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Principal component analysis (PCA) is employed to extract the principal components (PCs) present in nuclear mass models for
the first time. The effects from different nuclear mass models are reintegrated and reorganized in the extracted PCs. These PCs are
recombined to build new mass models, which achieve better accuracy than the original theoretical mass models. This comparison
indicates that using the PCA approach, the effects contained in different mass models can be collaborated to improve nuclear

mass predictions.
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1 Introduction

Nuclear masses are extremely important in nuclear physics,
as they reflect many underlying physical effects of nuclear
structure information [1]. Nuclear masses are also crucial for
astrophysics, as they are needed to extract the reaction ener-
gies used to calculate all nuclear reaction rates involved in
stellar evolutions [2-6]. With the development of modern ac-
celerator facilities, approximately 2500 nuclear masses have
been measured thus far [7]. Nevertheless, a large unknown
region in the nuclear landscape cannot be accessed experi-
mentally, at least in the foreseeable future.

Theoretical prediction of nuclear mass has been a massive
challenge in nuclear physics owing to the difficulties in un-
derstanding the nuclear interactions and the quantum many-
body systems. Theoretical prediction of nuclear mass can
be traced back to the macroscopic Weizsdcker mass formula
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based on the liquid drop model (LDM) [8], which includes
the bulk properties of nuclei quite well but lacks other effects.
Efforts have been made in pursuing extensions of the LDM
to include more effects, which are known as macroscopic-
microscopic models [9-12]. Microscopic mass models based
on the nonrelativistic and relativistic density functionals have
also been developed [13-25]. Additionally, the local mass re-
lations such as the Garvey-Kelson relations [26,27], the iso-
baric multiplet mass equation [28], and the residual proton-
neutron interactions [29] are used to predict the masses of
nuclei near the known region.

To precisely describe nuclear masses, one should, in prin-
ciple, properly address all the underlying effects of nuclear
quantum many-body systems, e.g., bulk effects, deformation
effects, shell effects, odd-even effects, and even some un-
known effects. Various models include these effects to dif-
ferent degrees. Some models properly consider only some
of these effects, while other models properly consider only
some other effects. With so many mass models available,
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one may ask, can we extract the major patterns considered
in these models? Moreover, can we refine the nuclear mass
predictions by recombining the extracted patterns?

Recently, machine learning approaches have attracted con-
siderable attention in physics and nuclear physics [30-37] and
have been successfully and widely employed in refining the
predictions of nuclear masses, e.g., the kernel ridge regres-
sion (KRR) [38-43], the radial basis function (RBF) [44-47],
the neural network (NN) [48-52], the Gaussian process
regression [53, 54], the Levenberg-Marquardt neural net-
work [55], the light gradient boosting machine [56], the
Bayesian probability classifier [57], and the probably approx-
imately correct learning [58]. These successes encourage
us to employ statistical techniques to analyze the major ef-
fects contained in nuclear mass models. Principal compo-
nent analysis (PCA) is a popular statistical technique for fea-
ture selection and dimensionality reduction [59, 60]. Thus,
PCA has been applied to the studies of nuclear physics, e.g.,
to remove spurious events in the measurement of 233 de-
cay [61], to evaluate the uncertainty in the neutrino-nucleus
scattering cross section [62], to study event-by-event fluctua-
tions in relativistic heavy-ion collisions [63], to reduce the di-
mensions of many-body problems [64], to optimize the func-
tional derivatives of nuclear energy density functionals [65],
to analyze the correlation of parameters in nuclear energy
density functionals [66], to quantify the uncertainty of empir-
ical shell-model interactions [67], to learn about the number
of effective parameters in the LDM and the Skyrme func-
tional [68], and to define empirical basis functions capturing
the variation in the output of Hartree-Fock-Bogoliubov cal-
culations [69].

Herein, for the first time, the PCA approach is employed to
extract the principal components (PCs) contained in several
widely used nuclear mass models. The commonalities and
differences across different mass models are analyzed with
the help of these PCs. These PCs are then recombined to
build new mass models. This differs from the existing work
of applying PCA to nuclear mass studies [68], where PCA is
employed to learn about the number of effective parameters
in the LDM and the Skyrme functional.

2 Theoretical framework

PCA is a technique used for identifying a set of PCs that cap-
ture the maximum features in data [59, 60]. This analysis
is achieved by transforming the origin variables into a new
set of variables, the PCs, which are uncorrelated and which
are ordered so that the first few variables retain most of the
features present in all of the original variables.

When applying PCA to nuclear mass models, the original
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variables are the mass predictions of different nuclear mod-
els, i.e., original nuclear mass tables. These original vari-
ables are correlated. They share many effects in common.
After performing PCA, they are transformed into a new set
of “principal mass models”, which are uncorrelated and ar-
ranged in the order of importance in representing the relevant
features extracted from the original mass models.

The PCA application to nuclear mass models includes the
following steps.

o First, pick up N mass models that will be analyzed, e.g.,
model-1, model-2, - - -, model-N.

e Second, vectorize the mass predictions of these mass
models into high-dimension vectors with m components (cor-
responding to m nuclei in the nuclear chart), i.e., M, M5,
-+, My, namely, the “original mass-model vectors”.

o Third, construct the covariance matrix of these N origi-
nal mass-model vectors, C = X' X, where X is a N Xm matrix
defined as X = (M|, M,,--- , My)". Because the covariance
matrix is constructed from N original mass-model vectors, its
rank is N.

o Fourth, diagonalize the covariance matrix C to obtain
N nontrivial eigenvectors v;, namely, “principal mass-model
vectors”, which are listed in decreasing order of the eigenval-
ues A;.

Following these standard steps of PCA, one obtains the so-
called PCs, represented by the principal mass-model vectors,
i.., v{,v2, -+ ,vy. Moreover, each dimension of a mass-
model vector corresponds to a nucleus in the nuclear chart.
The importance of a mass-model vector is represented by the
corresponding eigenvalue A;. Thus, v; represents the most
important relevant feature extracted from these N mass mod-
els, v, is second in importance, whereas vy is least important.
Each PC is a pattern of mass predictions for nuclei over the
nuclear chart. With these PCs of nuclear mass models, one
can better analyze the commonalities and differences across
different mass models and build new mass models.

3 Numerical details

Six mass models, i.e., FRDM2012 [10], HFB17 [14],
KTUYO0S [11], DIM [15], RMF [13], and LDM [8], are se-
lected to extract PCs. The overlap of these mass models in-
cludes 6254 nuclei; therefore, each mass-model vector, as
well as each PC, is a vector in 6254-dimension Hilbert space.
The mass data from AME2020 [7] are adopted to evaluate the
PCs. The overlap of these mass models with the experimental
data from AME2020 [7] includes 2421 nuclei, which consti-
tute a subspace of the 6254-dimension Hilbert space. Be-
cause six mass models are considered, the components with
A; smaller than Ag are irrelevant. Therefore, one obtains six



X.-H. Wu, et al.

PCs extracted from these mass models, i.e., v; for principal
component-1 (PC1), v, for PC2.

4 Results and discussion

The eigenvalues corresponding to the six PCs are presented
in the second row of Table 1, together with overlaps of the
six mass models (original mass-model vectors) with these
six PCs (principal mass-model vectors), which are presented
from the 3rd row to the 8th row. The visualizations of the six
PCs are illustrated in Figures 1 and 2. Each PC is a pattern of
mass predictions for nuclei over the nuclear chart. Because
each PC is an eigenvector of the covariance matrix, the scale
value of a PC is free. For convenience, the values presented
in Figures 1 and 2 are scaled to range between —1 and 1.

Table 1 shows that among the different PCs, PC1 has the
largest eigenvalue of 6.2 x 10'°; thus, it is the most important
component of the mass models that contribute to the major
part of nuclear masses. It is well known that the bulk proper-
ties contribute to the major part of nuclear masses. The bulk
properties were originally described by the LDM model, in-
cluding the volume term, surface term, Coulomb term, sym-
metry energy term, and odd-even term. These properties are
also managed well in other mass models. Therefore, the ma-
jor contributions of PC1 extracted from different mass mod-
els should correspond to the bulk properties. This correspon-
dence is clearly depicted in Figure 1(a), where most bound
nuclei are located near the iron-group elements, as described
by all nuclear mass models since the LDM. The large eigen-
value of PC1 also indicates the large similarity of different
mass models. This similarity is seen from the overlaps of the
six mass models with PC1 (second column of Table 1), which
are similar and near 0.999.

Inspection of the other PCs reveals differences with PC1.
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As seen in Table 1, their eigenvalues are much smaller than
that of PC1, and their overlaps with different mass models
are relatively small and no longer similar to each other. The
eigenvalue of PC2, 3.5 x 107, is obviously larger than those
of the latter PCs, which represents the second important pat-
tern contained in the nuclear mass models. A visualization
of PC2 is illustrated in Figure 1(b). One prominent feature of
PC2 is the deformation properties related to the shell effects.
The related magic numbers predicted by PC2 are identical
to the traditional ones, as depicted in Figure 1(b) with the
help of the magic lines. Another feature in Figure 1(b) is the
grain structure, which is seen more clearly in the inset of Fig-
ure 1(b) as the odd-even staggering behaviors. This behavior
corresponds to the odd-even effects originally from the pair-
ing correlations and Pauli blocking. Notably, the overlap of
the LDM model with PC2 is opposite to the overlaps of the
other five models. This difference is due to the inclusion of
the deformation effects in the other five mass models except
for the LDM model.

The eigenvalues of PC3 and PC4 are small and close to
each other; therefore, these two principal components are
summed in Figure 2(a). The important structure of PC3+PC4
is the different behavior between the neutron- and proton-
rich sides, i.e., more bound for one side and less bound for
the other side. This difference might be understood as the
correction of the breaking of neutron and proton symmetry
energy. Several blocky structures divided by the magic lines
and grain structures are also seen in Figure 2(a), indicating
that some residual deformation and odd-even effects are also
contained in PC3+PC4. PC5 and PC6 have even smaller
eigenvalues, so they contribute less than the first four PCs.
The patterns of PC5 and PC6, as shown in Figure 2(b), are
much more irregular. As will be seen later, these two compo-
nents only contribute an approximately 10-keV improvement
to reproduce the mass data from AME2020.

Table 1 Corresponding eigenvalues of the six principal components extracted from the six mass models and the overlaps* of the six principal components
with the six mass models and the experimental data from AME2020%

Models PC1 PC2 PC3 PC4 PC5 PC6
Eigenvalues 6.2x 1010 3.5%x 107 7.7 % 10° 4.3 x 10° 1.0 x 10° 6.4 x 10°
FRDM2012 0.99985 0.01275 —-0.00773 —-0.00267 —-0.00781 —-0.00087

HFB17 0.99983 0.01497 0.00038 —-0.00768 0.00421 —-0.00056

KTUYO05 0.99986 0.01228 0.00099 —-0.00890 0.00231 0.00613
DIM 0.99980 0.00023 —-0.01488 0.01274 0.00291 0.00062
RMF 0.99968 0.00926 0.02160 0.00955 —-0.00101 —0.00003
LDM 0.99851 —0.05428 0.00204 —0.00347 —0.00043 —0.00040

AME2020%** 0.99987 0.01053 —-0.00760 —0.00264 —0.00032 —-0.00164
M;v; M (kyvick)

a) * The overlap of the principal component v; with the original mass model M; is defined as

** Note that when the Hilbert

VMl N Mf(k)\/zz’ 2y

space is reduced from 6254 to 2421 dimensions, the six PCs are no longer orthogonal to each other. Therefore, they are re-orthogonalized using Schmidt
orthogonalization before calculating the overlaps with the data from AME2020.
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Figure 1 (Color online) Principal components, i.e., PC1 (a) and PC2 (b), of
nuclear mass models with the values scaled to the range between —1 and 1.
PCl is scaled with mass number A to better illustrate the most bound nuclei
around the iron-group elements. The boundary of nuclei with known masses
in AME2020 is shown by the black contour lines. Dotted lines indicate the
magic numbers. The inset of panel (b) presents PC2 of the Nd isotope chain.
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Figure 2 (Color online) Similar with Figure 1, but for PC3-PC6. PC3 and

PC4 (a) are summed with the weights determined by the eigenvalues, same
for PC5 and PC6 (b).
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These extracted PCs of nuclear mass models can be re-
combined to build new mass models. The superposition co-
efficients are determined by the overlaps of these PCs with
the mass data and are presented in Table 1. The overlaps
represent the contributions of these components to reproduce
the data, and they generally decrease with a decrease in the
eigenvalues of these PCs. Note that the PCs and their sort or-
ders are extracted from the theoretical mass models without
any information from the experimental data from AME2020.
Therefore, it is crucial to find that the order of the sizes of
the contributions to reproduce the experimental data and the
order of the sizes of the corresponding eigenvalues of these
components are identical. Consequently, the major effects of
nuclear masses have been well captured with the efforts of
different mass models. New mass models can be built by in-
cluding several of these PCs, i.e., from one PC to six PCs,
and the corresponding superposition coefficients.

The root-mean-square (rms) deviations between new mass
models, including different numbers of PCs and the experi-
mental data from AME2020, are presented in Figure 3. As
seen in Figure 3, the more PCs that are included, the higher
the precision that can be achieved. The inclusion of the first
PC already achieves a precision of 920 keV. The inclusions
of the second, third, and fourth components work well to
further improve the precision of reproducing the data. No-
tably, with the inclusion of the first four PCs, the new model
achieves a precision of 519 keV, which is already finer than
the finest precision obtained from the six original theoreti-
cal mass models, i.e., 591 keV for model HFB17. Includ-
ing all six PCs reduces the rms deviation to 509 keV. Thus,
by recombining the PCs extracted from the theoretical mass
models, one can build a better mass model than the original
theoretical models. Notably, the information or effects con-
tained in the PCs are also contained in the six mass models.
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Figure 3 (Color online) Root-mean-square (rms) deviations between new
mass models, including different numbers of PCs and the experimental data
from AME2020. The rms deviations between the six origin mass models and
the experimental data from AME2020 are also presented for comparison.
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However, these effects are reintegrated by PCA technology,
meaning that the effects from different mass models are reor-
ganized to build new nuclear mass models. Therefore, the re-
sults indicate that the effects included in different theoretical
mass models can collaborate to improve the prediction of nu-
clear masses, and this collaboration can be done using PCA
technology. Note that based on the six original mass models,
new mass models can be constructed by arithmetic averaging
or weighted averaging (with the weights being inversely pro-
portional to the rms deviations from the experimental data)
these six models. The corresponding rms deviations obtained
using these two averaging mass models are 913 and 525 keV,
respectively, which are both larger than 509 keV.

To further examine this conclusion, the RCHB [16] and
WS4 [9] models are added to the original six mass mod-
els, respectively, and PCA is performed for these two sets
of seven mass models. The RCHB model is a nuclear mass
model based on the relativistic density functional theory with
continuum effects but limited to the assumption of spheri-
cal symmetry [16]. The rms deviation of the RCHB mass
model from the experimental data is 7960 keV [16], larger
than those of the six mass models. When the RCHB model
is included, the new mass model constructed by the seven
PCs has an rms deviation from the experimental mass data
of 456 keV, which is obviously smaller than 509 keV. This
comparison indicates that although the rms deviation of the
RCHB model is large because of the spherical symmetry as-
sumption, the effects included in the RCHB mass model can
still help to improve the predictions of nuclear masses. These
effects can be extracted using PCA technology. The rms de-
viation of the WS4 mass model from the experimental data is
as small as 298 keV [9]. When the WS4 model is included,
the rms deviation of the new mass model, including seven
PCs, can be reduced to 292 keV, considerably smaller than
509 keV and slightly smaller than 298 keV. Thus, the effects
included in the WS4 mass model can substantially help the
six models to build a better mass model, and the effects in the
six models can additionally help the WS4 model.

To examine the reliability of the PC-constructed mass
model in predicting unknown regions, an extrapolation vali-
dation is performed. In this extrapolation validation, the su-
perposition coefficients of the PCs are determined using ex-
perimental data with only Z < 60 nuclei being included. The
new mass model constructed by the PCs with these coeffi-
cients achieves a precision of 549 keV in describing all the
experimental data, which is still at the same level as 509 ke V.
This comparison indicates that PCA works well to avoid the
overfitting problem. This capability is observed because the
new mass model is constructed by the PCs extracted from
theoretical mass models, and its reliability is guaranteed by
the major effects included in these theoretical models. The
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new mass model in the experimentally unknown region thus
has naturally believable reliability.

Note that the Bayesian model averaging (BMA)
method [53, 70] is somewhat similar to the PCA method
introduced in this work. Both methods construct new nuclear
mass models in the representation space of selected nuclear
mass models and aim to combine the advantages of differ-
ent nuclear models. However, their differences are obvious.
For the BMA method, the new mass model is constructed
using weighted averaging of the selected models, where
the weights are determined on the basis of Bayes’ theorem.
BMA has the advantage that it helps identify better models
and discard poor models with the determined weights. For
the PCA method, the new mass model is constructed by su-
perpositioning the PCs of nuclear mass models. These PCs
are extracted from the theoretical mass models, and they rep-
resent the major effects included in the selected mass models.
The advantage of PCA is that it can extract the major effects
included in the theoretical mass models and arrange them
in order of importance. Therefore, one can know the most
important effects contained in nuclear mass models and build
a new precise mass model with only several PCs.

5 Summary

In summary, the principal component analysis approach is
employed to extract the principal components contained in
nuclear mass models. The effects from different nuclear mass
models are reintegrated and reorganized in the extracted PCs
using PCA technology. The first PC of nuclear masses is
mainly contributed by the bulk property, as described in the
LDM, and the second PC is mainly contributed by the de-
formation related to shell effects and the odd-even effects.
Breaking of neutron and proton symmetry energy is also an
important component that contributes to the nuclear masses
and is included in the third and fourth PCs. These extracted
PCs are then recombined to build new nuclear mass models.
New mass models are found to achieve better accuracy in
predicting the experimental mass data than the original the-
oretical mass models. This finding indicates that the effects
contained in different theoretical models can be combined to
improve the nuclear mass predictions, which can be done us-
ing PCA technology.

This study provides a new approach to building nuclear
mass models by extracting the PCs of different nuclear mass
models and then recombining these components. The fully
ab initio calculations that can, in principle, include all effects,
which are based on exact nuclear interactions and many-body
calculations without approximation, are extremely difficult
(if not impossible) to carry out for nuclear masses all over
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the nuclear chart and will continue to be so even in the fore-
seeable future. Therefore, all nuclear mass models, includ-
ing existing future models, contain some types of approx-
imations or ignore some types of effects. In other words,
they include different types and different degrees of effects
on the nuclear masses. It, therefore, would be interesting to
try an approach other than fully ab initio calculations to build
nuclear mass tables that include as many effects as possible
by extracting and combining the effects included in different
models. This study shows that PCA technology can work as
a candidate for this purpose. We also encourage theorists to
develop new theoretical mass models with new effects and
not be greatly concerned about the balance of including new
effects and accurately reproducing experimental data because
PCA technology can extract the new effects and make them
contribute to improving nuclear mass predictions.
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