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Abstract We consider the phase noise filtering problem for Interferometric Synthetic Aperture Radar (InSAR)

using a total variation regularized complex linear least squares formulation. Although the original formulation is

convex, solving it directly with the standard CVX package is time consuming due to the large problem size. In

this paper, we introduce the effective and efficient alternating direction method of multipliers (ADMM) to solve

the equivalent well-defined complex formulation for the real and imaginary parts of the optimization variables.

Both the iteration complexity and the computational complexity of the ADMM are established in the forms of

theorems for our InSAR phase noise problem. Simulation results based on simulated and measured data show

that this new InSAR phase noise reduction method not only is 3 orders of magnitude faster than the standard

CVX solver, but also has a much better performance than the several existing phase filtering methods.
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1 Introduction

Typical InSAR interferogram data is deteriorated by various noises. It is well known that phase noise

reduction [1–8] of InSAR phase images is an important step prior to phase unwrapping [9,10]. The mean

filter [1,2] is a commonly used spatial domain filter for InSAR noise reduction. Though simple and fast,

it will blur edges and fine details in the filtered images. Two classical popular filtering methods are the

Lee filter [3] (see [4] for an improved version) and the Goldstein filter [5] (see [6] for improved versions).

Though the Lee filter can achieve a higher filtering accuracy by selecting independent and identically

distributed (i.i.d.) samples along the fringe orientation in the scenario with speckle noise as well as phase

noise [3], it is computationally less efficient due to its local phase unwrapping. The Goldstein filter has

strong smoothing capability and fast operation, however, it sometimes can not represent phase noise

intensity by its coherent values. A weighted maximum likelihood estimator based on nonlocal techniques
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is applied to estimate the InSAR data [7]. Though this nonlocal nonlinear filtering method is effective

for denoising, the attenuation of thin and dark details still exist in the regularized images. An improved

nonlocal nonlinear filtering method is proposed in [8].

Despite the availability of various algorithms for InSAR phase noise filtering, a general systematic

approach is still lacking. In this paper, we study the phase noise filtering problem in InSAR based on

the Bayesian statistical formulation [11]. The main contributions of this paper are as follows. Firstly, we

propose a general systematic design method for InSAR noise reduction. Specifically, a convex Bayesian

approach to process InSAR data is proposed via a complex linear least squares minimization and a total

variation regularization [12,13]. Secondly, due to the size of the problem, it is time consuming to solve this

convex formulation only with the standard CVX package [14]. A new phase filtering formulation is given

and ADMM is introduced to effectively and efficiently solve the equivalent well-defined reformulation.

Thirdly, in order to analyze the performance of the ADMM, both the iteration and the computational

complexities of this algorithm are established by theorems. Fourthly, we provide numerical examples

based on both simulated and measured data. Simulation results show that this new InSAR phase noise

reduction method not only is 3 orders of magnitude faster than the standard CVX solver, but also has a

superior performance than several existing phase filtering methods.

2 Phase filtering formulation

Consider a complex interferogram whose size is M ×M . If we stack this InSAR data according to the

columns, the complex interferogram model with additive noise [15] can be denoted as follows:

y(k) = x(k) + n(k), k = 1, 2, . . . , N, (1)

where k denotes the pixel’s series number, x(k) and y(k) denote the ideal and measured InSAR phase

(complex form), respectively, n(k) denotes additive noise and N equals M2.

InSAR phase noise filtering is to estimate x(k) from y(k). According to (1), the Bayesian estimator [11]

of x is simply given by the least squares estimator, i.e.,

x̂Bayesian := argmin
x

1

2
‖y − x‖2. (2)

Without any regularization, the above estimator is simply x̂Bayesian = y itself, which is clearly unac-

ceptable. We must impose some prior information (or structures) on the recovered image.

As we have known, SAR data usually has sparsity [16,17] while InSAR data commonly does not have

such property. For most of the interferograms, there exists sparsity (few zeros) in the gradient vectors

of the complex pixels. Hence, we use a total variation regularization term to promote sparsity of the

gradient [12], leading to the following convex formulation:

min
x

1

2
‖y − x‖22 + λ1

N
∑

i=1

√

(∇xh
1i)

2 + (∇xv
1i)

2 + λ2

N
∑

i=1

√

(∇xh
2i)

2 + (∇xv
2i)

2, (3)

where ∇x1i and ∇x2i denote the gradients of the real and imaginary parts of the pixel xi, respectively,

while the superscripts h and v denote the horizonal and vertical derivatives, respectively. λ1 and λ2 are

two penalty parameters not only balancing the corresponding regularization and data fidelity, respectively,

but also controlling the sparsity of the image [12]. Usually, the larger the parameters λ1 and λ2, the more

sparser the image.

It is obvious that the optimization problem (3) is a convex minimization problem, but the difficulty of

solving the problem lies in its non-smoothness. Although the CVX package can be introduced to solve

(3), a new algorithm must be designed competent to the high computational complexity caused by the

CVX.
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3 A total variation (TV) filter and ADMM

Recall the formulation (3), it is a regularized least squares optimization problem. For total variation

regularization, we use the splitting technique [18] to attain the variable-decoupled convex optimization

problem with equality constraints. Further we present the well-known Alternating Direction Method of

Multipliers (ADMM) [19,20] to solve the new reformulation of the optimization problem (3).

First, the objective function of the optimization problem (3) can be written as

1

2
‖yc − xc‖

2
2 + λ1

N
∑

i=1

√

(∇xh
1i)

2 + (∇xv
1i)

2 + λ2

N
∑

i=1

√

(∇xh
2i)

2 + (∇xv
2i)

2, (4)

where xc = [xT
1 xT

2 ]
T, yc = [yT

1 yT
2 ]

T, x1 and x2 denote the real and imaginary parts of x, respectively.

Second, introducing two new variables v1 and v2 and using the splitting technique, we can rewrite

(3) as

min
xc

h(xc) :=
1

2
‖yc − xc‖

2
2 + λ1 ‖v1‖1,2 + λ2 ‖v2‖1,2,

s.t. v1 = ∇x1, v2 = ∇x2,

(5)

where the notation ‖ · ‖1,2 norm is defined as

‖u‖1,2 =
N
∑

i=1

√

(uh
i )

2 + (uv
i )

2

for any real-valued image u = (u1, . . . ,uN) ∈ R
2N with ui = (uh

i , u
v
i ) ∈ R

2.

In order to well solve the optimization variables xc,v1,µ1,v2,µ2, we do not simply resort to La-

grangian function [21]. Under the augmented Lagrangian framework [22], the pursuit of xc,v1,µ1,v2,µ2

is equivalent to solving the following optimization problem

L(xc,v1,µ1,v2,µ2) = λ1‖v1‖1,2 + λ2‖v2‖1,2 +
1

2
‖yc − xc‖

2
2 + µT

1 (v1 −∇x1) + µT
2 (v2 −∇x2)

+
β1

2
‖v1 −∇x1‖

2
2 +

β2

2
‖v2 −∇x2‖

2
2, (6)

where µ1, µ2 denote the Lagrangian multipliers and β1 > 0, β2 > 0 are penalty parameters of the linear

constraint violations.

Combined with the method of multiplier, the optimization problem (6) can be decoupled into separable

structures by introducing Gauss-Seidel iteration scheme into the algorithm framework. This indicates

that the subproblems of xc and v should be separately. Generally, it is much easier to solve the separated

subproblems about xc and v which may have closed-form solutions. Hence, the basic iteration scheme of

two blocks ADMM can be naturally obtained as follows:

vk+1
1 = argmin

v1

λ1‖v1‖1,2 +
β1

2
‖v1 −∇xk

1 +
µk

1

β1
‖22, (7)

vk+1
2 = argmin

v2

λ2‖v2‖1,2 +
β2

2
‖v2 −∇xk

2 +
µk

2

β2
‖22, (8)

xk+1
c = argmin

xc

‖yc − xc‖
2
2 + β1‖v

k+1
1 −∇x1 +

µk
1

β1
‖22 + β2‖v

k+1
2 −∇x2 +

µk
2

β2
‖22, (9)

µk+1
1 = µk

1 + β1(v
k+1
1 −∇xk+1

1 ), (10)

µk+1
2 = µk

2 + β2(v
k+1
2 −∇xk+1

2 ). (11)

Eqs. (7)–(9) all have closed-form solutions as follows:

vk+1
1 =

(

∇xk
1 −

µk
1

β1

)

−min

(

λ1

β1
,

∣

∣

∣

∣

∇xk
1 −

µk
1

β1

∣

∣

∣

∣

)

·
∇xk

1 −
µ

k
1

β1

|∇xk
1 −

µ
k
1

β1

|
, (12)
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vk+1
2 =

(

∇xk
2 −

µk
2

β2

)

−min

(

λ2

β2
,

∣

∣

∣

∣

∇xk
2 −

µk
2

β2

∣

∣

∣

∣

)

·
∇xk

2 −
µ

k
2

β2

|∇xk
2 −

µ
k
2

β2

|
, (13)

xk+1
c =

[

I + β1(BA1)
T(BA1) + β2(BA2)

T(BA2)

]

−1

·

[

yc + β1(BA1)
Tvk+1

1 + β2(BA2)
Tvk+1

2 + (BA1)
Tµk

1 + (BA2)
Tµk

2

]

, (14)

where ∇x1 and ∇x2 denote the real and imaginary parts of the gradient vector of x, respectively, A1 =

[I 0], A2 = [0 I] and B is the gradient generating matrix satisfying ∇x1 = BA1xc and ∇x2 = BA2xc.

The proof of the close-form solutions (12)–(14) is shown in Appendix A.

ADMM was first introduced in [19,20] and has been widely introduced to various research fields [18,23].

Further, ADMM has theoretically analyzed in [24–26]. The general convergence and iteration complexity

results are shown as follows,

(1) Residual convergence: vk
1 −∇xk

1 → 0 and vk
2 −∇xk

2 → 0 as k → ∞.

(2) Objective convergence: limk→∞ h(xk
c ) = p∗, where p∗ is the optimal value of (5).

(3) Iterate convergence: the iterates xk
c , vk

1 , µk
1 , vk

2 and µk
2 converge to their respective optimal

solutions.

In order to obtain the global computational complexity of the optimization problem (6), we first give

its iteration complexity result, which means that the obtained point (v̂, x̂c, µ̂) satisfies the following

ǫ-optimality condition

L(v̂, x̂c,µ)− L(v,xc, µ̂) 6 ǫ, ∀v, xc, µ, (15)

where L is the augmented Lagrangian function, v = [vT
1 vT

2 ]
T, µ = [µT

1 µT
2 ]

T, v̂ = [v̂T
1 v̂T

2 ]
T and

µ̂ = [µ̂T
1 µ̂T

2 ]
T. The iteration complexity of ADMM was first established in [26]. And in the following

theorem, we give the iteration complexity of the optimization problem (6).

Theorem 1. Let {vk,xk
c ,µ

k} be the sequence generated by ADMM for (6). In the (K+1)th iteration,

for all v,xc,µ, an ergodic point (v̂K+1, x̂K+1
c , µ̂K+1) defined by {vi,xi

c,µ
i}K+1

i=1 satisfies

L(v̂K+1, x̂K+1
c ,µ)− L(v,xc, µ̂

K+1) 6
C

K + 1
. (16)

Proof. The proof is shown in Appendix B.

The above theorem shows the iteration complexity of ADMM for our optimization formulation in (6),

and it is the whole perspective of ADMM convergent speed. If the per iteration computation can be

calculated, we can obtain the entire computational complexity in order to get an ǫ-optimal solution. In

the following, we present the related computational complexity result.

Theorem 2. The computational complexity of (7)–(11) is O∗(28N4), where O∗ denotes that lower

order terms are ignored and N denotes the number of pixels in a filtering image.

Proof. The proof is shown in Appendix C.

For the linear filters based on sample average, all the used samples satisfy i.i.d. condition. Even if

the samples fail to satisfy this condition due to terrain fluctuation, we can compensate them by some

frequency estimation method, which leads to small influence on frequency resolution. From (12)–(14),

it is easy to know that our designed filtering method is linear. The general analysis of convergence and

iteration complexity results of ADMM for a convex problem shown above indicate that we can obtain

the accurate solution of the optimization problem (3) by using (7)–(9) in iteration scheme. According

to the optimization problem (3), phase image resolution is affected by the parameters λ1 and λ2. With

the increment of the λ1 and λ2, more noise will be filtered from the phase image while the phase image

resolution is almost unaffected. But if the λ1 and λ2 are selected too large, the filtered image may be

over-filtered and can produce a blocky effect. This indicates that phase image resolution may be degraded

with too large values of λ1 and λ2. We can also obtain this result from the numerical experiments using

both simulated and measured data in the following section.
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Table 1 Comparison of residue counts and MSE

Methods
Residue counts MSE/rad2 Residue counts MSE/rad2

(whole wrapped image) (whole wrapped image) (small wrapped patch) (small unwrapped patch)

Original image 4498 0.36 56 0.3615

Mean 5810 0.32 0 0.0150

Goldstein (0.5) 684 0.12 0 0.0599

NL-InSAR 5952 0.49 0 0.0181

Lee 1914 0.16 0 0.0174
Total variation

(λ = 0.5)
900 0.1154 0 0.0262

Total variation

(λ = 1.5)
3978 0.35 0 0.0172

Total variation

(λ, Eq. (19))
800 0.114 0 0.0182

4 Numerical experiments

One commonly used metric to evaluate the effectiveness of phase noise reduction methods is the residue

count [5]. Usually, a low count of residues indicates a good phase noise reduction performance. However,

considering the over-filtering cases, we need to use another two metrics to access the noise reduction

performance. One metric is the mean-square error (MSE) which has two definitions, one each for the

wrapped phase image and the unwrapped image. The MSE for the wrapped phase is defined as [27]

MSE = E
[

| arg exp (jϕ̂− jϕideal)|
2
]

, (17)

where E represents the statistics expectation, ϕideal is the ideal InSAR phase and ϕ̂ is the filtered phase.

The MSE for the unwrapped phase is defined as

RMSE = E
[

|φ̂− φideal|
2
]

, (18)

where φideal is the ideal unwrapped phase and φ̂ is the filtered unwrapped phase.

The smaller the MSE, the better the noise reduction. The other metric to access the noise reduction is

the fringe continuity. The more continuous the fringes in the filtered phase, the better the noise reduction.

Scenario 1. Generate an unwrapped phase by using the ‘peaks’ function in MATLAB, xy phase =

a · peaks(N), where a = 24, N = 900. Assume that the noise variance in the complex phase model (1) is

0.6 and that λ1 = λ2 = λ in the optimization problem (3). We use our filtering method and the existing

filtering methods to execute phase noise reduction. A slide window size of 5×5 is used for all the filtering

methods except the Lee filter size of 9× 9. In particular, we have tested the mean filter, Goldstein filter,

NL-InSAR filter [8], Lee filter and our TV filter. For the latter, we have chosen λ1 = λ2 = λ = 0.5, 1.5

or according to

λ1 = λ2 = λ =















0.85, γ̄ < 0.3,

0.80, 0.3 < γ̄ < 0.5,

0.55, others,

(19)

where γ̄ represents the mean local coherence. λ is a positive parameter which is used to balance the two

terms in the optimization problem (3). The selection principle of λ is that λ should be proportional to

the local variance of noise of each patch. This indicates that we can select λ inversely proportional to the

mean local coherence of each patch [6]. In this experiment, however, we select three λ values according

to three segments of the mean local coherence of the wrapped phase for simplicity.

The wrapped phase images by different filtering methods, the unwrapped images by the weighted least

squares unwrapped method mainlpno.c [28] and difference images are shown respectively below.

Comparison of residue counts and MSE is listed in Table 1.

From the filtered images shown in Figure 1 and the residue counts and MSE listed in Table 1, the

advantages of our filtering method is though the residue counts of the wrapped phase of the adaptive TV
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Figure 1 Filtered results of wrapped phases, unwrapping phases and difference phases based on simulated data.

(a) Original wrapped phase, original unwrapped phase, original difference phase. (b) Wrapped phase, mean filter; un-

wrapped phase, mean filter; difference phase, mean filter. (c) Wrapped phase, Goldstein filter; unwrapped phase, Goldstein

filter; difference phase, Goldstein filter. (d) Wrapped phase, NL-InSAR filter; unwrapped phase, NL-InSAR filter; difference

phase, NL-InSAR filter. (e) Wrapped phase, Lee filter; wrapped phase, Lee filter; difference phase, Lee filter. (f) Wrapped

phase, TV filter, λ = 0.5; unwrapped phase, TV filter, λ = 0.5; difference phase, TV filter, λ = 0.5. (g) Wrapped phase,

TV filter, λ = 0.5; unwrapped phase, TV filter, λ = 0.5; difference phase, TV filter, λ = 0.5. (h) Wrapped phase, TV filter,

λ satisfying (18); unwrapped phase, TV filter, λ satisfying (18); difference phase, TV filter, λ satisfying (18).

method is a little bit higher than those of Goldstein filter, the MSE is the least. That is, compared with

the ideal phase image, fringe distortion of our method after filtering is the least. The existence of MSE of

each unwrapped phase image shows the performance of the corresponding filtering algorithm. Due to the

low MSE of the unwrapped phase image, our filtering method proves better in the subsequent generation

of DEM and accurate detection of deformation. Furthermore, the less the variance of the residual phase,

the higher the accuracy of the subsequent processing. For each wrapped phase image, we can extract

the flatter patch from the whole image. Such patch can be approximately regarded as the phase of a

flat scene for DEM or as the D-InSAR phase of no deformation scene. If we unwrap it and consider the

residue counts and MSE in it, the whole processed results show the potential application of our proposed

method though the MSE of our method is a litter bit higher than that of NL-InSAR filter or Lee filter.

Scenario 2. In this scenario, a measured noisy InSAR phase image whose size is 882× 882 is used to

compare the performance of mean filter, Goldstein filter, Lee filter, NL-InSAR and our TV filter. For the
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Table 2 Comparison of residue counts of a wrapped phase image

Methods
Residue counts Residue counts

(whole wrapped image) (small wrapped patch)

Original image 58670 24779

Mean 552 152

Goldstein (0.5) 16170 7141

NL-InSAR 388 93

Lee 398 30

Total variation (λ = 0.79) 421 98

Total variation (λ = 0.9) 385 26

Total variation (λ = 2.5) 96 2

Total variation (λ, Eq. (20)) 351 20

latter, we have chosen λ = 0.79, 0.9, 2.5 or simply according to

λ =















1.1, γ̄ < 0.4,

0.8, 0.4 < γ̄ < 0.7,

0.75, others,

(20)

where γ̄ represents the mean local coherence [5].

In practice, the noise in (1) can be approximately equivalent to a complex zero mean white Gaussian

noise with the known covariance depending on the coherence γ [29], i.e.

E
{

n(k)
}

= 0, (21)

E
{

n(k)n(j)H
}

= I ·
1

2

[

1

2|γ|2
−

1

2

]

· δ(k, j), (22)

where

δ(k, j) =

{

1, if k = j,

0, else,
(23)

is the discrete Dirac impulse.

This indicates that we should normalize the noise n(k) with its standard deviation before using the

ADMM algorithm.

The wrapped phase images by different filtering methods, the unwrapped images by the codemainlpno.c

and difference images are shown respectively as follows.

Comparison of residue counts of a wrapped phase image is listed in Table 2.

From the filtered interferograms shown in Figure 2, we can see that the TV filter is superior to other

filtering methods since it not only filters higher amount of noise but also maintains the fringe completeness

efficiently. In addition, the filtered results in Figure 2 show that interferogram can be over-filtered and

give a mosaic effect when λ is too large such as λ = 2.5. The residue counts listed in Table 2 further

illustrate the advantage of our filtering method. For each wrapped phase image, we can extract the flatter

patch from the whole image. Such patch can also be approximately regarded as the phase of a flat scene

for DEM or as the D-InSAR phase of no deformation scene as that in scenario 1. The processed result

of it obviously shows the potential application of our proposed method.

Assume that the simulation is implemented using Matlab 7.10.0 (R2010a) on an HP PC with 2.50

GHz and 2.50 GHz Intel (R) Xeon (R) dual core CPU. CPU time comparison of the methods is listed in

Table 3.

Table 3 shows the computational efficiency of the proposed ADMM implementation of the TV filter.

The CPU time is significantly less than that of the NL-InSAR filter and that of the CVX implementation

of the TV filter.



Luo X M, et al. Sci China Inf Sci August 2015 Vol. 58 082306:9

 

 

100 300 500 700

100

200

300

400

500

600

700

800

−3

−2

−1

0

1

2

3

(a)

 

 

100 300 500 700

100

200

300

400

500

600

700

800

−3

−2

−1

0

1

2

3

(b)

 

 

100 300 500 700

100

200

300

400

500

600

700

800
−3

−2

−1

0

1

2

3

(c)

 

 

100 300 500 700

100

200

300

400

500

600

700

800

−3

−2

−1

0

1

2

3

(d)

 

 

100 300 500 700

100

200

300

400

500

600

700

800

−3

−2

−1

0

1

2

3

(e)

 

 

100 300 500 700

100

200

300

400

500

600

700

800

−3

−2

−1

0

1

2

3

(f)

 

 

100 300 500 700

100

200

300

400

500

600

700

800

−3

−2

−1

0

1

2

3

(g)

 

 

100 300 500 700

100

200

300

400

500

600

700

800

−3

−2

−1

0

1

2

3

(h)

 

 

100 300 500 700

100

200

300

400

500

600

700

800

−3

−2

−1

0

1

2

3

(i)

Figure 2 Filtered results based on measured data. (a) Original image; (b) mean filter; (c) Goldstein filter, λ = 0.5;

(d) NL-InSAR filter; (e) Lee filter; (f) TV filter, λ = 0.79; (g) TV filter, λ = 0.9; (h) TV filter, λ = 2.5; (i) TV filter,

adptive, λ satisfying (19).

Table 3 CPU time comparison

Type Time (s)

Mean 0.78

Goldstein (λ = 0.5) 11.68

NL-InSAR 234.5042

Lee 75.36

TV filter, solving (3) with CVX 83290.36

TV filter, solving (7)–(11) with ADMM 10.98

5 Conclusion

In this paper, we present a novel phase filtering method. Based on total variation technique in sparse

optimization, we have established a convex optimization problem from the original filtering problem of an

InSAR phase image. Further we also design the ADMM algorithm to compute this optimization problem.

Both the iteration complexity and the computational complexity of this algorithm are established in

theorems for our InSAR phase noise reduction. Compared with other filtering methods, our filtering
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method is much better in suppressing the noises and eliminating the residuals. Meanwhile, the TV

method shows the best performance in fringe conservation and much less CPU time than that of the

NL-InSAR filter and the CVX implementation of the TV filter. The analysis of the flatter patch with

simulated and measured data shows potential application of our proposed method on a flat scene for

DEM or a D-InSAR phase of no deformation scene.
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Appendix A Derive (12)–(14)

Derive (12).

vk+1
1 = argmin

v1

λ1‖v1‖1,2 +
β1

2
‖v1 −∇xk

1 +
µk

1

β1
‖22.

Solution:

vk+1
1 = shrinkλ1

β1

(∇xk
1 −

µk
1

β1
) =

(

∇xk
1 −

µk
1

β1

)

−min

(

λ1

β1
,

∣

∣

∣

∣

∣

∇xk
1 −

µk
1

β1

∣

∣

∣

∣

∣

)

·
∇xk

1 −
µk

1

β1

|∇xk
1 −

µk
1

β1

|
, (A1)

where the first equation can be derived1).

Derive (13).

vk+1
2 = argmin

v2

λ2‖v2‖1,2 +
β2

2
‖v2 −∇xk

2 +
µk

2

β2
‖22.

Solution:

vk+1
2 = shrinkλ2

β2

(∇xk
2 −

µk
2

β2
) =

(

∇xk
2 −

µk
2

β2

)

−min

(

λ2

β2
,

∣

∣

∣

∣

∣

∇xk
2 −

µk
2

β2

∣

∣

∣

∣

∣

)

·
∇xk

2 −
µk

2

β2

|∇xk
2 −

µk
2

β2

|
. (A2)

Derive (14).

xk+1
c = argmin

xc

‖yc − xc‖
2
2 + β1‖v

k+1
1 −∇x1 +

µk
1

β1
‖22 + β2‖v

k+1
2 −∇x2 +

µk
2

β2
‖22,

where ∇x1 and ∇x2 denote the real and imaginary parts of the gradient vector of x, respectively, A1 = [I 0], A2 = [0 I]

and B is a gradient generating matrix satisfying ∇x1 = BA1xc and ∇x2 = BA2xc.

Solution:

Assume that f(xc) = ‖yc−xc‖22+β1‖v
k+1
1 −∇x1+

µk
1

β1

‖22+β2‖v
k+1
2 −∇x2+

µk
2

β2

‖22, the gradient vector of this function

is as follows:

0 = −2(yc − xc)− 2β1(BA1)
T

(

vk+1
1 −BA1xc +

µk
1

β1

)

− 2β2(BA2)
T

(

vk+1
2 −BA2xc +

µk
2

β2

)

. (A3)

After arranging the previous equation, it is easy to get that

xc =
[

I + β1(BA1)
T(BA1) + β2(BA2)

T(BA2)
]

−1

·
[

yc + β1(BA1)
Tvk+1

1 + (BA1)
Tµk

1 + β2(BA2)
Tvk+1

2 + (BA2)
Tµk

2

]

. (A4)

Appendix B Proof of the iteration complexity of ADMM algorithm

Let

v =





v1

v2



 , µ =





µ1

µ2



 . (B1)

The augmented Lagrangian function of (6) can be equivalently transformed into

L(v,xc,µ) = λ1‖v1‖1,2 + λ2‖v2‖1,2 +
1

2
‖yc − xc‖

2
2 + µT

1 (v1 −∇x1) + µT
2 (v2 −∇x2)

1) Han D R, Yuan X M, Zhang W X. An augmented-lagrangian-based parallel splitting method for separable convex

minimization with applications to image processing. Math Comput, 2014, 83: 2263–2291.



Luo X M, et al. Sci China Inf Sci August 2015 Vol. 58 082306:12

+
β1

2
‖v1 −∇x1‖

2
2 +

β2

2
‖v2 −∇x2‖

2
2. (B2)

The optimality conditions of the proposed method are as follows

0 ∈ λ1∂‖v
k+1
1 ‖1,2 + β1

(

vk+1
1 −BA1x

k
1 +

µk
1

β1

)

,

0 ∈ λ2∂‖v
k+1
2 ‖1,2 + β2

(

vk+1
2 −BA2x

k
2 +

µk
2

β2

)

,

0 =
(

y1 − xk+1
1

)

+ β1(BA1)
T

(

vk+1
1 −BA1x

k+1
1 +

µk
1

β1

)

,

0 =
(

y2 − xk+1
2

)

+ β2(BA2)
T

(

vk+1
2 −BA2x

k+1
2 +

µk
2

β2

)

,

0 = vk+1
1 −BA1x

k+1
1 +

1

β1

(

µk
1 − µk+1

1

)

,

0 = vk+1
2 −BA2x

k+1
2 +

1

β2

(

µk
2 − µk+1

2

)

. (B3)

Define






µ̃k+1
1 = µk

1 + β1(v
k+1
1 −BA1x

k
1),

µ̃k+1
2 = µk

2 + β2(v
k+1
2 −BA2x

k
2).

(B4)

The optimality conditions can be rewritten as follows


























































0 ∈ λ1∂‖v
k+1
1 ‖1,2 + µ̃k+1

1 ,

0 ∈ λ2∂‖v
k+1
2 ‖1,2 + µ̃k+1

2 ,

0 ∈
(

y1 − xk+1
1

)

+ (BA1)Tµ̃k+1
1 + β1(BA1)TBA1

(

xk
1 − xk+1

1

)

,

0 ∈
(

y2 − xk+1
2

)

+ (BA2)Tµ̃k+1
2 + β2(BA2)TBA2

(

xk
2 − xk+1

2

)

,

0 ∈ vk+1
1 −BA1x

k+1
1 + 1

β1

(

µk
1 − µk+1

1

)

,

0 ∈ vk+1
2 −BA2x

k+1
2 + 1

β2

(

µk
2 − µk+1

2

)

.

(B5)

By the definition of L and the convexity property, we obtain

L(vk+1,xk+1
c ,µ)− L(v,xc, µ̃

k+1)

= (λ1‖v
k+1
1 ‖1,2 − λ1‖v1‖1,2) + (λ2‖v

k+1
2 ‖1,2 − λ2‖v2‖1,2) +

1

2
‖xk+1

c − yc‖
2
2 −

1

2
‖xc − yc‖

2
2

+

[

µT
1

(

vk+1
1 −BA1x

k+1
1

)

−
(

µ̃k+1
1

)T
(v1 −BA1x1)

]

+

[

µT
2

(

vk+1
2 −BA2x

k+1
2

)

−
(

µ̃k+1
2

)T
(v2 −BA2x2)

]

6 〈λ1∂‖v
k+1
1 ‖1,2,v

k+1
1 − v1〉+ 〈λ2∂‖v

k+1
2 ‖1,2, v

k+1
2 − v2〉+

[

〈xk+1
1 − y1,x

k+1
1 − x1〉 −

(

v1 − vk+1
1

)T
µ̃k+1

1

+
(

x1 − xk+1
1

)T
(BA1)

T µ̃k+1
1 + (µ1 − µ̃k+1

1 )T(vk+1
1 −BA1x

k+1
1 )

]

+

[

〈xk+1
2 − y2,x

k+1
2 − x2〉 −

(

v2 − vk+1
2

)T
µ̃k+1

2

+
(

x2 − xk+1
2

)T
(BA2)

T µ̃k+1
2 + (µ2 − µ̃k+1

2 )T(vk+1
2 −BA2x

k+1
2 )

]

. (B6)

Further substituting the optimality conditions (B5) into the above inequality yields

L(vk+1,xk+1
c ,µ)− L(v,xc, µ̃

k+1)

6 β1

(

x1 − xk+1
1

)T
(BA1)

TBA1

(

xk+1
1 − xk

1

)

+
1

β1

(

µ1 − µ̃k+1
1

)T (

µk+1
1 − µk

1

)

+β2

(

x2 − xk+1
2

)T
(BA2)

TBA2

(

xk+1
2 − xk

2

)

+
1

β2

(

µ2 − µ̃k+1
2

)T (

µk+1
2 − µk

2

)

=
β1

2
(‖x1 − xk

1‖
2
(BA1)TBA1

− ‖x1 − xk+1
1 ‖2

(BA1)TBA1

− ‖xk
1 − xk+1

1 ‖2
(BA1)TBA1

)

+
1

2β1
(‖µ1 − µk

1‖
2
2 − ‖µ1 − µk+1

1 ‖22) +
(

‖µk+1
1 − µ̃k+1

1 ‖22 − ‖µk
1 − µ̃k+1

1 ‖22

)

+
β2

2
(‖x2 − xk

2‖
2
(BA2)TBA2

− ‖x2 − xk+1
2 ‖2

(BA2)TBA2

− ‖xk
2 − xk+1

2 ‖2
(BA2)TBA2

)

+
1

2β2
(‖µ2 − µk

2‖
2
2 − ‖µ2 − µk+1

2 ‖22) +
(

‖µk+1
2 − µ̃k+1

2 ‖22 − ‖µk
2 − µ̃k+1

2 ‖22

)

. (B7)
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It is easy to prove that ‖µk+1
i − µ̃k+1

i ‖22 − ‖µk
i − µ̃k+1

i ‖22 6 0, i = 1, 2, so that

L(vk+1,xk+1
c ,µ)− L(v,xc, µ̃

k+1)

6
β1

2

(

‖x1 − xk
1‖

2
(BA1)TBA1

− ‖x1 − xk+1
1 ‖2

(BA1)TBA1

)

+
1

2β1

(

‖µ1 − µk
1‖

2
2 − ‖µ1 − µk+1

1 ‖22

)

+
β2

2

(

‖x2 − xk
2‖

2
(BA2)TBA2

− ‖x2 − xk+1
2 ‖2

(BA2)TBA2

)

+
1

2β2

(

‖µ2 − µk
2‖

2
2 − ‖µ2 − µk+1

2 ‖22

)

. (B8)

Summing from k = 0 to k = K yields

K
∑

k=0

L(vk+1,xk+1
c ,µ)−

K
∑

k=0

L(v,xc, µ̃
k+1) 6

β1

2
‖x1 − x0

1‖
2
(BA1)TBA1

+
1

2β1
‖µ1 − µ0

1‖
2
2

+
β2

2
‖x2 − x0

2‖
2
(BA2)TBA2

+
1

2β2
‖µ2 − µ0

2‖
2
2. (B9)

Define v̂K+1 = 1
K+1

∑K+1
k=1 vk , x̂K+1

c = 1
K+1

∑K+1
k=1 xk

c and µ̂K+1 = 1
K+1

∑K+1
k=1 µ̃k. Using the convexity of the

objective function, we obtain the final result: for all v,xc,µ

L(v̂K+1, x̂K+1
c ,µ)− L(v,xc, µ̂

K+1) 6
C

K + 1
, (B10)

for some constant C > 0, as desired.

Appendix C Proof of the computational complexity of ADMM algorithm

For the computational complexity of ADMM (7)–(11), considering the basic operations of arithmetic operations +,−,×,÷

and sorting.

First, we give the computational complexity of ∇xk
1 = BA1x

k
c . Assume the number of pixels in a filtering image to be

N , the size of xk
c is 2N × 1, the size of A1 is N × 2N and the size of B is (2N2 − 2N) × N . Therefore, the computation

complexity of ∇xk
1 per iteration is O((2N2 − 2N)× 2N ×N +2N × (2N2 − 2N)), that is, O∗(4N4), where O∗ denotes that

lower order terms are ignored.

Second, due to the size of BA1 (2N2 − 2N)× 2N , the multiplication computational time of (BA1)TBA1 per iteration

is O(2N × 2N × (2N2 − 2N)). The same is for (BA2)TBA2. Due to the size of vk+1
1 (2N2 − 2N)× 1, the multiplication

computational time of (BA1)Tvk+1
1 per iteration is O(2N × 1× (2N2 − 2N)). The same is for (BA2)Tvk+1

2 . Due to the

size of µk
1 (2N2 − 2N) × 1, the multiplication time of (BA1)Tµk

1 per iteration is O(2N × 1 × (2N2 − 2N)). The same is

for (BA2)Tµk
2 . Therefore, the computational complexity of xk+1

c per iteration is O∗(16N4).

Third, due to the size of
µk

1

β1

(2N2 − 2N) × 1, the ÷ time of
µk

1

β1

per iteration is O(2N2 − 2N). And the computational

complexity of ‖∇xk
1 −

µk
1

β
‖ per iteration is O(2N2 −2N +1). Assume that we apply bubble method to attain the minimum

value, the swapping time of min(λ1

β1
, ‖∇xk

1 −
µk

1

β
‖) per iteration is O((2N2 − 2N)2). And the computational complexity of

(∇xk
1 −

µk
1

β
)/‖∇xk

1 −
µk

1

β
‖ per iteration is O(2N2 − 2N). Therefore, the computational complexity of vk+1

1 per iteration is

O∗(4N4). The same is for vk+1
2 .

At last, due to the size of vk+1
1 (2N2 − 2N) × 1, the computational complexity of µk+1

1 is O∗(2N2). The same is for

µk+1
2 .

Therefore, the whole computational complexity of ADMM algorithm (7)–(11) per iteration is for O∗(28N4).


