+ log(Σ2
j)−U2

j −Σ2
j)

+Eqϕ(Z|H)[log pθ(Hi|Z)] (10)

Z = g(H, ϵ) = U+Σ⊙ ϵ ϵ ∼ N(0,1)

U
Σ

where , and . Different from
common variational models, we creatively use the two-
dimensional convolution kernel to generate mean matrix
and covariance matrix .

U(x,y)
j = σ(b j+

k1−1∑
p=0

k2−1∑
q=0

wpq
j H(x+p)(y+q)) (11)

Σ
(x,y)
j = e

σ(b j+
k1−1∑
p=0

k2−1∑
q=0

wpq
j H(x+p)(y+q))

(12)

(x,y)
(T,L) k1 k2

wpq
j (p,q)

where j denotes the j-th feature map, denotes the local
position of , and are the height and width of the
kernel, and is the value at the position of the kernel
connect to the j-th feature map.

IV. Algorithm and Analysis

A X

Ŷ L
L1 L2

Our VG-GCN algorithm flow is shown in Algorithm 1. VG-
GCN is an end-to-end online learning model. The inputs are
the adjacency matrices and feature matrices of the
starting nodes, and the outputs are the corresponding predicted
labels . The loss function of the model consists of two
parts: cross-entropy loss and variational lower bound in
(10).

L1 = −
n∑

i=1

yi log(ŷi), L2 =L(θ,ϕ;Hi) (13)

L =L1+αL2 (14)

αwhere is a hyper parameter.

Algorithm 1 VG-GCN

G0 = {V0,E0,X0}
A0 p = {p1, p2}

T = T0 +T1 +T2 inds ∈ Rn Y ∈ Rn×c

W

Input: Original input graph , weighted adjacency
matrix , coarsen ratio set , walk length L, repeat times

, start nodes index , train data labels
and model parameters .

Ŷ ∈ Rn×cOutput: Start nodes’ labels prediction:

G1 = {V1,E1,X1}
G2 = {V2,E2,X2}

A1 A2

1) Construct hierarchical coarsening graphs and
 by graph coarsening operation according to

coarsening ratio set p, calculate the hierarchical weighted adjacency
matrix and

inds

Ti Gi

Xi(i = 0,1,2)

Di ∈ Rn×d×Ti×L

D ∈ Rn×d×T×L

2) Execute random walk for start nodes with L walk length and
repeat times on hierarchical graphs , gather path nodes’ features
from . Concatenate the different feature maps

 from different hierarchical graphs, get the feature map

3) for epoch in range[0, num_epochs] do
D D̃4) Gridding , get the regular and sorted feature map

D̃
H = f (D̃)

5) Execute 2-D convolution operations on the feature map ,
, f is stacked convolution layers

H U Σ

ϵ

ϵ ∼ N(0,1) Z = U+Σ⊙ ϵ

6) Adopt VCB to , simulate the mean and covariance matrix
by convolution kernels, and sample noise from standard normal
distribution (). Calculate the latent variable

Ŷ Z Ŷ Z×Wk +bk)7) Predict nodes’ labels with : = SoftMax(, k
denotes k-th layer

L =L1 +αL28) Calculate model loss (see (13)), back propagation
to update parameters.

9) end

O(nT L
∑K

k=1 dkdk1k2)

dk k1 k2

O(Nml∑K
k=1 dkd)

N ≫ n n = 1060
N = 19 717

For each starting node, we sample T paths with length L in
hcr-walks, so as to ensure that the neighborhood nodes could
be covered as much as possible. The complexity of VG-GCN
is , where n is the number of nodes to be
processed (i.e., training set and testing set), k is the k-th layer,

 is the output dimension of the k-th layer, and and
denote the height and width of convolution kernels,
respectively. The complexity of GCN is and

 in commons (i.e., in Pubmed dataset, and
), indicates the speed of our proposed VG-GCN.

V. Experiments

In this section, we comprehensively evaluate the
effectiveness of our method on five widely used public
datasets: Cora, Citeseer, Pubmed [58], AMZ PHOTOS [59],
and NELL [60]. We first briefly introduce these datasets, then
report our experimental results on them and compare the
performance with other state-of-the-art methods. Finally, we
conduct an ablation study to dissect the proposed model.

A. Datasets
Five public graph-structured datasets are employed to

evaluate our proposed method, including three citation
network datasets (i.e., Cora, Citeseer, Pubmed), a co-purchase
dataset (i.e., AMZ PHOTOS), and a knowledge graph dataset
(i.e., NELL). For fair compassion, the dataset split protocols
of these citation networks strictly follow the widely used ones
in [60]. The overall information about these five datasets is
listed in Table I.

2708 5429

1) Cora: Cora is a citation network about machine learning
papers categorized into seven classes: case-based, genetic
algorithm, neural network, probabilistic method, reinforce-
ment learning, principle learning, and theoretical. In total,
Cora contains nodes and edges, where each node
can be described by a 1433 dimensional vector consisting of

 1702 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 10, OCTOBER 2021

0/1-valued elements. The average degree of nodes in Cora is
about four. For the protocol on this dataset, there are 5.2% of
nodes labeled for training (20 nodes in each class, 140 nodes
in total), 500 nodes for validating, and 1000 nodes for testing.

2) Citeseer: Citeseer depicts a citation network of 3327
nodes and 4732 links, where the nodes are divided into six
classes. Each node can be described by a 3703 dimensional
0/1-valued vector. For evaluation, 3.6% nodes are labeled for
training (20 nodes in each class, 120 nodes in total), and the
numbers of nodes in the validation and test sets are 500 and
1000, respectively, which are as same as those in Cora. Each
node in Citeseer is connected by three nodes in average.

3) AMZ PHOTOS: AMZ PHOTOS is a Co-purchase
dataset. It contains 7487 nodes of 8 classes with 119 043
edges. Each node is described by a 745 dimensions vector,
and the average degree of nodes is 32. This dataset is split by
200/4800/2487 for train/val/test.

4) Pubmed: Pubmed contains 19 717 nodes of three classes
with 44 338 edges. Each node is described by a term frequ-
ency-inverse document frequency (TF-IDF) vector drawn
from a dictionary with 500 terms. For the widely accepted
protocol on this dataset, there are only 0.3% of nodes for
training (20 nodes in each class, 60 nodes in total), 500 nodes
for validating, and 1000 nodes for testing. The average degree
of each node is about five.

eh,r,et eh et

eh,r,et eh,r1

et,r2

5) NELL: NELL dataset is extracted from the never ending
language learning (NELL) knowledge graph [61]. Each
relation in NELL links the selected entities (9897 in total)
with text descriptions in ClueWeb09 [62], and can be
described with a triplet () where and are the head
and tail entity vector, and r denotes the relation between them.
By splitting every triplet () into two edges () and
(), a graph of 65 755 nodes (including relations and enti-
ties) and 266 144 edges can be obtained, where each node can
be described by a 61 278 dimensional vector and approxima-
tely connected by four nodes.

B. Baseline Methods
To verify the superiority of our proposed VG-GCN model,

various state-of-the-art methods are used for performance
comparison. Basically, the results of these baseline methods
are obtained either according to their reported performance in
previously literatures, or through conducting the experiments
based on their released public codes. For the baseline methods
of our implementation, sophisticated hyper-parameter fine-
grained tuning is performed to report their performances.

DeepWalk [48] is a generative model for graph embedding,
which samples multiple walk paths from a graph by the
truncated random walk, and learns the representation by
regarding the paths as sentences, and path nodes as tokens in
natural language processing (NLP). The source code for
DeepWalk is publicly available1. Planetoid [60] is inspired by
the Skipgram [53] model from NLP, and it embeds a graph
through both positive and negative samplings while
considering the node information and graph structure. The
source code of Planetoid is available2. Chebyshev [16] designs
a fast localized graph convolution by employing localized
filters with polynomial parametrization, and adopts graph
coarsening procedure to group together similar vertices. Graph
convolutional networks (GCN) [17] updates the feature
expression of the central node by synthesizing the information
of the gradually expanding sensing nodes in the field. GCN’s
source code is publicly available3. Graph attention networks
(GAT) [31] applies the attention mechanism to graph
convolution. It calculates the attention coefficient between
central node and its neighborhood nodes to express the
different contribution of neighbor connections. Moreover,
GAT has an additional sparse version which is also involved
as the baseline. For these two versions of GAT, the
performance is reported in Table II. GAT’s source code is
publicly available4. Dual graph convolutional networks
(DGCN) [63] executes dual graph convolution based on the
adjacency matrix and positive pointwise mutual information
(PPMI) matrix, respectively, and combines the output of
different convolved data transformations. The source code of
DGCN is publicly available5. Graph learning-convolutional
networks (GLCN) [64] learns a discriminative S to replace the
adjacency matrix A for graph convolution based on the
topological between nodes and on high-dimensional manifold.
gLGCN [65] adds the local invariance constraint to the loss
function that the same label samples should have the same
data distribution. Hypergraph neural networks (HGNN) [66]
designs a hypergraph structure, where one edge can connect
multiple nodes. Then, robust node representation can be
learned by aggregating the node information to the hyper-edge
and then returning the integrated information to each node.

C. Experiment Setting
The parameters of our VG-GCN model are traversed in

certain ranges and finally set when the best performance on
the validation set is obtained. For the basic architecture of the
VG-GCN model, there are two convolutional layers in VCB.
The coarse layers number is 2 and the coarse ratios are 0.8 and
0.4, respectively. In the hcr-walk process, the number of
walks, denoted as T, is set to 15, and the hcr-walk length L is

TABLE I

Graph Datasets Information

Dataset Nodes Edges Degrees Features Labels

Cora 2708 5429 4 1433 7

Citeseer 3327 4732 3 3703 6

AMZ PHOTOS 7487 119 043 32 745 8

Pubmed 19 717 44 338 5 500 3

NELL 65 755 266 144 4 61 278 210

1 https://github.com/phanein/deepwalk
2 https://github.com/kimiyoung/planetoid
3 https://github.com/tkipf/gcn
4 https://github.com/PetarV-/GAT
5 https://github.com/ZhuangCY/DGCN

HONG et al.: VARIATIONAL GRIDDED GRAPH CONVOLUTION NETWORK FOR NODE CLASSIFICATION 1703

https://github.com/phanein/deepwalk
https://github.com/kimiyoung/planetoid
https://github.com/tkipf/gcn
https://github.com/PetarV-/GAT
https://github.com/ZhuangCY/DGCN

5×3
1×1

5. For the convolutional layers, the sizes of convolution
kernels are set to , while in the VCB the convolution
kernel sizes are both set to to produce the mean and
covariance matrices, respectively. During the training process,
we run the model for 500 epochs with the learning rate of 0.01
and dropout rate of 0.5 for tuning the network parameters.

D. Experiment Results
The experimental results of our proposed VG-GCN on the

three citation datasets (Cora, Citeseer, and Pubmed), one co-
purchase dataset (AMZ PHOTOS), and large-scale dataset of
knowledge graph (NELL) are reported in Table II. These
performances are also compared with various state-of-the-art
methods, where the metric of accuracy is employed for
quantitative evaluation of the semi-supervised node classifica-
tion. Our VG-GCN obtains the best results on AMZ
PHOTOS, Pubmed, and NELL datasets (there are 0.05%
performance gain on AMZ PHOTOS, 1.2% on Pubmed, and
4.2% on NELL), and achieves the competitive performances
on the Cora and Citerseer datasets.

We calculated the average and variance of node degree of
five datasets. We found that the degree variances of two small
datasets (Cora and Citeseer) are small (27.3 and 11.4,
respectively), while the other three large scale datasets (AMZ
PHOTOS, Pubmed, and NELL) have the larger degree
variances (55.2, 1852.3, and 2262.6, respectively). Therefore,
we speculate that the reason our VG-GCN does not achieve
the best performance on the two small datasets may be that the
two dataset have fewer random walk patterns and are more
likely to fall into over-smoothing during the training process.
This also shows that our hierarchical coarsening and random
walk can model complex data patterns.

Besides the competitive performance, it should be especially
noticed that our model is more advantageous in computation
efficiency compared with all other baseline methods. We
present the time costs of our VG-GCN for running one epoch

on Cora and Pubmed datasets in Table III, and compare them
with GAT, DGCN, and GCN. For Cora, the smallest dataset,
GAT takes about 7 s per epoch while its sparse version takes
1 s, and DGCN takes about 0.5 s per epoch. The time
consumed by our VG-GCN is 0.05 s, which is much less than
those of GAT and DGCN, while almost the same as GCN.
However, on the large graph Pubmed (19 717 nodes), our VG-
GCN takes about 0.04 s per epoch, and is the fastest compared
with the sparse GAT of 2.5 s per epoch, DGCN of 3.2 s, and
GCN of 0.6 s.

TABLE III

Each Epoch Time Cost on Cora and Pubmed, Compared With
GAT, DGCN, and GCN

Method Cora Pubmed

GAT 7 s 10 s

GAT_sparse 1 s 2.5 s

DGCN 0.5 s 3.2 s

GCN 0.05 s 0.6 s

VG-GCN 0.05 s 0.04 s

The convergence of our VG-GCN on the Nell datasets is
shown in Fig. 4, and is compared with that of DGCN which
also achieves a considerable performance. Both VG-GCN and
DGCN are trained 1000 epochs on NELL dataset. According
to Fig. 4, our VG-GCN can converge faster and obtains better
performances. In terms of running time and accuracy
comparisons, our VG-GCN takes about 6 minutes with the
accuracy of 79.1%. In contrast, DGCN takes about 2.8 hours,
which is 29.2 times that of VG-GCN, while obtaining an
accuracy of 74.9%, which is 4.2% lower.

A
cc

u
ra

cy
 (
%

)

80

70

60

50

40

30

20

10

0

0 200 400 600 800 1000

DGCN

VG-GCN

Epoch

Fig. 4. The convergence on NELL datasets, compared with DGCN.

E. Ablation Study and Parameter Sensitivity
As the proposed VG-GCN achieves promising performance

with high computational efficiency, it is interesting for us to
dissect the model to evaluate the contribution of each part.
Moreover, it is also meaningful to evaluate the sensitivity of
those critical parameters in the VG-GCN model to make clear

TABLE II

Performance of Graph Node Classification, Compared
With DeepWalk, Planetoid, Chebyshev, GCN, GAT,

DGCN, GLCN, GLGCN, and HGNN Methods

Method Cora Citeseer AMZ PHOTOS Pubmed NELL

DeepWalk [48] 67.2% 43.2% 78.82% 65.3% 58.1%

Planetoid [60] 75.7% 64.7% 68.34% 77.2% –

Chebyshev [16] 81.2% 69.8% 79.32% 74.4% –

GCN [17] 81.4% 70.5% 92.08% 79.0% 66.0%

GAT [31] 83.0% 72.5% 53.40% 79.0% –

DGCN [63] 82.5% 72.6% 91.07% 79.3% 74.9%

GLCN [64] 85.5% 72.0% 91.25% 78.3% –

gLGCN-F 82.2% 70.8% – 79.2% –

gLGCN-L 82.7% 71.3% – 79.2% –

gLGCN-F-L [65] 83.3% 71.4% – 79.3% –

HGNN [66] 81.6% – – 80.1% –

VG-GCN 82.7% 71.5% 92.13% 81.3% 79.1%

 1704 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 10, OCTOBER 2021

how their variation influences the performance. Therefore, we
conduct several additional experiments:

1) Comparison between the hcr-walk and random walk. To
verify the superiority of the proposed hcr-walk over random
walk, we simply replace the hcr-walk unit with random-walk
on original graph, and test the performance on the four public
datasets. The results are shown in Table IV.

TABLE IV

Comparison Between Hcr-Walk and Random-Walk

Dataset Random-walk Hcr-walk

Cora 81.8% 82.5%

Citeseer 71.0% 71.5%

Pubmed 79.9% 81.4%

NELL 77.9% 79.5%

2) Evaluation of VCB. To evaluate the effectiveness of the
proposed VCB, we compare its performance with the classic
convolutional layer and MLP-VCB on the four datasets, and
the results are shown in Table V. Specifically, MLP-VCB
means that the calculation of mean and covariance matrices in
VCB are revised to be obtained through multilayer perception
instead of convolutional layers.

TABLE V

Comparison Of Convolutional Layers, MLP-VCB, and VCB

Dataset Convolutional layers MLP-VCB VCB

Cora 81.3% 81.4% 82.5%

Citeseer 70.4% 70.9% 71.6%

Pubmed 79.6% 79.9% 81.0%

NELL 77.4% 78.2% 79.5%

Based on the results of the multiple experiments above, we
can get the following observations:

1) Hcr-walk outperforms classic random walk and promotes
the node classification performance. On all the four evaluated
datasets, the classification accuracies of our hcr-walk are
higher than those of random walk. The performance gain
verifies the effectiveness of our hcr-walk, which constructs
coarsening graphs, while avoiding an explosive growth of
walk paths with increasing walk steps.

2) VCB is effective to promote the node classification task.
Comparing with both convolutional layers and MLP-VCB,
VCB obtains better node classification performances with an
average performance gain of about 1% on the four public
datasets. The performance improvement verifies the superio-

rity of VCB, which encodes the comprehensive correlation of
within-walk adjacencies and cross adjacent walks.

k1,k2Kernel size , hcr-walk numbers T and length L, and
coarsening ratio p are hyper parameters in VG-GCN. To
analyze the sensitivity and value selection of each hyper
parameter, we designed the following comparative experi-
ments.

1) Kernel Size: The non-square 2D convolution kernel is
employed in hcr-walk convolution. The different classification
performance with different kernel sizes on three citation
datasets is plotted in Fig. 5. From the experimental results of
Fig. 5, the irregular convolution kernel with size (5, 3) has
better performance on three datasets. Specifically, (5, 3)
means the cross-path filtering height is 5 and within-path
filtering width is 3.

A
cc

u
ra

cv
y
 (
%

)

85

80

75

70

65

60
2×2 3×2 5×2 3×3 5×3 5×5

Cora
Citeseer
Pubmed

Kernel size

Fig. 5. Classification performance with different kernel sizes on three
citation datasets.

T = 20,L = 5 T = 12,L = 6

2) Hcr-Walk Numbers and Length: The parameter
sensitivity experiments with the hcr-walk numbers T and hcr-
walk length L belonging to one start node are shown in Figs. 6
and 7. For Cora dataset, 15 hcr-walks are sampled for each
node, and the length of 5 is the most appropriate.
() and () are the best combinations
of parameters for Citeseer and Pubmed datasets, respectively.

3) Coarsening Ratio: The hierarchically-coarsened random
walk is employed to leverage the powerful topology
preservation ability of random walk and the high efficiency of
random aggregation. We experimentally compare the effects
of one coarsening layer, two coarsening layers and different
coarsening ratios p on the classification accuracy of Cora
dataset in Table VI. For the two coarsening layers, the
coarsening ratio of the second layer is half of the first. Two
coarsening layers with ratios of (0.8, 0.4) achieve the best
performance.

TABLE VI

Sensitivity of Coarsen Layer Number and Coarse Ratio on Model Performance on Cora Dataset. For Two Coarsen
Layers, We Set the Coarsen Ratio of Second Layer is Half of First Layer

One layer 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Accuracy 79.9% 80.8% 81.4% 80.9% 82.0% 82.0% 81.3% 81.0% 81.2%

Two layers (0.9, 0.45) (0.8, 0.4) (0.7, 0.35) (0.6, 0.3) (0.5, 0.25) (0.4, 0.2) (0.3, 0.15) (0.2, 0.1) (0.1, 0.05)

Accuracy 81.7% 82.9% 81.2% 80.2% 81.7% 81.2% 82.0% 81.3% 81.9%

HONG et al.: VARIATIONAL GRIDDED GRAPH CONVOLUTION NETWORK FOR NODE CLASSIFICATION 1705

[2,8]
4) Convolution Layers: The number of variational convolu-

tion layer is traversed in on Cora dataset, and the
experiments results are listed in Fig. 8. The experimental
results show that the too deep network can not surely achieve
higher classification accuracy, and may cause performance
degradation which may be due to the over-smoothing.

In order to show that our VG-GCN can better capture the
graph local invariance than other methods (GCN), we perform
a standard set of “evolving” t-SNE [67] plots of the test set
embeddings on Cora dataset, given in Fig. 9. The raw features
come from the node original feature matrix, and the GCN and

our VG-GCN embeddings come from the output of the last
layer respectively. Intuitively, our VG-GCN is best placed to
clearly separate different categories of nodes. And from the
perspective of quantitative analysis, the Silhouette score [68]
of our VG-GCN is the largest (The larger the Silhouette score,
the better the clustering effect).

VI. Conclusion

In this paper, we proposed a VG-GCN framework for node
classification. We developed the random walk and proposed
the hcr-walk to effectively avoid possible exponential explo-
sion of walk paths as the path length increases, and cover the
whole neighborhood by coarsening graphs. In order to main-
tain the permutation invariance of the generated paths belong-
ing to the same node of each epoch, we sorted them after
projection and constructed a grid-like feature map for 2-D
convolution. Moreover, we designed a 2-D convolution variati-
onal inference block to learn the probability distribution
characteristics of latent variables in two-dimensional space.
As a result, VG-GCN learns the aggregation pattern of node
topological neighborhood in an inductive way, which can be
easily extended to the inference problem of unknown nodes.
Meanwhile, VG-GCN can process large scale graphs quickly
with the tensor graph structure and consumes less memory.
Experiments on a variety of public datasets verified the
effectiveness of our method for solving the node classification
problem.

A
cc

u
ra

cy
 (
%

)
83.0

81.3

79.7

78.0

76.3

74.7

73.0

71.3

69.7

10 12 14 16 18 20 22 24

Cora

Citeseer

Pubmed

Hcr-walk number T

Fig. 6. The results of VG-GCN model with different hcr-walk numbers on
Cora, Citeseer, and Pubmed datasets.

A
cc

u
ra

cy
 (
%

)

82.8

80.6

78.3

76.1

73.9

71.7

69.4

2 3 4 5 6 7

Cora

Citeseer

Pubmed

Hcr-walk length L

Fig. 7. The results of VG-GCN model with different hcr-walk lengths on
Cora, Citeseer, and Pubmed datasets.

A
cc

u
ra

cy
 (
%

)

80

75

70

65

60

55

50

45

40

35

30
2 3 4 5 6 7 8

Layer numbers

Fig. 8. The results of different variational convolution layers on Cora
dataset.

Sihouette_ score = 0.376

(a) Raw_features

Sihouette_ score = 0.504

(b) GCN

Sihouette_ score = 0.555

(c) VG-GCN (ours)
Fig. 9. t-SNE embeddings of the nodes in the test set of Cora citation network from the raw features (left), GCN model (middle), and our VG-GCN model
(right). Our VG-GCN performs the best clustering effect of embedding among the three plot, and the Silhouette scores support evidence.

 1706 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 10, OCTOBER 2021

References
 Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[1]

 J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. Computer Vision
and Pattern Recognition, 2016, pp. 779–788.

[2]

 S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc.
Advances in Neural Information Processing Systems, 2015, pp. 91–99.

[3]

 T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proc. Empirical
Methods in Natural Language Processing, 2015, pp. 1412–1421.

[4]

 G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A.
Senior, V. Vanhoucke, P. Nguyen, B. Kingsbury, et al., “Deep neural
networks for acoustic modeling in speech recognition,” IEEE Signal
Processing Magazine, vol. 29, 2012.

[5]

 F. Orsini, D. Baracchi, and P. Frasconi, “Shift aggregate extract
networks,” Frontiers in Robotics and AI, p. 42, 2018.

[6]

 J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S.
Tomkins, “The web as a graph: Measurements, models, and methods,”
in Proc. Int. Computing and Combinatorics Conf., Springer, 1999, pp.
1–17.

[7]

 D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, “Scene graph generation by
iterative message passing,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2017, pp. 5410–5419.

[8]

 K. M. Borgwardt, H.-P. Kriegel, S. Vishwanathan, and N. N.
Schraudolph, “Graph kernels for disease outcome prediction from
proteinprotein interaction networks,” in Biocomputing. World
Scientific, 2007, pp. 4–15.

[9]

 X. Luo, H. Wu, H. Yuan, and M. Zhou, “Temporal pattern-aware QoS
prediction via biased non-negative latent factorization of tensors,” IEEE
Trans. Cybernetics, vol. 50, no. 5, pp. 1798–1809, 2019.

[10]

 T. D. Pham, K. Wardell, A. Eklund, and G. Salerud, “Classification of
short time series in early Parkinson’s disease with deep learning of
fuzzy recurrence plots,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6,
pp. 1306–1317, 2019.

[11]

 L. Wei and E. Keogh, “Semi-supervised time series classification,” in
Proc. 12th ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, 2006, pp. 748–753.

[12]

 D. Wu, X. Luo, M. Shang, Y. He, G. Wang, and X. Wu, “A
datacharacteristic-aware latent factor model for web services QoS
prediction,” IEEE Trans. Knowledge and Data Engineering, 2020.

[13]

 X. Luo, M. Zhou, S. Li, Y. Xia, Z.-H. You, Q. Zhu, and H. Leung,
“Incorporation of efficient second-order solvers into latent factor
models for accurate prediction of missing QoS data,” IEEE Trans.
Cybernetics, vol. 48, no. 4, pp. 1216–1228, 2017.

[14]

 J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv preprint arXiv:
1312.6203, 2013.

[15]

 M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,” in
Proc. Advances in Neural Information Processing Systems, 2016, pp.
3844– 3852.

[16]

 T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learning Representations,
2017.

[17]

 R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph convolutional
neural networks,” in Proc. 32nd AAAI Conf. Artificial Intelligence,
2018.

[18]

 S. Fu, W. Liu, D. Tao, Y. Zhou, and L. Nie, “Hesgcn: Hessian graph
convolutional networks for semi-supervised classification,” Information
Sciences, vol. 514, pp. 484–498, 2020.

[19]

 S. Fu, W. Liu, Y. Zhou, and L. Nie, “Hplapgcn: Hypergraph p-laplacian
graph convolutional networks,” Neurocomputing, vol. 362, pp. 166–174,
2019.

[20]

 F. Sichao, L. Weifeng, L. Shuying, and Z. Yicong, “Two-order graph
convolutional networks for semi-supervised classification,” IET Image
Processing, vol. 13, no. 14, pp. 2763–2771, 2019.

[21]

 B. Wu, Y. Liu, B. Lang, and L. Huang, “DGCNN: Disordered graph
convolutional neural network based on the gaussian mixture model,”
Neurocomputing, vol. 321, pp. 346–356, 2018.

[22]

 S. Franco, G. Marco, T. Ah Chung, H. Markus, and M. Gabriele, “The
graph neural network model,” IEEE Trans. Neural Networks, vol. 20,
no. 1, Article No. 61, 2009.

[23]

 W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Neural Information Processing
Systems, 2017.

[24]

 J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Proc. Advances in Neural Information Processing Systems, 2016, pp.
1993–2001.

[25]

 P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V.
Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R.
Faulkner, et al., “Relational inductive biases, deep learning, and graph
networks,” Computing Research Repository, 2018.

[26]

 F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Networks,
vol. 20, no. 1, pp. 61–80, 2008.

[27]

 Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” in Proc. Int. Conf. Learning
Representations, 2016.

[28]

 H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song, “Learning
steadystates of iterative algorithms over graphs,” in Proc. Int. Conf.
Machine Learning, 2018, pp. 1114–1122.

[29]

 K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in Proc. Int. Conf. Learning Representations, 2019.

[30]

 P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y.
Bengio, “Graph attention networks,” in Proc. Int. Conf. Learning
Representations, 2018.

[31]

 L. Lovász, “Random walks on graphs: A survey, combinatorics, Paul
Erdos is eighty,” Lecture Notes in Mathematics, vol. 2, no. 1, pp. 1–46,
1993.

[32]

 X. Hong, T. Zhang, Z. Cui, C. Xu, L. Zhang, and J. Yang, “Fast
hyperwalk gridded convolution on graph,” in Proc. Chinese Conf.
Pattern Recognition and Computer Vision, Springer, 2020, pp. 197–
208.

[33]

 H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between
labeled graphs,” in Proc. 20th Int. Conf. Machine Learning, 2003, pp.
321–328.

[34]

 N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K.
Borgwardt, “Efficient graphlet kernels for large graph comparison,” in
Proc. Artificial Intelligence and Statistics, 2009, pp. 488–495.

[35]

 P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proc. 21st
ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2015,
pp. 1365–1374.

[36]

 C. Morris, K. Kersting, and P. Mutzel, “Glocalized weisfeiler-lehman
graph kernels: Global-local feature maps of graphs,” in Proc. IEEE Int.
Conf. Data Mining, 2017, pp. 327–336.

[37]

 M. Ceci, A. Appice, N. Barile, and D. Malerba, “Transductive learning
from relational data,” in Proc. Int. Workshop on Machine Learning and
Data Mining in Pattern Recognition, 2007, pp. 324–338.

[38]

 R. S. Michalski, “A theory and methodology of inductive learning,” in
Machine Learning. Springer, 1983, pp. 83–134.

[39]

 S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3–5, pp. 75–174, 2010.

[40]

 A. Lancichinetti and S. Fortunato, “Community detection algorithms: A
comparative analysis,” Physical Review E, vol. 80, no. 5, p. 056117,
2009.

[41]

 L. Bai, X. Cheng, J. Liang, and Y. Guo, “Fast graph clustering with a
new description model for community detection,” Information Sciences,
vol. 388, pp. 37–47, 2017.

[42]

 M. Schwartz, Telecommunication Networks: Protocols, Modeling and
Analysis. Addison-Wesley Longman Publishing Co., Inc., 1986.

[43]

 A. Chapanond, M. S. Krishnamoorthy, and B. Yener, “Graph theoretic
and spectral analysis of enron email data,” Computational &
Mathematical Organization Theory, vol. 11, no. 3, pp. 265–281, 2005.

[44]

 T. He, Y. Liu, T. H. Ko, K. C. Chan, and Y.-S. Ong, “Contextual
correlation preserving multiview featured graph clustering,” IEEE

[45]

HONG et al.: VARIATIONAL GRIDDED GRAPH CONVOLUTION NETWORK FOR NODE CLASSIFICATION 1707

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/JAS.2019.1911774
http://dx.doi.org/10.1016/j.ins.2019.11.019
http://dx.doi.org/10.1016/j.ins.2019.11.019
http://dx.doi.org/10.1016/j.neucom.2019.06.068
http://dx.doi.org/10.1049/iet-ipr.2018.6224
http://dx.doi.org/10.1049/iet-ipr.2018.6224
http://dx.doi.org/10.1016/j.neucom.2018.09.008
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1007/BFb0077189
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/JAS.2019.1911774
http://dx.doi.org/10.1016/j.ins.2019.11.019
http://dx.doi.org/10.1016/j.ins.2019.11.019
http://dx.doi.org/10.1016/j.neucom.2019.06.068
http://dx.doi.org/10.1049/iet-ipr.2018.6224
http://dx.doi.org/10.1049/iet-ipr.2018.6224
http://dx.doi.org/10.1016/j.neucom.2018.09.008
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1007/BFb0077189
http://dx.doi.org/10.1016/j.physrep.2009.11.002

Trans. Cybernetics, vol. 50, no. 10, pp. 4318–4331, 2019.
 L. Hu, S. Yang, X. Luo, and M. Zhou, “An algorithm of inductively
identifying clusters from attributed graphs,” IEEE Trans. Big Data,
2020. DOI: 10.1109/TBDATA.2020.2964544

[46]

 L. Hu, K. C. Chan, X. Yuan, and S. Xiong, “A variational Bayesian
framework for cluster analysis in a complex network,” IEEE Trans.
Knowledge and Data Engineering, vol. 32, no. 11, pp. 2115–2128, 2019.

[47]

 B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, 2014, pp. 701–710.

[48]

 H. Zhang, X. Shang, H. Luan, M. Wang, and T.-S. Chua, “Learning
from collective intelligence: Feature learning using social images and
tags,” ACM Transactions on Multimedia Computing, Communications,
and Applications, vol. 13, no. 1, p. 1, 2017.

[49]

 S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep network
representation,” Network, vol. 11, no. 9, p. 12, 2016.

[50]

 A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining, 2016, pp. 855– 864.

[51]

 L. Qiu, Y. Cao, Z. Nie, Y. Yu, and Y. Rui, “Learning word
representation considering proximity and ambiguity,” in Proc. 28th
AAAI Conf. Artificial Intelligence, 2014.

[52]

 T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc. Advances in Neural Information Processing
Systems, 2013, pp. 3111–3119.

[53]

 C. J. Geyer, “Introduction to Markov chain Monte Carlo,” Handbook of
Markov Chain Monte Carlo, vol. 20116022, p. 45, 2011.

[54]

 D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,”
arXiv: Machine Learning, 2013.

[55]

 L. Devroye, “Sample-based non-uniform random variate generation,” in
Proc. 18th Conf. Winter Simulation, 1986, pp. 260–265.

[56]

 C. Robert and G. Casella, Monte Carlo Statistical Methods. Springer
Science & Business Media, 2013.

[57]

 P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T.
EliassiRad, “Collective classification in network data,” AI Magazine,
vol. 29, no. 3, pp. 93–93, 2008.

[58]

 J. Klicpera, S. Weißenberger, and S. Günnemann, “Diffusion improves
graph learning,” arXiv preprint arXiv: 1911.05485, 2019.

[59]

 Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting
semisupervised learning with graph embeddings,” in Proc. Int. Conf.
Machine Learning, 2016.

[60]

 A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, and T.
M. Mitchell, “Toward an architecture for never-ending language
learning,” in Proc. 24th AAAI Conf. Artificial Intelligence, 2010.

[61]

 B. Dalvi, A. Mishra, and W. W. Cohen, “Hierarchical semi-supervised
classification with incomplete class hierarchies,” in Proc. 9th ACM Int.
Conf. Web Search and Data Mining, 2016, pp. 193–202.

[62]

 C. Zhuang and Q. Ma, “Dual graph convolutional networks for
graphbased semi-supervised classification,” in Proc. Int. World Wide
Web Conf. Steering Committee, 2018, pp. 499–508.

[63]

 B. Jiang, Z. Zhang, D. Lin, and J. Tang, “Graph learning-convolutional
networks,” in Proc. Computer Vision and Pattern Recognition, 2019.

[64]

 B. Jiang and D. Lin, “Graph laplacian regularized graph convolutional
networks for semi-supervised learning,” arXiv preprint arXiv:
1809.09839, 2018.

[65]

 Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural
networks,” in Proc. AAAI Conf. Artificial Intelligence, vol. 33, 2019, pp.
3558–3565.

[66]

 L. V. Der Maaten and G. E. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[67]

 P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, no. 1, pp. 53–65, 1987.

[68]

Xiaobin Hong received the B.S. degree from the
School of Computer Science and Technology, Anhui
University, in 2018, and the M.Sc. degree from the
School of Computer Science and Engineering,
Nanjing University of Science and Technology, in
2021. His research interests include graph neural
networks, graph embedding learning, and their
application in the social network.

Tong Zhang received the B.S. degree in information
science and technology from Southeast University in
2011, the M.S. degree from the Research Center for
Learning Science, Southeast University, in 2014, and
the Ph.D. degree from the School of Information
Science and Engineering, Southeast University, in
2018. He is now working in the School of Computer
Science and Engineering, Nanjing University of
Science and Technology. His research interests
include pattern recognition, affective computing, and

computer vision.

Zhen Cui received the B.S., M.S., and Ph.D. degrees
from Shandong Normal University, Sun Yatsen
University, and Institute of Computing Technology
(ICT), Chinese Academy of Sciences, in 2004, 2006,
and 2014, respectively. He was a Research Fellow in
the Department of Electrical and Computer
Engineering at National University of Singapore
(NUS) from 2014 to 2015. He also spent half a year
as a Research Assistant on Nanyang Technological
University (NTU) from Jun. 2012 to Dec. 2012.

Currently, he is a Professor of Nanjing University of Science and Technology.
His research interests mainly include deep learning, computer vision and
pattern recognition.

Jian Yang received the Ph.D. degree from Nanjing
University of Science and Technology (NUST), on
the subject of pattern recognition and intelligence
systems in 2002. In 2003, he was a Postdoctoral
Researcher at the University of Zaragoza. From 2004
to 2006, he was a Postdoctoral Fellow at Biometrics
Centre of Hong Kong Polytechnic University. From
2006 to 2007, he was a Postdoctoral Fellow at
Department of Computer Science of New Jersey
Institute of Technology. Now, he is a Chang-Jiang

Professor in the School of Computer Science and Technology of NUST. He is
the author of more than 100 scientific papers in pattern recognition and
computer vision. His journal papers have been cited more than 4000 times in
the Web of Science, and 9000 times in the Web of Scholar Google. His
research interests include pattern recognition, computer vision and machine
learning. He is/was an Associate Editor of Pattern Recognition Letters, IEEE
Trans. Neural Networks and Learning Systems, and Neurocomputing. He is a
Fellow of IAPR.

 1708 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 10, OCTOBER 2021

http://dx.doi.org/10.1109/TBDATA.2020.2964544
https://doi.org/10.1109/TBDATA.2020.2964544
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.1109/TBDATA.2020.2964544
https://doi.org/10.1109/TBDATA.2020.2964544
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.1109/TBDATA.2020.2964544
https://doi.org/10.1109/TBDATA.2020.2964544
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.1109/TBDATA.2020.2964544
https://doi.org/10.1109/TBDATA.2020.2964544
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.1109/TBDATA.2020.2964544
https://doi.org/10.1109/TBDATA.2020.2964544
http://dx.doi.org/10.1609/aimag.v29i3.2157

	I Introduction
	II Related Work
	A Graph Convolutional Neural Networks
	B Graph Clustering
	C Random Walk
	D Variational Inference

	III VG-GCN
	A Notations
	B Overview
	C Hierarchically-Coarsened Random Walk
	D Gridding
	E Variational Convolution

	IV Algorithm and Analysis
	V Experiments
	A Datasets
	B Baseline Methods
	C Experiment Setting
	D Experiment Results
	E Ablation Study and Parameter Sensitivity

	VI Conclusion

