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Abstract When a Duffing oscillator is applied to signal detection, identifying its state transition is indispens-

able. Due to lack of an effective method for automatically distinguishing the state transition, phase analysis

is extensively used. However, it needs ocular estimation to identify phase pattern corresponding to transition

of Duffing oscillator. Hence it is not fit for communication signal demodulation. To solve the problem, this

paper proposes a method, called circular zone partition (CZP), for partitioning trajectory on the phase plane of

Duffing oscillator. First, a computing model for Duffing oscillator is described. Then, the fundamental principle

and algorithm for the CZP method are discussed. Meanwhile the equation of a circular zone divider and its

realization are presented. Thus, by way of the divider, the two-dimensional phase trajectory pattern of Duffing

oscillator driven by an external signal can be transformed into the one-dimensional time signal, whose envelop

after being filtered is able to indicate the state transition, i.e. the presence or the absence of external signal.

Finally, to verify the effect of the CZP method on binary phase shifted keying (BPSK) signal demodulation,

two examples are presented and simulation results show that this CZP method is accurate and valid for BPSK

signal demodulation.
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1 Introduction

At present, chaotic oscillators have been successfully applied to weak signal detection [1–3]. Chaotic

oscillator’s phase transition functions as an important clue for indicating external signal existence; there-

fore observing phase transition of chaotic oscillator, namely observing whether the phase trajectory of

chaotic oscillator, driven by the external signal, appears in great periodic state (or intermittent chaos

state) is an indispensable task in detecting. Several methods including Lyapunov exponents, Poincare

section, power spectrum, fractional dimension, and Melnikov function [4], have been developed to detect

the state transition of chaotic oscillator, but they are only applicable to few chaotic systems. Therefore,

phase analysis is today considered the most universal and simplest analytical method [5, 6]. Since this
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method needs ocular estimation to identify the phase pattern of chaotic oscillator on the waveform dis-

play, many problems arise when implementing them. For example, automatic recognition is difficult, and

manual recognition is not fit for detecting the high speed transition of phase trajectory, especially for

BPSK signal demodulation. Hence, the problem of how to automatically recognize the phase transition

has drawn increasing attention. Ref. [7] presented a method of identifying chaotic nature based on image

recognition, and used it to solve the problem of detecting signals from the phase plane. But this method

required calculating Euler number of the image after the whole data of phase trajectory were obtained,

and the calculation was too time-consuming to be used in real-time signal detection such as BPSK signal

demodulation.

In order to solve the problem of transition identification, here a CZP method based on Duffing oscillator,

which aims at BPSK signal demodulation, is proposed. The basic idea is to divide the two-dimensional

phase plane into two regions, i.e. interior and exterior, by a circular zone partition line, and then to detect

whether the state transition occurs, by means of the boundary of the interior. Specifically speaking,

through the partition, the phase trajectory can be mapped into the one-dimensional time signal whose

envelop contains all information about the phase transition. Further, after smoothing the time signal by

a low pass filter (LPF), it can be used as a phase transition indicator to indicate whether the external

signal exists or not. In this paper, first a computing model for Duffing oscillator is described. Then,

the fundamental principle and algorithm for CZP are discussed. Meanwhile the equation of circular zone

divider and its realization are presented. Finally, to verify the effect of the CZP method on BPSK signal

demodulation, two examples are given. The simulation results show that this CZP method is accurate

and valid for BPSK signal demodulation.

The rest part of this paper is organized as follows. In section 2, a brief introduction to the computing

model of Duffing oscillator and its phase plane characteristic is given. In section 3, the CZP method is

described, and the equation of circular zone divider and its realization structure are discussed in detail. In

section 4, simulation results and performance analysis are presented. Finally, in section 5 some concluding

remarks are given.

2 Model and phase trajectory features of Duffing oscillator

In principle, the proposed method is widely applicable to systems with plane phase trajectory. For

simplicity, we choose the well-known Duffing oscillator as the chaotic oscillator model.

Consider the following Duffing oscillator equation [2]:

ÿ(t) + kẏ(t) − y(t) + y3(t) = γ cos(t) + ax(t), (1)

where k is the damping ratio, γ cos(t) is the internal driving force, x(t) is the external signal composed

of to-be-detected signal s(t) and background noise n(t), that is, x(t) = s(t) + n(t), and a is a coefficient

used to limit the energy intensity of x(t) fed into Duffing oscillator.

In order to enable Duffing oscillator to have good signal detection ability, it needs to work at the

critical state, i.e. chaos, but on the verge of changing to the great periodic motion. This critical state

can be found out by experiment. Below is a sample procedure.

In eq. (1), let a = 0 and k be fixed, and then vary the value of γ from small to large until the system

state varies from small periodic motion to chaotic motion, and at last to great periodic motion. Threshold

value of the system in the critical state is denoted by γc. Hence, when γ is set to less than and near γc,

the Duffing oscillator is put into the chaos state nearby the critical point.

Since Duffing oscillator represented by eq. (1) is normalized in frequency, before employing it to detect

some external signal with non-normalized frequency, a corresponding frequency transformation must be

accomplished.

Take t = ωτ . Then eq. (1) is expressed as

1

ω2
ÿ(τ) +

k

ω
ẏ(τ) − y(τ) + y3(τ) = γ cos(ωτ) + ax(τ), (2)
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where x(τ) is the representation of x(t) on another time scale, ω = 2πf and f is frequency of the to-be-

detected signal. Since eq. (2) is derived from eq. (1), the dynamic property and critical value are not

changed.

To get the computing model of Duffing oscillator, eq. (2) is rewritten in the state equation form

{

ẏ1 = ωy2,

ẏ2 = ω[−ky2 + y1 − y3
1 + γ cos(ωt) + ax(t)].

(3)

Obviously, from eq. (3) it follows that
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(4)

where Y = [y1

y2

] is a state vector to be solved and Y0 is the initial state, namely the value of Y at time

t=0.

If time step size is set at h, applying Runge-Kutta fourth-order algorithm [8] to eq. (4), we can get a

set of recursive formulae
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K4 = hf(tn + h, Yn + K3),

Yn+1 = Yn +
1

6
(K1 + 2K2 + 2K3 + K4),

(5)

where Ki, i =1, 2, 3, 4 is the intermediate parameter. tn = n × h, n = 1, 2, . . ., and Yn, n = 1, 2, . . ., are

time and state vector at the nth step recursive calculation, respectively. h must be limited to the range
1

10f
6 h < 1

5f
so as to ensure the retrieval quality of the to-be-detected signal with frequency f , and

efficiency and stability of recursive calculation.

Employing the above recursive model and the dynamic system analysis tool SystemView by ELANIX

[9], the phase diagrams of Duffing oscillator are obtained, as shown in Figure 1.

In simulating, parameters used for the Duffing oscillator model are a=0.2, k=0.5, γ=0.84, and h =

1/(10f). In addition, the amplitude and frequency of s(t) which is not modulated are 900 mV and 36.050

MHz, respectively, n(t) is zero-mean additive white Gaussian noise, and signal power to noise power ratio

(SNR) is set at 10 dB.

From Figure 1, we can see that the phase trajectory is inordinate when s(t) = 0, and on the contrary,

it appears regularly orbicular when s(t) 6= 0. These characteristics have been applied to signal detection,

but an effective method, able to automatically identify phase feature of Duffing oscillator and extract

baseband information from the phase feature, has not been available as yet. This is because BPSK signal

demodulation based on Duffing oscillator cannot be accomplished so far.

3 Circular zone partition method

We know from the above discussion that phase pattern of Duffing oscillator is explicitly dependent upon

the existence of s(t) and there is quite great difference in feature. Thus, if we place a close circular region

inside the regularly orbicular track of Duffing oscillator, then the existence of s(t) can be automatically

recognized according to whether the trajectory traverses the boundary of the circular region or not, in
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Figure 1 Phase diagrams of Duffing oscillator perturbed by x(t) with noise. (a) s(t) = 0; (b) s(t) 6= 0.

other words, reporting the absence of s(t) when the trajectory touches or traverses the boundary, con-

versely, and reporting the presence of s(t) when the trajectory does not touch nor traverse the boundary.

This is the operating rule for a CZP method. The specific implementation about the method can be

described in detail as follows:

(1) Get the phase trajectory diagram of Duffing oscillator driven by s(t) without modulation, then set

a close circular region as large as possible within but not across the orbicular track of Duffing oscillator,

and use R to denote the radius of the circular region. Figure 2 gives a sample explanation to the circular

zone partition line.

(2) Let high level represent the case where phase trajectory does not touch nor enter into the circular

region and let low level represent the case where phase trajectory touches or enters into the circular

region. Here, high level and low level denote the fact that s(t) occurs and the fact that s(t) does not

occur, respectively. Obviously, this is just a mapping of transforming the two-dimensional phase diagram

of Duffing oscillator into the one-dimensional time signal. Hence, through it, information of s(t), included

in phase diagram, is shifted into envelop of the time signal.

(3) If we take high level as “+1” and low level as “−2”, then using the boundary of the circular region

as the decision criterion or threshold, a circular zone divider can be represented as

ȳ(t) =

{

+1,
√

y2
1 + y2

2 > R,

−2,
√

y2
1 + y2

2 6 R,
(6)

where ȳ(t) is the output of the divider, y1 and y2 are state variables from the computing model of Duffing

oscillator, respectively, and R is the radius of the circular region. Moreover, taking low level as “−2” but

not “−1” is to get the waveform symmetry after ȳ(t) passes a low pass filter for smoothing and cancelling

interference.

(4) The realization structure of the circular zone divider can be given by (6), as is shown in Figure 3.

It must be noted that the divider’s algorithm is highly dependent upon Duffing oscillator’s computing

model, because within each recursive calculation period, whose length is equal to the step size h, it is

carried out only one time. Thus, the algorithm for the divider can be specified as follows: the first step,

solve the value of y2
1 +y2

2 using data from Duffing oscillator’s computing model; the second step, compare

the solved result with R2, i.e. square of threshold. If it is greater than R2, then output “+1”, otherwise

output “−2”; the third step, check if next recursive calculation period starts; if it is true, then go to the

first step, otherwise go to entry of this step and repeat again.

From the above one sees that the CZP method needs two multiplications, one summation and one

comparison operations in total for each Duffing oscillator output, whose computational complexity is

much less than that of the typical methods like Lyapunov exponents, Poincare section, power spectrum,

fractional dimension and Melnikov function [10] (because chaotic signal detection methods commonly

include the chaotic oscillator, its computational complexity is not taken into account). Thereby the CZP

method is with good real-time performance and the ability of automatically recognizing phase transition.

Different from the existing chaotic weak signal detection methods, the CZP method creatively utilizes

the image features of Duffing oscillator’s trajectory, i.e. orbicular track of periodic motion and inordinate
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Figure 2 A sample explanation to circular zone parti-

tion line.

Figure 3 Structure of circular zone divider.

Figure 4 Evaluation scheme for CZP method.

track of chaotic motion besprinkled within the orbicular track, and transforms information of to-be-

detected signal hidden in the two-dimensional phase plane into a one-dimensional time signal by means

of the circular zone partition idea. This is the reason why the CZP method is able to detect the to-be-

detected signal at smaller computing cost and with better effect than typical chaotic methods such as

Lyapunov exponents, Poincare section, power spectrum, fractional dimension and Melnikov function.

4 Simulation results and performance analysis

The proposed CZP method has been evaluated using the dynamic system analysis tool SystemView by

ELANIX. The evaluation scheme is given in Figure 4.

In Figure 4, RF BPF is a radio frequency band-pass filter whose central frequency and bandwidth

are 36.050 and 2 MHz, respectively, LPF is a baseband filter used for cancelling carrier and noise in

output of the circular zone divider, whose bandwidth is 2 MHz, and the cross-zero detector functions as

a limiter, by which the maximal amplitude of x(t) fed into Duffing oscillator is limited to less than 200

mV, corresponding to a = 0.2, aiming to avoiding the critical point offset of Duffing oscillator.

Duffing oscillator used for this simulation is the same as in Figure 1, and s(t) is BPSK-modulated by

baseband data with rate 1 Mbps, i.e. one-bit-interval T = 1 µs. The radius of the circular zone divider,

or threshold is determined as 1.0 V by way of the experimental curve in Figure 2. n(t) is zero-mean

additive white Gaussian noise, with power spectral density N0=40.5×10−9 W/Hz.

Using the given simulation parameters, bit energy to noise power spectral density ratio (Eb/N0), in

the case of input impedance being one Ohm, is calculated below:

Eb

N0
= 10lg

A2

2 × T

N0
= 10lg

0.92

2 × 1 × 10−6

40.5 × 10−9
= 10 dB. (7)

Simulation results within time length of 90 µs are presented in Figure 5.

Referring to Figure 5(c), we can see that our method accurately extracts the baseband information

from Duffing oscillator’s phase transition caused by s(t), and meanwhile Figure 5(d) indicates that the

baseband data recovered by LPF is in good state, and well identical with original baseband data, as

shown in Figure 5(a).
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Figure 5 Evaluation results for CZP method. (a) Original baseband data; (b) external signal x(t) in the case of Eb/N0=10

db; (c) output of circular zone divider; (d) output of LPF.

Figure 6 CZP-based DPSK Duffing oscillator receiver.

To verify the effect of the CZP method on BPSK signal demodulation, a CZP-based Duffing oscillator

differentially binary phase shifted keying (DPSK) receiver is designed and its specific realization is shown

in Figure 6.

In Figure 6, d(t) denotes original baseband data produced by a pseudo-random number (PN) sequence

with rate 1 Mbps, i.e. one-bit-interval T = 1 µs, d̄(t) corresponding to DPSK coding of d(t) is bipolar,

d∗(t) is a retrieval version of d(t), s(t) is either a BPSK-modulated signal related to d̄(t) or a DPSK-

modulated signal related to d(t), and n(t) is zero-mean additive white Gaussian noise with power spectral

density N0. r(t) is a received signal not only at the receiver, but also at each comparison receiver and

can be expressed as

r(t) = s(t) + n(t) = d̄(t)A cos(2πfct) + n(t), (8)

where fc is the carrier frequency, equal to 36.05 MHz, and A is the amplitude of cosine carrier, equal to

900 mV. Parameters of RF BPF, cross-zero detector, Duffing oscillator, and circular zone divider in the

receiver are the same as in Figure 4. In addition, DPSK decoder is used to cancel differentially encoding

in s(t). Bit-sync is designed based on square-law principle and used to produce synchronization clock

for bit-integrator and extractor, which jointly serve as a baseband data matched filter, and the decider

is used to retrieve the waveform of baseband data.
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Table 1 Simulation parameters

Eb/N0 (dB) N0 (W/Hz) Simulation time (ms)

0 405e−9 10

1 321.702935e−9 20

2 255.537724e−9 20

3 202.98083e−9 40

4 161.233404e−9 40

5 128.072245e−9 40

6 101.7314e−9 80

7 80.808123e−9 100

8 64.188174e−9 100

9 50.986479e−9 500

10 40.5e−9 1000

In this receiver, Duffing oscillator and circular zone divider act jointly as a BPSK demodulator. Exactly

speaking, Duffing oscillator accomplishes the task of mapping existence of s(t) into phase pattern change,

and circular zone divider does the task of mapping the phase pattern change of Duffing oscillator into

one-dimensional time signal whose amplitude is highly dependent upon phase pattern. Since the rest part

of receiver is in principle similar to the typical digital BPSK receiver, no more statements are presented.

The simulation has been run in a PC computer under the support of SystemView by ELANIX, with

a system sampling rate of 360.5 MHz. Other main simulation parameters such as noise power spectral

density N0, bit-energy to noise power spectral density ratio Eb/N0, and simulation time under every

Eb/N0 of interest are listed in Table 1.

Through simulation, the bit-error-rate (BER) curve of the CZP-based Duffing oscillator receiver has

been obtained, as is shown in Figure 7.

For performance comparison, a differentially encoded coherent BPSK receiver and a coherent DPSK

receiver [11], which both use carrier-recovery based on square-law-principle, are selected for comparison,

and simulated under the same Eb/N0 as the Duffing oscillator receiver. Their BER curves obtained and

the corresponding theoretic performance limit are also dipicted in Figure 7.

From Figure 7, we noticed that BER for the CZP-based Duffing oscillator receiver is not able to reach

both theoretical limit of ideal BPSK receiver and theoretical limit of ideal DPSK receiver. But, the curves

tell us that the CZP-based Duffing oscillator receiver obviously outperforms the coherent DPSK receiver

in BER under any Eb/N0, and also outperforms the differentially encoded coherent BPSK receiver when

Eb/N0 is greater than 6 dB. Although under Eb/N0 less than 6 dB it is not better than the differentially

encoded coherent BPSK receiver in BER, its performance is very close to and nearly the same as that of

the latter.

It is noted that our receiver is non-coherent in principle. The reason why the chaotic non-coherent

receiver can be beyond the typical coherent receiver such as BPSK and DPSK receivers in the case of

Eb/N0 being greater than 6 dB is mainly due to chaotic oscillator’s dependence upon frequency and

phase of the to-be-detected signal. In addition, the mapping from two-dimensional phase pattern to

one-dimensional time signal, accomplished by circular zone divider, maybe is another reason. Therefore,

further analysis will be needed in the future.

Two extra advantages of the CZP-based Duffing oscillator receiver are that it has a non-coherent

structure and there is no need for analog to digital (A to D) converter in hardware. Hence, as it is free of

carrier-recovery and is no longer limited to A/D conversion speed, the receiver has potential applications

in burst communications and wide-band communication signal processing.

At last, let it be noted that as the Duffing oscillator responds to phase transition of BPSK signals only

at great periodic motion or chaotic motion, the CZP method can only be applied to demodulate signals

with two-state transitions, such as BPSK signal. Generally speaking, the proposed CZP method can be

extended to detect any modulation signal with multi-state transitions. However, before carrying out the

related work we have to find a new-type chaotic oscillator able to respond to the modulation signal with
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Figure 7 BER curves of CZP-based receiver versus typical receivers.

multi-state transitions at multi-different-periodic-motion states. The research is currently in progress and

the related results will be reported elsewhere.

5 Conclusions

In this paper, we propose a Duffing oscillator CZP method, and give the equation, realization algorithm,

and evaluate the performance of the circular zone divider. The simulation results show that this CZP

method is accurate and valid for BPSK signal demodulation, and of good performance.
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