INTEGRAL EQUATIONS WITH NORMAL KERNELS*

Cuane Sum-Hsun (ZRitEh)

(Szechuan University)

I. InTRODUCTION

By a normal kernel, we mean a kernel K(x, y) satisfying the condition

KK*[x,y], = K*K[=, y], (1.1)
ie.,

[(keoRGDe= [ KEDKE .

Evidently real symmetric kernels, real skew-symmetric kernels, Hermitian
kernels, skew-Hermitian kernels, etc. are normal kernels. In this paper, we
discuss the properties and solutions of the integral equations with normal
kernels, especially the properties of the singular values (E. Schmidt’s cha-
racteristic values), the characteristic values of such kernels and their relations.
The main results are given by the following lemmas 2.1, 2.2; theorems 2.1,
22,23,41,51,62, 63,64 and 7.1. Our starting points are chiefly based upon
the properties of algebraic kernels, ie., kernels of the form

21 X(%) Yi(y)

where each X;(x) is a function of x alone, and each Y;(y) is a function of
y alone, and m is a finite integer. We shall show that all normal kernels and
their iterated kernels and the solutions of the integral equations with normal
kernels are expressible in terms of the characteristic functions of such kernels.
As applications of these results, we give new proofs to some classical theorems,
for example: (i) the existence theorem of characteristic values of normal
kernels, and (ii) the singular points of the resolvent kernel of any L? normal

*First published in Chinese in Acta Mathematica Sinica, Vol. IV, No. 1, pp. 1-20, 1954,
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kernel are all simple poles, etc. In what follows, we shall use the notations

(he)= [ K&V dss  [£il= G,

AB[z,5] = r A(x,8)B(£,9)ds,  ABClx,y] = AB-C[x,y],
—4”[1',?] :A’PIA['V’Y]; (”:' 132;3:"')

b b
kit = [ K@) (@) a8, kefta = [ KEAHE a2,

1, if i=7q,

8
K'f[x]TLK(Esx)f(E)df_- dij = 0, if ixj.

We shall use K[@,, ¢,; 4] to denote a kernel K(x,y) of which the set
of singular values is {4} (A=I, 2,...) and the complete orthonormal
system of pairs of adjoint singular functions is {@,(x), ¢s(y)}, so that

Pi(x) = 2, Kdyl=x], Pu(x) = 2, K* py[x] . (A=1,2,-+)

The Lebesgue integral is used throughout, and equalities between functions
will generally be understood as holding almost everywhere.

II. ProPERTIES OF THE SINGULAR VALUES OF
Normar KErNELS

Lemma 2. 1. Suppose K(x,y)=K[@s ¢s; 0] is a L* kernel so that
(]
j‘j | K(x,y) |28z ay < 4+ oo

and is normal, then

K (x, )’) = K(¢u, AaK*‘»('a; .
Proof. (i) Let 2, K* ¢,{x] = %,(x), then by (1.1), we have
A K X,[x] = 23 KK* ¢[x] = 3 K* K (2] = ¢u(2),

e, ¥i(x), 2,(y) is a pair of adjoint singular functions of K(x, y).
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(i) By hypothesis (¢, ¢;) = 8;;, therefore we have

(Xis X3) = A2 (K* i, K* ) = 4 24 (fis KK* )
= 245 (s K*K ) = X2, (dis $a [ 23)
= X;8inl A4 = Bin»

ie., the system {¢,(x), ,(y))} (A= 1,2,--) is orthonormal.

(iii) By hypothesis the set {(¢,(x)} is a complete orthonormal system of
characteristic functions of the kernel (1.1). Therefore assume 2, be a
singular value of rank 4, of the kernel K(x,y), ie, in the complete
orthonormal system of adjoint singular functions {®,(x), ¢;(y) }, there are
h, and only A, pairs of adjoint singular functions

Pux) s guy) (=12, 4)
belonging to the same singular value 4, such that
(Psi» (Pj;) = 8 (s> ')!’.u‘) = 8ij» (4,7=1,2, %) (2-1)

then for any pair of adjoint singular functions @(x),¥(y) of K(x,y) belonging
to the singular value 4,, there exists a finite linear combination

P(x) = 3 ci ).

i=1

Whence
¥) = K o] = WK { et} 1] = 1 2 ke g 1)

= 24 2 X () /2y = Z i Xpi (y) .

i i

It means that the system ¢,(x), X.(y) is complete. Thus our lemma is
established.

Lemma 2. 2. A L? kernel K(x,y) of which the n-th iterated kernel
K*[x,y] may have a canonical decomposition” in n equal factors for any
integer n, is necessarily a normal kernel, and vice versa.

DIf K(x,y)=AB[x,y] where 4 = A [¢s, Ya; asl, B =B [¥s, Xs; Bsl, then we say that
K(x,y) has a decomposition in 2 factors. Similarly, for the definition of canonical decomposition in 2
factors. CE. [1].
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Proof. Suppose K(x,y) is a L’ normal kernel, then by lemma 2.1, we
have

K[z, y] = [[ K122, $9; 4] (819 (2) = 9P (2); i=1,2, -, n—1),
=1

e, K"[x,y] has a canonical decomposition with » equal factors.

Conversely, suppose K"[x,y] has a canonical decomposition in 7 equal
factors for any integer #, then in particular K*[x,y] has a canonical decom-
position in two equal factors

K[z, y] = K[ P4, Y5 ) - Klha, a3 As) . (2.2)

From K(x,y) = K[®s ¥4 4], we have K*K[x,y] = i o (x) da(y) /255
A=1

and from K(x,y) = K[¢4,%,;3,], we have KK*[x,y] = i‘. ga(x) & () /25
=1
Therefore we have KK* [x, y]=K*K[x, y], ie. K(x,y) is normal.

Corollary. A L? kernel is normal if and only if the second iterated
kernel K*[x,y] has a canonical decomposition in two equal factors.

Theorem 2. 1. If K(x,y) is a L’ normal kernel of whick the set of
singular values is {2}, then the set of singular values of the n-th iterated
kernel K"|x,y] is {33}.

Proof. Suppose K(x,y) is a L* normal kernel, then by lemma 2.1, we
have®, for any L* function f(x),

Kflel ~ 3 9ue) () [ 2a = 295D (b KS 9) 8,

h=1

where the symbol ~ denotes the convergence in the mean square. From the
last equation we have

K22, y] = K[ @y, A K* 5 3:1 = K[ @ @s; Aal - Kls, A K*¥ s 441 .

By induction we get

2) This theorem is an analogue of a known theorem that if A is a characteristic value of a L2
kernel K(x,y) then Ar is a characteristic value of K#[x,y]. See [S] p. 119.

. N See [3] pp. 266-267.
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K*[x,y] = K*[@,, J':_l K**=1 ¢y )':] ’ (n=1,2,3, we) (2-3)

and the theorem follows.

Theorem 2. 2. Lez A, be a singular value of rank h, of the kernel
K(x,y) and

‘Pbr’("'): ‘;’M(J’) (’_‘1: 2, hﬂ)

be the h, pairs of adjoint singular functions of K(x,y) belonging to the
same singular value 1, such that

(Psi> Pai) = 8 (Psis Y1i) = 8ii» (1, 7=1,2, -, k) (2.1)

then a necessary and sufficient condition for K(x,y) to be normal is that for
each h, we should have

Puix) = Zp ay, i Pi(x) 5 (1=1,2, -, ko) (2.4)

where the a,;'s are constants such that the matrix

A= (%,:‘,-’) (£,7=1,2,, ko) (2.5)
is unitary.
Proof. 1f K(x,y) is a L’ normal kernel, then each of the two sets

Pn(x), Pnlx), - (P‘up(?-’) H In(x) s Pra(z) , -, ‘F‘Mp(-‘t')

represents a fundamental set of linearly independent characteristic functions
of the same kernel KK*[x,y]=K*K|x,y] and belonging to the same
characteristic value ;. Whence each @,,(x) must be a linear form of the
$5:(x)’s as shown in (24). Then by the conditions (2.1), we have

A, A,
Z Layil2=1, 2 @y ii g ki =0 (iFk; Lk=12-k). (26)
i=1 i=1

But it is the condition that the matrix A is unitary.

Conversely, if (2.4) and (2.6) are true for 4=1,2, ..., then each of fhc sets
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{‘PM(“")}! {Sbai(-")} (=1, 2,05 8=1,2, 00 ko)

represents a complete orthonormal system of characteristic functions of the
same kernel

P ‘:’p X kﬂ
2 2 ®uilx) (P}a'(l")f{fti = 2 2 i (%) Yu(y) /2, 2.7)
h=1i=1 A=1 i=1

ie. KK*[x,y]=K*K[x,y]. Thus the proof is completed.
Theorem 2. 3. If K(x,y) is a L* normal kernel, then

'*a
i) = Z an, ji Pai(2) (2.8)
i=1
"’ﬁ
Koz, y] = K*[on(#), 3, ou(y); X1, (2.9)
i=1
4o
K*[x,y] = K" [2 0. gu() s w5 K1 (2.9%)
i=1
where
a = ap i, (07 = (@) = (@)™ = &7,

Proof. Since A™'=1A4", where A”and A denote respectively the transpose
and conjugate of A. Therefore from (2.4), we get (2.8). Whence we get

Ay Ao
LE* [yl = 4, Z as i K* @4ly] = Z anii Pai(y)
i=1 i=1

e

&, A hy
= S i S in g Puly) = 2 a2 Paly).
i=1

=] t=1

-

By induction, we have

#a
KR duly] = 21 Ei:),-,- Puiy) -
i=

Substituting this result into (2.3), we get (2.9). Further, by lemma 2.1,

K(2,y) = KN K2y le], {7 K 1gly]5 4], (n=2,3,+)
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Ao
therefore we may consider ar @,(x) as ¢u(x) and substituting

=1

-

Ay
@5:(x) by 3 a7 ¢,,(x) in (29). Then we get (2.9') and the proof is completed.
=1

III. Existence THEOREM oF CHARACTERISTIC VALUES OF

Normar KEerNELs

Theorem 3. 1. Any L? normal kernel K(x,y) has at least one cha-
racteristic value,

Proof. Let

Ka(x,y)=ﬁ;mx){;‘;aﬁ.ﬁ%u)}m, (h=1,2,3) (3.1)

then
K(xy) ~ 3 K2, 9).
A=1
Evidently
Ka'Ki[x:yIsD (;:,&f), “Khlz%s

and

IKlE= K2 =S b/ R <+ o0,

A=1 h=1 .

where

N A T

]
j!Kk(x,y)fzdxdy. (h=1,2, )

Whence, by a known result’?); we have
D) = ]I1 D (3), (3.2)
A=

where Dg(X) denotes the generalized Fredholm determinant in Carleman’s
sense of the kernel K(x,y). Therefore in order to prove our theorem, it is
sufficient to prove that there is at least one characteristic value of the kernel
Ki(x,y), where 4 denotes a positive integer. Now, since K,(x,y) is a L?
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algcbrai'c kernel, its Fredholm determinant Dyg,(R) exist, and is identical
with Dy, (), ie.

| 1—3ay, —dap, - —lay,
—dan, 1—Rap, = —2
Do~ Dy =| re - e
f J
; Aay,ys —hay, s vy 1—Ran, s, |
where
*p
air = (Pans 2 @, ji Pril A) = an i/ My = (P Y1) [ ds. 3.4)
i=1

By (26), each a; is finite in value. Since the matrix (2.5) is unitary, there-
fore the coefficient of the highest term of Dy, (3) is

{((—1)*/ %} I,)‘TI | 4,2 | :{';31}%6%0' (lel=1)

And since the constant term of Dy, () is 1, therefore Dy, () has 4, roots,
‘which are the characteristic values of K,(x,y). Thus our theorem follows.

IV. Rerations BETweeN THE CHARACTERISTIC VALUES AND

SINGULAR VaLues oF Normar KEerNELs

Theorem 4. 1. For any L' normal kernel K(x,y), there exists a one
to one correspondence between the set of characteristic values {p,} and the
set of singular values {A;} each arranged in order of non-decreasing absolute
value such that

E;“fn = 4. ("X=1>2!3""§ | 1 i < ! Hz2 S <Al -<-)-z~<-.‘)

Proof. Denoting the characteristic values of K4(x,y) by pi(i=1,2,-+,4,),
and substituting A,/p for A in the determinant (3.3), then it is easy to see
that the roots of the equation

s 11 T H, @y, 215 Ty Gh gl |
| @a 12 @ho22 "My T G kg2 |

=0 (4.1)

......................................................
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are A/pi(i=1,2,--, A,). It means that &,/p,(i = 1,2, , A,) are the
latent roots of the unitary matrix (a,;). But it is known® that all the latent
roots of a unitary matrix are of modulus 1, whence we get |4,/p,;| =1, (i=1,
2., h,) or A= |pul, (1=1,2,-,4,) as we wished to prove.

V. ReLations Berween CHARAcCTERISTIC FUNCTIONS AND

Apjoint SiNcULAR Funcrions oF THE NorMAL KERNELS

Theorem 5. 1. Suppose K(x,y) be a L’ normal kernel, and

K(,5) = K| @u(), 3 s ow)5 b | = K[ 2 ana 9ue), 03 1]
i=1 i=
(&'_"_1’ 2y ‘.__"1_-2:"':}3#)

then (i) The rank of each characteristic value of K(x,y) is equal to its
multiplicity;

(i1) Corresponding to the characteristic values p(i = 1,2, -, h,), there
exist h, linearly independent characteristic functions uy; (x) (1=1,2,, h,)
and h, linearly independent transpose characteristic functions vy (x) (i=1,
2, h,) so that

"fu’(x) = py K uyi(2], Vfu'(x) = Meai K’ v,i[x] 5 (5—1)

(i) Each of the uy(x) and each of the v,:(x) is a linear combination
of the ¢,:(x)'s, and therefore is also a linear combination of the ¥u:(x)’s;

(iv) We can choose suitable coefficients of these linear combinations, so
that the characteristic functions wuy; (x)'s and the transpose characteristic
functions v,(x)'s satisfy the relations

upi(2) = v,(x) . (1=1,2, k) (5.2)
Proof. Since
(Pars 03i) = (M K Py i) = A5 J (i > i)
where
]

J(lf_la.’, !}'JM) = J '[i K(x,y) ‘E&i(l‘) du(y) dx dy,

therefore the determinant (3.3) can be written in the following form

5) See [4] p. 107, cx. 3.
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1=2 J (s ¥n1) » —AJ(a i) s s —A I (s i)

puty = | B, G, s A Sbn) |
~AJ(Dan ¥m) s AT (Dang )5 oy 1=2 (P pr Ps,) |
Now let
ful(z) = i by, i bii(x) , (r=1,2,-, k) (5.3)

where (4,,;)=B (¢,j=1,2,+-, 4,) denotes a unitary matrix, consequently the
functions fu (x) (¢=1,2, -, h,) constitute an orthonormal system of
functions satisfying the condition (fu, fs) = 65. We can easily deduce
the following relation in matrices

(J (f?u‘: f.':f)) = E(J (&ﬁu ﬁbk:)) B = E(J’ (‘1'-!::: Sbjr)) Eﬂl 3

where B, B’ and B! represent respectively the conjugate, transpose and inverse
of the matrix B. Since the matrix (% J (s ¥s)) is unitary, therefore
by a known theorem®, we can choose a suitable unitary matrix B, such that
the matrix B (A J (s, ¥4)) B™' is a diagonal matrix, and consequently
the matrix B (J (g, ¥4) B™' is a diagonal matrix

J(Fms fm) » 0, ey 0
0, J(i&z:fﬁl)) s 0
0, 0 ] oy J(fﬂrps fi;inp)

Whence we get

‘E('r - ‘IJ(';{;MS \b.ﬁ.r)) B'-‘l =TI — lB‘(-f ([z;fx:s ‘pfu)) .B--vl =

1=2J(fns tir) 0, ey 0
0: 1_2' f ] 2
o (A G
0, 0, -y 14 J(fjk,, s Thng)

6) See [4], p. 108, ex. 11,
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Now since the characteristic values of a matrix are invariant under a
linear transformation with non-singular matrix”, therefore the characteristic
values of K, (x,y) are py = 1/J(Fuis f2i), ie.

J(;M, f.h‘) = Ii _": K(x, }') }-k:‘(-"') ?'Ju‘(J’) dxdy = 11!)“.5:' . (F=1,2,-, 5.0) (5-5)

But since the functions f4: (x) (i=1, 2, ---, &,) denote an orthonormal set
of functions, we must have

Kfsi (2] = fai2) [ psi » K'fsi Iy) = fx(y) | i (i=1,2,-, k)

it means that the functions f,; (x) are characteristic functions of K(x,y) and
the functions fs (x) are the transpose characteristic functions of K(x,y)
belonging to the same characteristic value p;. Replacing f,:(x) by @ (x)
and 4 (x) by 24 (x), we get (5.1) and (5.2).

Further, if g, is a r-tiple root of the equation Dy, (2) = 0, then on
the diagonal of the matrix (5.4) there must be exactly » elements equal to
1 = 2/py. Thus when 4 = g, the rank of the matrix (54) is 4, — 7,
and consequently when A= gy, the rank of the determinant Dy, (3) is 4,—7.
Therefore® g, is a characteristic value of rank » of K,(x,y) and con-
sequently a; is a characteristic value of rank » of K(x,y). Thus the parts
(1) and (ii) in our theorem have been proved.

From (i), it follows that to the 4, (distinct or equal) characteristic values
i (i=1,2,---,h,) of K,(x,9) (and therefore of K(x,y)), there exist cor-
respondingly 4, linearly independent characteristic functions % (x)
(i=1,2, -, k) and A, linearly independent transpose characteristic
functions #,;(x) (1=1,2,---,4,) of K;(x,5) (and therefore of K(x,y)); so
we have proved (ii). It remains to prove (iii).

Suppose #(x) be any characteristic function of K(x,y) belonging to the
characteristic value p; then #(x) must be a linear combination of the
fundamental solutions of just one kernel Kj;(x,y) having g as a cha-
racteristic value. Therefore there exists one and only one integer 4, such that
u(x) = e Ki ulx]. Thus from (5.1), we get

Ay )
”,&:(x) = p, K, #ylz) = 'Ef:" 2 ?’y(x) (%4 5 ',L‘M)
i=1

L

o fp

Z @p,if Kbﬁi(x) (“-’x: ’ ‘;’5:‘) . (‘:L 25000, }‘P)

T

I
-

7} See [4], p. 42, ex. 2.
8 See [5], p. 122.
9 I%id., pp. 129-130.
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Similarly, from z4 (x) = s K'vs [x], we get

A, B
on(x) = B 3 () (o )
i=1

A &

s %p
='_EE:_,' z Zab.fl'aﬁi(x) (”bn (P?.it')- (‘;Lz:"'s/’#)

i=1 j=1

Thus theorem 5.1 is completely established.

Corollary 1.  Each complete system of characteristic functions of a L
normal kernel can be transformed linearly into a complete orthonormal
system of characteristic functions of the same kernel.

Proof. Let wuy(x) (i=1,2,--,4,) and v,,(x)(i=1,2,---,h,) denote re-
spectively a complete orthonormal system of characteristic functions and a

complete orthonormal system of transpose characteristic functions of K;(x,y)
such that #,; (x) = v, (x). Then by a known theorem, if A=s, we have

-]
j “m'(x) ”!:(x) dx =0 or (“.&J‘, “;:) =0,
a

therefore
(#44i s %) = 8ps* 8iz»
ie.
{mu(2)} (B=1,2,3 i=1,2,, k) (5.6)

is an orthonormal system of functions. Since #s (x), %5 (x),-+-, thss0(x)
denote a complete orthonormal system of characteristic functions of K(x,y),
therefore the system (5.6) denote a complete orthonormal system of cha-
racteristic functions of K(x,y).

V1. ExpansioN THeoREM ForR NorRMAL KERNELS

Theorem 6.1. The poles of the resolvent kernel of any L* normal
kernel are all simple.

Proof. In order to prove this theorem, it is sufficient'® to prove that to
each characteristic function #; (x) there exists a transpose characteristic
function v, (x) belonging to the same characteristic value g, such that

10) See [5], p. 105.
1) 13id., p. 144,
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j’ wne(x) o) dx # 0. (6.1)

Now we choose a complete orthonormal system of characteristic functions
{a (2)) (A=1,2,---,i=1,2, -+, h,) of K(x,y) such that the set {w (x)}
(b=1,2,--3i=1,2,---, h,) denotes a complete orthonormal system of
transpose characteristic functions of K(x,y). Therefore substituting ; (x)
for vs (x), we get the relation (6.1) and the theorem follows.

Theorem 6.2. Suppose K(x,y) ~ i K, (x,y) be a L' normal

A=1
kernel, where Ky(x,y) are given by (3.1). Let up(x),t52(x) ,-,141s, () denote

a complete orthonormal system of characteristic functions satisfying the
condition (52) of Ki(x,y) (A=1,2,---) and let {p;} (i=1,2,---,4,) denote
the set of characteristic values of K, (x,y), then

K(x,y)"-'ﬂi;Jl é "—*'(%?&)— (6.2)

Proof. Since the poles of the resolvent kernel of K,(x,y) are all simple,

therefore by a known theorem' we have
ép ) )
Ki(t,y) = > _ffﬁ_:&fﬁ_ﬁﬂ@_), (6.3)
i=1 hi

where  {uy (x)}, (s ()} (1 =1, 2, -, h,) denote respectively a
complete orthonormal system of characteristic functions and transpose cha-
racteristic functions of K,(x,y) such that

_E #ii(2) v4i(x) dx = §;; .

But this condition is satisfied, when we set #,(x) = #,;(x). Thus we have

Ki(z,y) = 2‘: n.ei(x}‘jﬁ(?) . (6.3%)

Substituting into K(x,y) ~ 2” Ki(x,y), we get (6.2) as we wished to prove.
A=1

12) See [5], p. 135.
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From the properties of convergence in the mean square, it is easy to deduce
the following corollaries:

Corollary 1. For n=2,3,4,..... , we have

w f B (n) () By
K*[2,9] = 2 2 n;,,(x) “m( ; Z 21 anii Pri(x) Priy) . (64)

n
h=1 i=1 P i A

Corollary 2. If g(x) € L?, g(x) = Kq [x], then

£(x)~22ms=(r) (& wn) = iz () (o) . (65)

A=1 i=

Theorem 6.3. Suppose p(x) €L?, q(x) €L?, then

h

[ [ xenpa0)aray = 3 3 [} wste) o) d [ 7 (9 40 e e 6

A=1 i=1

(It is a generalization of a formula of Hilbert)

Proof. Let g(x) be a function satisfying the relation (6.5), then from
the properties of the convergence in the mean square, we have

[[ [k ser a2 et = [ sy 00 = 51 32 nPam)

=1 i=1; O B

Theorem 6.4. For any L* normal kernel, we have

‘_1"‘=§i jj | K(x,9) [*dzdy. (6.7)

L <RGN
Proof, Since

K(x, JJ) —~ i: Kg(x, y) i q:’ai(x) ‘V‘L'!:(Y)

h=1
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therefore we have

b (B
lim j
n— a a
1e.

i [ {6~ 3-2EHO gy S PO gy, -,

o=+ aJda

2
dxdy =20,

y) — ;1 "PA(-T)A;/JA(J’)

Whence we have

| Kz, ») | — lim {Z Lo dey g;hﬁ(ﬂ?@@ﬁ“ 2_311_} =0,

T 42
A=t { g3 A 14& A=1

and consequently

& 1
2 =K@y P,
A=1 ‘1.&
Finally, from the relation || = 2,, we get (6.7) as we wished to prove.

VII. THe GENERAL SoLUTION OF INTEGRAL EQUATIONS

witH NorMAL KERNELS

Theorem 7.1. Suppose K(x,y) ~ i Ki(x,y) be a L' normal

h=1

kernel, where K, (x,y) are given by (3.1). Let {uy ()} (i = 1,2, -, h,)
be a_ complete orthonormal system of characteristic functions of K, (x, y) and
q(x) €L

Then (i) the solution of the integral equation

q(x) = p(x) — AKp[x] (7.1)
s given by
w %
P(x) =2 ,,Z::l 2, wyi(2) (g, w4) [ (i —2) + q(2), (7.2)

if X is not a characteristic value of K(x,v).

(n) If 2= p, is a characteristic value of K(x,y), then a necessary
and sufficient condition for the solvability of the integral equation (7.1) is
that q(x) should be orthogonal to all transpose characteristic functions of
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K(x,y) belonging to p., and when this condition is satisfied, then the
solution is given by

() = 2 2 i’ sle) (g0 ) ] (s ) + 4(2), (7.2%)

the accents indicating that for those values of h and i for which w,; = p, the
coefficient of uy(x) may take any arbitrary value.

Proof. Suppose X is not a characteristic value of K(x,y). Let the
solution of the integral equation (7.1) be

A

P = a®) + S S e unx) (7.3)

A=1 =1

[

where the unknowns x; arc to be determinéd. Substituting (7.3) into (7.1),
we get

2 T u&,(r) =AKg[x] + 4 2 2 x5 Koge[2] .

) A=1 =1

But s Kuplx] = up(x), therefore by (6.5) we have

A Ay w o

3 240 p(x) = A 2 (%) (g5 #ni

h=1 101 h=1 t=1

a-MS

=1 =

Multiplying both sides by am(x) and mtegranng both sides term by term,
then since {#,(x))} (A=1,2," =1,2,"", k,) is an orthonormal system of
characteristic functions of K (x,y), we havc

Xy = ‘—A (q. “d:) + 11’)«/”}‘4; .
HMess
Whence we get

Xae = A(qs Pae) [ (e -4).

Substituting this value into (7.3), we get (7.2).
(i) The proof is obvious.
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[1]
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[3]
(4]
(5]
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