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1 Introduction

In this paper, we consider the separable optimization problem

min f1(x) + f2(y)

s.t. c(x, y) = 0,
(1.1)

where f1 : Rn → R and f2 : Rs → R are continuously differentiable functions, but none of their first-order

or second-order derivatives is explicitly available,

c(x, y) = 0

is a general constraint and c(x, y) is continuously differentiable.

The problem (1.1) has numerous applications in compressive sensing, signal/image processing and

statistics, etc. When the derivatives of f1 and f2 are available, several numerical methods have been stud-

ied extensively, such as alternating projection method [31] and alternating direction method [13, 14, 16].
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However, when the derivatives of f1 and f2 are unavailable, this problem belongs to derivative-free non-

linear separable optimization. It seems that now there are not available suitable methods for solving it.

The aim of this paper is to propose a derivative-free trust region method for solving (1.1).

Existing derivative-free optimization (DFO) methods can be divided into four different classes. The

first class of DFO algorithms is the direct search or pattern search methods which are based on the

exploration of the variable space by using sample points from a class of geometric patterns and using

either the Nelder-Mead simplex algorithm [21] or parallel direct search algorithm [1, 32]. Some of these

methods do not assume the smoothness of the objective function and therefore they can be useful for

non-smooth optimization problems. However, a large number of function evaluations are required. The

second class of methods are line search methods which consist of a sequence of n + 1 one-dimensional

searches introduced by Powell [22], Lucidi and Sciandrone [18], and Grippo et al. [15]. The third class

of methods is to resort to finite difference approximation of the derivatives (see [10]). In general, it

can be much too expensive to evaluate the Hessian or gradient of the objective functions. One can use

quasi-Newton Hessian approximation instead. However, this class of methods often cause disastrous loss

of accuracy in pathological cases when the finite differences are used to approximate derivatives. So,

usually, it is not robust, especially in the presence of noise. The last class of the methods is based on

modeling the objective function by multivariate interpolation. These methods have been pioneered by

Winfield [33] and Powell [23]. The derivative-free trust-region methods building a model by polynomial

interpolation have been developed by [6, 8, 24, 25, 30]. The global convergence properties are established

(see [7–9]). Some recent researches [20, 35] indicate that the fourth class method, i.e., the derivative-free

trust region model-based method, is frequently superior compared with the first three classes of methods,

even for noisy and piecewise-smooth problems. Nevertheless, the first three approaches are still widely

used in the engineering community. There are still several disadvantages and challenging issues in the

fourth class of methods. The algorithm discussed in this paper belongs to the fourth class of methods.

Some authors developed methods by using the problem structure in order to treat the special optimiza-

tion problems. Colson and Toint [3] exploit band structure in unconstrained derivative-free optimization

problems. Colson and Toint [4] handle partially separable unconstrained optimization problems by using

derivative-free trust-region strategy. In this paper, we consider the separable optimization problems with

general constraints by using the derivative-free technique. Our work is an extension of the derivative-free

optimization methods from unconstrained separable optimization to constrained separable optimization.

Fletcher and Leyffer [12] proposed a filter method for nonlinear constrained optimization. The idea is

referred to the concept of filter and is motivated by taking aim of avoiding use of penalty function and

penalty parameters whose choice and adjustment may generate numerical difficulty. Now, the filter-type

methods are used widely in unconstrained and constrained optimization, for example, filter-trust region

methods for unconstrained optimization problems [19, 28], filter-SLP, filter-SQP methods for nonlinear

programming [2,11], filter-SL method, filter-SSP method for nonlinear semidefinite programming [17,34].

So, in this paper, we would like to exploit the filter strategy in trust region framework to ensure the

feasibility and optimality, in which the step is accepted if it either reduces the objective function or the

constrained violation.

In this paper, we propose a globally convergent derivative-free trust region algorithm for nonlinear

constrained optimization with separable structure, where the trust-region models are constructed by

interpolation. At each iteration, we construct the quadratic interpolation models and improve the inter-

polation sets. The new iterative steps are generated by minimizing the augmented Lagrangian function

of the interpolation model over the trust region. We update the trust region radii following the idea of

structured trust region in [5]. The filter strategy is used to decide whether to accept new iterates. Global

convergence analysis is given under some suitable conditions.

The paper is organized as follows. In Section 2, we give an introduction to constructing trust-region

framework, multivariate interpolation and the filter technique in our problem. In Section 3, we state the

new algorithm using the derivative-free filter technique for solving the separable optimization problems

with nonlinear constraints. Global convergence of the algorithm is established in Section 4. Finally, some

conclusions are given in Section 5.
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2 The trust-region framework and polynomial interpolation

2.1 The trust-region framework

Let C be the feasible region, i.e., C = {(x, y) | x ∈ R
n, y ∈ R

s, c(x, y) = 0}.

The objective function is defined as f(x, y) = f1(x) + f2(y) at each iteration k of a trust-region

method, and the model mi,k are defined with each function fi (i = 1, 2) in the trust region Bi,k, where

B1,k = {x ∈ R
n | ‖x − xk‖ 6 △1,k}, B2,k = {y ∈ R

s | ‖y − yk‖ 6 △2,k} and △i,k > 0 (i = 1, 2) are the

trust region radii. In the paper, the norm is chosen to be Euclidean norm.

The quadratic models are considered as follows,

m1,k(xk + s1) = f1(xk) + 〈g1,k, s1〉+
1

2
〈s1, H1,ks1〉,

m2,k(yk + s2) = f2(yk) + 〈g2,k, s2〉+
1

2
〈s2, H2,ks2〉,

where Hi,k is set to be ∇2fi, the Hessian of fi, or symmetric approximation to ∇2fi. So, the overall

model ismk(x, y) = m1,k(x)+m2,k(y) for all (x, y) in the overall trust region defined by Bk = B1,k×B2,k.

In unconstrained optimization, the classical procedure of trust-region methods yield trial steps s1,k and

s2,k by minimizing the model over the trust region. The trial points xk + s1,k and yk + s2,k are accepted

as the new iterates if the ratio

ρk =
f(xk, yk)− f(xk + s1,k, yk + s2,k)

mk(xk, yk)−mk(xk + s1,k, yk + s2,k)
(2.1)

is sufficiently positive. In this case, we say that the iteration is successful, the models are updated

and the trust-region radii are possibly increased. Otherwise, the trial points are rejected and the radii

are decreased.

2.2 Polynomial interpolation

In our work, the models will be computed by interpolation, such that the interpolation conditions

f1(z1,j) = m1,k(z1,j), f2(z2,j) = m2,k(z2,j), for all zi,j ∈ Zi,k, i = 1, 2. (2.2)

The sets Zi,k (i = 1, 2) are the interpolation sets. If we want to obtain the accurate model, some additional

conditions will be needed on the interpolation set. In this section, we cover the basic facts on polynomial

interpolation and the subscript k is dropped in the following description for clarity.

Note that the derivatives of the objective function are not available to obtain Taylor models. In this

case, we require that the models satisfy Taylor-like error bounds on the function value and the gradient.

Now, we give the requirements on the models that we use in our algorithm. Without loss of generality,

we take the construction of m1,k for example, and the construction of m2,k is similar.

Given x0, from the motivation of our algorithm, we hope that all iterates belong to the level set

L(x0) = {x ∈ R
n | f1(x) 6 f1(x0)}. However, when we consider models based on sampling, it might be

possible (especially at the early iterations) that the function f1 is evaluated outside L(x0). Thus in this

paper, we assume that f1 is restricted to regions of the form

Lenl(x0, x) = {z ∈ R
n | ‖x− z‖ 6 △max for some x with f1(x) 6 f1(x0)}, (2.3)

where △max is a given positive constant.

Assumption 2.1. The objective function f1 and its gradient and Hessian are uniformly bounded on

Lenl(x0, x) for all x in a neighborhood of x0.

We first state the definition of fully linear model.

Definition 2.1 (Fully linear model, see [9]). Let a function f1 : Rn → R for which the gradient ∇f1
is Lipschitz continuous on Lenl(x0, x) be given. Let positive constants κef and κeg be given and fixed.
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Suppose that a model m1 is continuously differentiable on R
n. For any given △1 ∈ (0,△max] and for any

given xc ∈ L(x0), the model m1 is said to be fully linear on B1(xc;△1) with respect to κef and κeg if

the following conditions hold:

• the error between the gradient of the model and the gradient of the function satisfies

‖∇f1(x) −∇m1(x)‖ 6 κeg△1, ∀x ∈ B1(xc;△1). (2.4)

• the error between the model and the function satisfies

|f1(x)−m1(x)| 6 κef△
2
1, ∀x ∈ B1(xc;△1). (2.5)

Now, we discuss some assumptions on the models required in our algorithm.

Assumption 2.2. If a model m1 is fully linear on B1(xc; △̃1) with respect to some (large enough)

constants κef and κeg for some △̃1 6 △max, then it is also fully linear on B1(xc;△1) for any △1∈ [△̃1,

△max], with the same constants.

If the function evaluations are exact, fully linear models can be defined by interpolation [6]. In our

derivative-free method, the quadratic model is chosen to interpolate the value of a function f1 at a

set Z1 = {z1,0, z1,1, . . . , z1,p}. For any basis Φ1 = {φ1,j(·)}
p
j=0 of the linear space of n-dimensional

quadratic functions, the polynomial m1(x) can be written uniquely as m1(x) =
∑p
j=0 αjφ1,j(x), where

αj (j = 0, . . . , p) are real coefficients. The modelm1(x) must satisfy the following interpolation conditions:

f1(z1,j) = m1(z1,j), for all z1,j ∈ Z1. (2.6)

Then the coefficients can be determined by solving the linear system

p∑

j=0

αjφ1,j(z1) = f1(z1), for all z1 ∈ Z1.

For the above system to have a unique solution, the matrix M(Z1) must be nonsingular, where

M(Z1) =




φ1,0(z1,0) · · · φ1,p(z1,0)
...

. . .
...

φ1,0(z1,p) · · · φ1,p(z1,p)


 .

Definition 2.2 (Poisedness [9]). The set Z1 = {z1,0, z1,1, . . . , z1,p} is poised for polynomial interpola-

tion if the corresponding matrix M(Z1) is nonsingular for some basis Φ1.

Let p1 = p+1 = |Z1| be a positive integer defining the number of points in the interpolation set, then p1
should be 1

2 (n+ 1)(n+ 2) to ensure the model can be entirely determined by (2.6). However, the above

conditions are not sufficient to guarantee the existence of an interpolation, and some geometry on Z1 (for

example well-poised) must be added to ensure existence and uniqueness of the quadratic interpolation.

The interpolation technique used in this paper is based on Newton fundamental polynomial (NFP)

(see [26, 27]). Conn et al. [7] just used Newton polynomial interpolation to construct the derivative-free

method for unconstrained optimization. Since Newton polynomial interpolation is efficient in theory

and practice, we also employ this approach in our derivative-free trust-region algorithm for constrained

optimization with separable structure.

For a given interpolation set Z1, the set of interpolation points is partitioned into three subsets Z
[0]
1 , Z

[1]
1

and Z
[2]
1 , which correspond to constant terms, linear terms and quadratic terms of a quadratic polynomial,

respectively. Hence, Z
[0]
1 has a single element, Z

[1]
1 has n elements and Z

[2]
1 has n(n+1)/2 elements. The

basis of NFP {N1,j(·)} is also partitioned into three blocks {N0
1,j(·)}, {N

1
1,j(·)} and {N

2
1,j(·)}, with the

appropriate number of elements in each block. Moreover, the unique element of {N0
1,j(·)} is a polynomial

of degree zero, each of the n elements of {N1
1,j(·)} is a polynomial of degree one, and each of the n(n+1)/2
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elements of {N2
1,j(·)} is a polynomial of degree two. Each point z

[l]
1,j ∈ Z

[l]
1 (l = 0, 1, 2) corresponds to a

single Newton fundamental polynomial of degree l satisfying the conditions

N
[l]
1,t(z

[m]
1,j ) = δtjδlm, for all z

[m]
1,j ∈ Z

[m]
1 with m 6 l.

Obtaining the NFP basis can be done if and only if the set Z1 is poised. We can use an analogue of

Gramm-Schmidt orthogonalization method starting with any basis, for example, the basis of monomials

{1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , xn−1xn, x

2
n}

and applying the following pivoting procedure.

Procedure 2.1 (Construct Newton fundamental polynomials). For any given Z1, initialize N
[l]
1,j (j =

1, . . . , |Z
[l]
1 |, l = 0, 1, 2). Set Z1 = ∅.

For l = 0, 1, 2, for j = 1, . . . , |Z
[l]
1 |,

choose some z
[l]
1,j ∈ Z1 \ Z1 such that |N

[l]
1,j(z

[l]
1,j)| 6= 0,

if no such z
[l]
1,j exists in Z1\Z1, reset Z1 = Z1 and stop (the basis of Newton polynomials is incomplete),

Z1 ← Z1 ∪ {z
[l]
1,j},

normalize the current polynomial by

N
[l]
1,j(x)← N

[l]
1,j(x)/N

[l]
1,j(z

[l]
1,j),

update all Newton polynomials in block l and above by

N
[l]
1,t(x)← N

[l]
1,t(x) −N

[l]
1,t(z

[l]
1,j)N

[l]
1,j(x), t 6= j, t = 1, . . . , |Z

[l]
1 |,

N
[k]
1,t(x)← N

[k]
1,t(x) −N

[k]
1,t(z

[l]
1,j)N

[l]
1,j(x), t = 1, . . . , |Z

[l]
1 |, k = l + 1, . . . , 2,

end

End (the basis of Newton polynomials is complete).

In this case, the set Z1 is poised if and only if pivots |N
[l]
1,j(z

[l]
1,j)| 6= 0. However, for numerical purpose,

it is important that |N
[l]
1,j(z

[l]
1,j)| are sufficiently large, which is equivalent to well-poisedness. Because

small pivot values result in very large coefficients of the Newton fundamental polynomials and lead to

numerical instability, we are only interested in well-poised sets. More detailed descriptions of the Newton

interpolation can be consulted in [7, 26, 27].

Having computed Newton fundamental polynomials, following [6], the interpolation polynomial m1(x)

is given by

m1(x) =

2∑

l=0

|Z
[l]
1 |∑

j=1

λ1,l(z
[l]
1,j)N

[l]
1,j(x),

where the coefficients λ1,l(z
[l]
1,j) are generalized finite differences applied on f1, defined as

λ1,0(x) = f1(x), λ1,l+1(x) = λ1,l(x) −

|Z
[l]
1 |∑

j=1

λ1,l(z
[l]
1,j)N

[l]
1,j(x), l = 0, 1.

2.3 Improve the geometry of interpolation sets

Consider the problem (1.1). At iteration k, let f1,k = f1(xk), f2,k = f2(yk), m1,k = m1,k(xk), m2,k =

m2,k(yk), then fk = f1,k + f2,k,mk = m1,k +m2,k, gk = (
g1,k
g2,k ) = (

∇m1,k

∇m2,k
),∇fk = (

∇f1,k
∇f2,k

). Let

θ(x, y) =
1

2
‖c(x, y)‖2 (2.7)
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be the constraint violation, θk , θ(xk, yk). Let

qk(x, y) = mk(x, y) + pTk c(x, y) (2.8)

be the Lagrangian function of the model, where pk is a tentative multiplier. Then we define the augmented

Lagrangian function

Qk(x, y) = qk(x, y) + uθ(x, y), (2.9)

where u is a positive penalty parameter.

The new step sk = (sT1,k, s
T
2,k)

T is obtained by solving the following problem,

min Qk(xk + s1, yk + s2)

s.t. ‖s1‖ 6 △1,k, ‖s2‖ 6 △2,k.
(2.10)

Let wk , (xk, yk). If we define the smallest nonnegative integer j = jc such that the point

wk(j) , wk − κ
j
bck

△k
‖∇Qk‖

∇Qk

satisfies the condition Qk(wk(j)) 6 Qk(wk) + κubs〈∇Qk, wk(j) − wk〉, then we define the approximate

Cauchy point as wACk , wk(jc), where κbck ∈ (0, 1) and κubs ∈ (0, 12 ) are given constants, and △k

=
√
△2

1,k +△
2
2,k.

A fundamental result that derives trust-region methods to first-order criticality is described below

(see [5, Theorem 6.3.3] and [29, Theorem 6.1.4]).

Theorem 2.3. Suppose that Qk is twice differentiable, then the approximate Cauchy point wACk is

well-defined in the sense that jc is finite. Moreover, there exists a constant κdcp ∈ (0, 1) such that

Qk(wk)−Qk(w
AC
k ) > κdcpπkmin

{
πk
βk
,△k

}
,

where

πk = ‖∇Qk‖, βk = 1 + max
(x,y)∈Bk

‖∇2Qk‖. (2.11)

From Theorem 2.3, we can see that the new step will provide at least a fraction of the decrease obtained

at the approximate Cauchy point. Therefore, there exists a constant κqd ∈ (0, 1] such that

Qk(xk, yk)−Qk(xk + s1,k, yk + s2,k) > κqdπkmin

{
πk
βk
,△k

}
. (2.12)

Now, we consider the way to use the new points to improve the geometry of interpolation sets. Without

loss of generality, we still take the interpolation set Z1.

Let the new point x+k = xk + s1,k, and the associated function value f1(x
+
k ). We consider finding the

best way to make x+k play a role in the next iterations when building the quadratic interpolation model.

If |Z1| < p1 and if the inclusion of x+k in Z1 does not destroy poisedness, we may simply add x+k to Z1,

which allows to progressively complete the set of interpolation points. Otherwise, if |Z1| = p1, we try to

find a point in Z1, say z−, which will be replaced by x+k . This replacement is performed in a way that

makes the pivots as large as possible in order to obtain a well-poised interpolation problem. Similar to

the technique used in [4], we deal with the case |Z1| = p1 as follows:

• If x+k can be advantageously added to Z1, we proceed by the following way.

We define S = {k | xk+1 = xk+s1,k, yk+1 = yk+s2,k} the set of successful iterations and let p1 denote

the size of a complete interpolation set for function f1. We first initialize the radius △1,g as follows:

△1,g =





min(‖s1,k‖,△1,k), if the iteration is successful,

min(‖s1,k‖,△1,k)/γ1,d, if the iteration is unsuccessful

and the interpolation set is well-poised,

min(‖s1,k‖,△1,r)/γ1,l, otherwise,
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where we can set γ1,d = 1.75, γ1,l = max{10, p1}γ1,d and △1,r the trust-region radius of the most recent

successful iteration.

We then look for the point z− whose distance to the basis is the largest.

If ‖z−−xk+1‖ is not too small (e.g., larger than 1.5△1,k) and the value of the fundamental polynomial

associated to z− evaluated at x+k is larger than 2(
△1,g

‖z
−
−xk+1‖

)2, then we replace z− by x+k .

Otherwise, we choose z− to be the point associated to the fundamental polynomial whose absolute

value is maximal at x+k , and we replace z− by x+k .

• The geometry of Z1 deteriorates as x+k is accepted.

Compute new point z+ such that |N
[l]
1,j(z+)| is larger, for example, z+ = argmaxx∈B1,k

|N
[l]
1,j(x)|, which

replaces the point z− = z
[l]
1,j .

2.4 The filter as a criterion to accept trial points

As an alternative to penalty functions, we adopt the filter technique which is introduced by Fletcher and

Leyffer [12]. Filter methods treat the optimization problem as a biobjective and attempt to minimize the

objective function and the constraint violation function, respectively. Some definitions about filter are

needed here.

Definition 2.4. (xi, yi) is said to dominate (xj , yj) if and only if both θi 6 θj and fi 6 fj .

Thus, if iterate (xi, yi) dominates iterate (xj , yj), the latter is of no real interests to us since (xi, yi) is

at least as good as (xj , yj) with respect to both measures. All we need to do now is to remember iterates

that are not dominated by any other iterates in current filter.

Definition 2.5. A filter is a list F of pairs of the form (θi, fi) such that

either θi < θj or fi < fj for i 6= j. (2.13)

In fact, this definition of the filter is not adequate for proving convergence, as it allows points to

accumulate in the neighborhood of a filter entry that has θi > 0. Thus, we set a small envelope around

the current filter, in which points are not accepted. Chin and Fletcher [2] proposed the following rule:

(x, y) is acceptable for the filter if and only if

either θ(x, y) < (1− γ)θj or f(x, y) < fj − γθj (2.14)

for all (θj , fj) ∈ F , where γ is close to zero.

Having computed the step (s1,k, s2,k) from our current iterate (xk, yk), we need to decide whether the

trial point (xk + s1,k, yk + s2,k) is better than (xk, yk). If we define

D(F) = {(θ, f) | θ > (1− γ)θj and f > fj − γθj, for some (θj , fj) ∈ F}, (2.15)

the part of the (θ, f)-space, this amounts to say that (xk + s1,k, yk + s2,k) could be accepted if (θt, f t)

= (θ(xk + s1,k, yk+ s2,k), f(xk+ s1,k, yk+ s2,k)) /∈ D(Fk), where Fk denotes the filter at iteration k. The

procedure to update the filter is simple: If (θt, f t) does not belong to D(Fk), then

Fk+1 ← Fk ∪ (θt, f t) \ {(θj , fj) | θj > (1− γ)θt, fj > f t − γθt}, (2.16)

while if (θt, f t) ∈ D(Fk), then

Fk+1 ← Fk. (2.17)

3 A derivative-free trust region algorithm

We now describe a derivative-free trust region algorithm for separable constrained optimization pro-

blem (1.1).
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The following definitions will appear in Algorithm 3.1. Let

lk(x, y) = f1(x) + f2(y) + pTk c(x, y)

be the Lagrangian function of (1.1), and define the augmented Lagrangian function

Lk(x, y) = lk(x, y) + uθ(x, y). (3.1)

Let

L1,k(x, y) = f1(x) +
1

2
pTk c(x, y) +

u

2
θ(x, y), L2,k(x, y) = f2(y) +

1

2
pTk c(x, y) +

u

2
θ(x, y),

Q1,k(x, y) = m1,k +
1

2
pTk c(x, y) +

u

2
θ(x, y), Q2,k(x, y) = m2,k +

1

2
pTk c(x, y) +

u

2
θ(x, y),

δLk = Lk(xk, yk)− Lk(xk + s1,k, yk + s2,k),

δLi,k = Li,k(xk, yk)− Li,k(xk + s1,k, yk + s2,k), i = 1, 2,

δQk = Qk(xk, yk)−Qk(xk + s1,k, yk + s2,k),

δQi,k = Qi,k(xk, yk)−Qi,k(xk + s1,k, yk + s2,k), i = 1, 2.

Algorithm 3.1 (A derivative-free trust region algorithm for separable optimization problem).

Step 0 (Initialization). Choose initial point (x0, y0) ∈ C, △max > 0, the initial trust region radius

△icbi,0 ∈ (0,△max] is given for i = 1, 2. We initialize the parameters for geometry improvements γi,d, γi,l,

and △i,r = △icbi,0 , i = 1, 2. Assume that for each i = 1, 2, there exists a set Zicbi of interpolation points.

The constants η1, η2, η3, γ1, γ2, γ3, µ1, µ2, ǫc, β, ν, α1, α2 and F are given and satisfy the conditions

0 < η1 6 η2 < η3 < 1, 0 < γ1 6 γ2 < 1 6 γ3, 0 < µ1 < µ2 < 1, η2 − η1 > µ1 + µ2, ǫc > 0, ν > β > 0,

α1 ∈ (0, 1), α2 ∈ (0, 1) and F = ∅. Set k = 0.

Step 1 (Compute models). For i ∈ {1, 2}, compute quadratic interpolation polynomials micb
i,k .

Step 2 (Critical step). If πicbk > ǫc, then mi,k = micb
i,k , △i,k = △icbi,k , i = 1, 2.

If πicbk 6 ǫc, then we proceed as follows. If at least one of the following conditions holds,

(1) the interpolation set Zicb1 or Zicb2 is not well-poised in B(xk,△icb1,k) or B(yk,△icb2,k),

(2) △icbk > νπicbk ,

then apply Algorithm 3.2 to construct interpolation sets Ẑ1 and Ẑ2, which are well-poised in B(xk, △̂1,k)

and B(yk, △̂2,k) for some △̂i,k, i = 1, 2. Then compute the corresponding models m̂1,k and m̂2,k. Set

mi,k = m̂i,k and △i,k = min{max{△̂i,k, βπ̂k},△icbi,k}, i = 1, 2.

Otherwise set mi,k = micb
i,k and △i,k = △icbi,k , i = 1, 2. Stop.

Step 3 (Determination of the step). Compute steps s1,k and s2,k by solving the problem (2.10).

Step 4 (Test to accept the trial point). If (xk + s1,k, yk + s2,k) is not acceptable by the filter, set

xk+1 = xk, yk+1 = yk, pk+1 = pk, x
+ = xk + s1,k, y

+ = yk + s2,k. Choose △icbi,k+1 ∈ [γ1△i,k, γ2△i,k],

i = 1, 2, and go to Step 7.

If

δQk < κθθ
ψ
k , (3.2)

then add (θk, fk) to the filter F and update the filter, where κθ and ψ are positive constants. Set

xk+1 = xk + s1,k, yk+1 = yk + s2,k and pk+1 = pk + λc(xk+1, yk+1), x
+ = xk, y

+ = yk. Choose

△icbi,k+1 ∈ [△i,k, γ3△i,k], i = 1, 2, and go to Step 7.

Step 5 (Test predicted and actual reduction). Define

ρk =
δLk
δQk

. (3.3)

If ρk > η1, then set xk+1 = xk + s1,k, yk+1 = yk + s2,k, pk+1 = pk + λc(xk+1, yk+1), x
+ = xk, y

+ = yk.

Otherwise set xk+1 = xk, yk+1 = yk, pk+1 = pk, x
+ = xk + s1,k, y

+ = yk + s2,k.
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Step 6 (Update the trust region radii). We consider the following two cases:

Case I.

|δQi,k| >
µ1

2
δQk, i ∈ {1, 2}. (3.4)

1. If

δLi,k > δQi,k −
1− η3

2
δQk (3.5)

and ρk > η1, then choose

△icbi,k+1 ∈ [△i,k, γ3△i,k].

2. If (3.5) holds and ρk < η1, then choose

△icbi,k+1 = △i,k.

If (3.5) fails but

δLi,k > δQi,k −
1− η2

2
δQk (3.6)

holds, then choose

△icbi,k+1 ∈ [γ2△i,k,△i,k].

3. If (3.6) fails, then choose

△icbi,k+1 ∈ [γ1△i,k, γ2△i,k].

Case II.

|δQi,k| 6
µ1

2
δQk, i ∈ {1, 2}. (3.7)

1. If

|δLi,k| 6
µ2

2
δQk, (3.8)

and ρk > η1, then choose

△icbi,k+1 ∈ [△i,k, γ3△i,k].

2. If (3.8) holds and ρk < η1, then choose

△icbi,k+1 = △i,k.

3. If (3.8) fails, then choose

△icbi,k+1 ∈ [γ2△i,k,△i,k].

Step 7 (Improve the geometry). Update △i,g, i = 1, 2. If x+ and y+ can make the geometry of interpo-

lation set better respectively as described in Section 2, then modify Zicbi , i = 1, 2 by replacing the existing

point and update the corresponding interpolation model. Otherwise, compute a new point that can im-

prove the geometry of Zicbi , modify Zicbi , i = 1, 2 and update the corresponding interpolation model. If

one of new points computed in this step has a better objective function value than (xk+1, yk+1), then

replace it and update the corresponding interpolation model. Set k := k + 1 and go to Step 1.

Algorithm 3.2 (Criticality step). Initialization Set j = 0 and Z0
i = Zicbi , i = 1, 2.

Repeat Increase j by one, improve the geometry until Zj−1
1 and Zj−1

2 are well-poised in B1(xk, α
j−1
1

△icb1,k) and B2(yk, α
j−1
2 △icb2,k). Denote the new set by Zji and the corresponding interpolation model by

mj
i,k (i = 1, 2). Set △̂i,k = αj−1

i △icbi,k and m̂i,k = mj
i,k, i = 1, 2.

Until △̂k =
√
△̂2

1,k + △̂
2
2,k 6 νπjk.
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Let us discuss some particular remarks of the algorithm.

Remark 3.1. Note that if πicbk 6 ǫc in the criticality step of Algorithms 3.1 and 3.2, the model

mi,k (i = 1, 2) are fully linear on B1(xk; △̂1,k) and B2(yk; △̂2,k) separately with △̂i,k 6 △i,k (i = 1, 2).

Then, by Assumption 2.2, mi,k (i = 1, 2) are also fully linear on B1(xk;△1,k) and B2(yk;△2,k).

Remark 3.2. The role of condition (3.2) can be interpreted as follows. If it holds, one may think

that the constraint violation is significant and one should aim to improve this situation by inserting the

current point into the filter. Otherwise, the predicted reduction of augmented Lagrangian function of the

model is more significant than the current constraint violation. In this case, we perform test (3.3).

Remark 3.3. To minimize a separable objective function subject to equality constraints successfully,

structured trust region technique [5] is used in our algorithm and each of functions is modeled separately,

which overcomes the restriction of using the basic trust region technique.

Before starting our global convergence analysis, we state some properties that result from the mecha-

nism of structured trust region.

Lemma 3.4. Let Mk = {i | |δQi,k| >
µ1

2 δQk}. Then, at each iteration k of the algorithm,

1. Mk contains at least one element. Furthermore,

(
1−

1

2
µ1

)
δQk 6

∑

i∈Mk

δQi,k 6

(
1 +

1

2
µ1

)
δQk. (3.9)

2. γ1△i,k 6 △i,k+1 6 γ3△i,k for all i ∈ {1, 2}.

Lemma 3.5. At iteration k of the algorithm, if (3.6) holds for Case I or (3.8) holds for Case II, then

iteration k is successful.

The proofs of the above two lemmas are similar to the proofs of [5, Lemmas 10.2.1 and 10.2.2].

4 Convergence analysis

In this section, we establish the global convergence of the derivative-free trust-region algorithm. For our

analysis, let Ω = {k | (θk, fk) is added to the filter}. In order to obtain the global convergence result, we

start by the following assumptions.

Assumption 4.1. The sequence {(xk, yk)} generated by Algorithm 3.1 remains in a bounded domain.

Assumption 4.2. There exits a constant κuqh > 1 such that

βk 6 κuqh, (4.1)

where βk is defined in (2.11).

Assumption 4.3. The constraint function c(x, y) and its gradient ∇c, Hessian ∇2c and (∇c)Tc are

uniformly bounded on Bk.

Assumption 4.4. The multiplier vectors pk (k = 1, 2, . . .) are uniformly bounded.

An important consequence of the assumptions is that Assumptions 2.1, 4.1 and 4.3 together directly

ensure that, for all k,

fmin 6 f(xk, yk) 6 fmax and 0 6 θ(xk, yk) 6 θmax (4.2)

for some constants fmin 6 fmax and θmax > 0. Thus, the part of the (θ, f)-space in which the (θ, f)-pairs

associated with the filter iterates lie is restricted to the rectangle [0, θmax]× [fmin, fmax].

Assumptions 4.3 and 4.4 mean that for all k, there exist positive constants κc, κcg, κch, κcv and κp,

such that ‖c‖ 6 κc, ‖∇c‖ 6 κcg, ‖∇2c‖ 6 κch, ‖(∇c)Tc‖ 6 κcv, and ‖pk‖ 6 κp.

We will need the following lemma, which can be obtained similarly from the well-known results (see [8,

Lemma 5.1]).
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Lemma 4.1. If ∇Lk 6= 0, Step 2 of Algorithm 3.1 will terminate in a finite number of improvement

steps by applying Algorithm 3.2.

We continue our analysis by showing that the iterations are successful when the trust-region radius is

sufficiently small.

Lemma 4.2. Under Assumption 2.1, if Zi,k (i = 1, 2) are well-poised and

△k 6 min

[
1

κuqh
,
κqd(1− η1)

2κef

]
πk, (4.3)

then ρk > η1.

Proof. By (4.3), we find that

△k 6
πk
κuqh

.

Then the Cauchy decrease condition (2.12) gives that

Qk(xk, yk)−Qk(xk + s1,k, yk + s2,k) > κqdπkmin

{
πk
κuqh

,△k

}
= κqdπk△k. (4.4)

Since Zi,k (i = 1, 2) are well-poised, from the bound (2.5), we have

|ρk − 1| 6
|Lk(xk + s1,k, yk + s2,k)−Qk(xk + s1,k, yk + s2,k)|

|Qk(xk, yk)−Qk(xk + s1,k, yk + s2,k)|

+
|Lk(xk, yk)−Qk(xk, yk)|

|Qk(xk, yk)−Qk(xk + s1,k, yk + s2,k)|

=
|f(xk + s1,k, yk + s2,k)−mk(xk + s1,k, yk + s2,k)|

|Qk(xk, yk)−Qk(xk + s1,k, yk + s2,k)|

+
|f(xk, yk)−mk(xk, yk)|

|Qk(xk, yk)−Qk(xk + s1,k, yk + s2,k)|

6
2κef (△

2
1,k +△

2
2,k)

κqdπk△k

=
2κef△k
κqdπk

.

Obviously, the conclusion ρk > η1 is obtained if Assumption (4.3) holds.

The following lemma states that if the criticality measure is bounded away from zero, then so is the

trust region radius.

Lemma 4.3. Suppose that there exists a constant δ1 > 0 such that πk > δ1 for all k. Then, there

exists a constant δ2 > 0 such that, for all k,

△k > δ2.

Proof. We know from Step 1 of Algorithm 3.1 that

△i,k > min{βπk,△
icb
i,k}, i = 1, 2.

Thus,

△i,k > min{βδ1,△
icb
i,k}, i = 1, 2. (4.5)

By Lemma 4.2 and the assumption that πk > δ1 for all k, we know whenever

△k 6 δ2 = min

[
δ1
κuqh

,
κqdδ1(1 − η1)

2κef

]
,



1298 Xue D et al. Sci China Math June 2014 Vol. 57 No. 6

either the k-th iteration is successful or the geometry of interpolation sets is improved. Hence, in this

case, △i,k 6 δ2. From Step 6, we have △icbi,k+1 > γ1△i,k (i = 1, 2), which, together with (4.5) and the

rules of Step 6, gives △i,k > min{△icbi,0 , βδ1, γ1δ2} (i = 1, 2). Therefore, there exists a constant δ2 > 0

such that △k =
√
△2

1,k +△
2
2,k > δ2.

Now we concentrate on the case that there is no infinite subsequence of iterates being added to the

filter. In this case, no further iterates are added to the filter for k sufficiently large. In what follows, we

assume that k0 > 0 is the last iteration for which (xk0−1, yk0−1) is accepted by the filter.

Lemma 4.4. Suppose that Assumptions 2.1, 4.1 and 4.3 hold. Suppose further that (3.2) fails for all

k > k0. Then we have that

lim
k→∞

θk = 0.

Proof. Consider any successful iteration with k > k0. Since the filter is not updated at iteration k, it

follows from the algorithm that ρk > η1 holds and thus

Lk(xk, yk)− Lk(xk + s1,k, yk + s2,k) > η1[Qk(xk, yk)−Qk(xk + s1,k, yk + s2,k)] > η1κθθ
ψ
k > 0. (4.6)

Thus, the augmented Lagrangian function of (1.1) does not increase for all successful iterations with

k > k0. Then, by Assumptions 2.1, 4.1 and 4.3, we must have that

lim
k→∞

Lk(xk, yk)− Lk(xk + s1,k, yk + s2,k) = 0. (4.7)

The result (4.4) then immediately follows from (4.6).

We now consider what happens when the number of successful iterations is finite.

Lemma 4.5. Suppose that Assumptions 2.1, 4.3 and 4.4 hold and that S is finite. Then

lim
k→∞

‖∇Lk‖ = 0.

Proof. We consider iterations that come after the last successful iteration. We can have only a finite

(uniformly bounded, say by N) number of geometry-improving iterations before the interpolation sets

become well-poised. Hence, there is an infinite number of iterations that are either acceptable by the

interpolation sets or unsuccessful, and in either case the trust region is reduced. Since there are no

more successful iterations, then △i,k (i = 1, 2) are never increased for sufficiently large k. Moreover,

△i,k (i = 1, 2) are decreased, which induces that {△i,k} (i = 1, 2) converges to zero.

For each j, let r be the index of the first iteration after the j-th iteration for which the interpolation

sets Zi,j (i = 1, 2) are well-poised. Then

‖xj − xr‖ 6 N△1,j → 0 and ‖yj − yr‖ 6 N△2,j → 0 (4.8)

as j →∞. Observe that

‖∇Lj(xj , yj)‖ 6 ‖∇Lj(xj , yj)−∇Lr(xr, yr)‖+ ‖∇Lr(xr , yr)−∇Qr(xr , yr)‖+ ‖∇Qr(xr , yr)‖.

By (2.9) and (3.1), we have that

∇Lr = ∇f + pTr∇C + λ(∇C)TC,

∇Qr = ∇mr + pTr∇C + λ(∇C)TC,

∇Lr −∇Qr = ∇f −∇mr.

So we have

‖∇Lj(xj , yj)‖ 6 ‖∇Lj(xj , yj)−∇Lr(xr , yr)‖+ ‖∇f(xr, yr)−∇mr(xr , yr)‖+ ‖∇Qr(xr , yr)‖.

Now we show that all three terms on the right-hand side converge to zero. The first term converges to zero

because of the Assumption 2.1 and (4.8). The second term converges to zero because of the bound (2.4).

Finally, the third term can be shown to converge to zero by Lemma 4.2, since if ‖∇Qr(xr , yr)‖ was

bounded away from zero for a subsequence, then for small enough △r, r would be a successful iteration,

which would yield a contradiction.
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We continue our analysis by considering the case that the filter is updated in infinitely many times.

Lemma 4.6. Suppose that Assumptions 2.1 and 4.2 hold and that |Ω| =∞. Then

lim
k→∞,k∈Ω

θk = 0. (4.9)

Proof. By contradiction. Suppose that there exists an infinite subsequence K ⊆ Ω, such that θki > ǫ

for all ki ∈ K and for some ǫ > 0. At each iteration ki,

D(Fki) = {(θ, f) | θ > (1− γ)θj and f > fj − γθj, for some (θj , fj) ∈ Fki}, (4.10)

we can deduce that (θ, f) ∈ D(Fki) can not be added to the filter and it is easy to see that

[(1 − γ)θj, θj ]× [fj − γθj , fj] ⊆ D(Fki).

Now observe that the area of each of these squares is at least γ2θ2j . As a consequence,

area(D(Fki)) > γ2
ki−1∑

j=0,j∈Ω

θ2j > kiγ
2ǫ2.

However, (4.2) implies that, for any ki, there is a positive constant κf independent of ki such that

area(D(Fki )) is bounded above by κf . Hence, we obtain that ki 6
κf

γ2ǫ2
and that ki must also be finite.

This contradicts the fact that the subsequence K is infinite. Hence, the assumption is impossible and

the conclusion follows.

We now prove an important property on△k, which gives a natural stopping criterion for the derivative-

free trust region method.

Theorem 4.7. Suppose that Assumptions 2.1 and 4.1–4.4 hold. Then

lim
k→∞

△k = 0. (4.11)

Proof. When S is finite, (4.11) is proved in the proof of Lemma 4.5. Let us consider the case when S

is infinite. For any k ∈ S, we have

Lk(xk, yk)− Lk(xk + s1,k, yk + s2,k) > η1[Qk(xk, yk)−Qk(xk + s1,k, yk + s2,k)].

By using the Cauchy decrease Condition (2.12), we have

Qk(xk, yk)−Qk(xk + s1,k, yk + s2,k) > κqdπkmin

{
πk
βk
,△k

}
.

Using Step 2 of Algorithm 3.1, we have πk > min{ǫc, ν−1△k}. It then follows from (4.1) that

Lk(xk, yk)− Lk(xk + s1,k, yk + s2,k) > η1κqdmin{ǫc, ν
−1△k}min

{
min{ǫc, ν−1△k}

κuqh
,△k

}
.

Since Lk does not increase and is bounded from below, the right-hand side of the above expression

converges to zero. Hence limk∈S△k = 0. Note that the △k can increase only during a successful

iteration. Let k /∈ S be the index of an iteration (the first one after the successful iteration). Then

△k 6 γ3△sk , where sk is the index of the last successful iteration before k. Since △sk → 0, then △k → 0,

for k /∈ S. Hence, △k → 0 for all k sufficiently large.

By using Lemma 4.3 and Theorem 4.7, we immediately have the following lemma.

Lemma 4.8.

lim inf
k→∞

πk = 0. (4.12)
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The following lemma establishes a relationship between πk and ‖∇Lk‖.

Lemma 4.9. For any subsequence {ki}, if

lim inf
i→∞

πki = 0, (4.13)

then

lim inf
i→∞

‖∇Lki‖ = 0. (4.14)

Proof. By (4.13), if i is sufficiently large, πki 6 ǫc. The criticality step of Algorithm 3.1 ensures

that the interpolation sets Z1,ki ⊂ B1(xki ;△1,ki) (with △1,ki 6 νπki) and Z2,ki ⊂ B2(yki ;△2,ki) (with

△2,ki 6 νπki) are well-poised for all large i. Then, using the bound (2.4) on the error between the

gradients of the function and the model, we have

‖∇Lki −∇Qki‖ = ‖∇f(xki , yki)−∇mki(xki , yki)‖ 6 κeg(△1,ki +△2,ki) 6 2κegνπki .

Thus we have

‖∇Lki‖ 6 ‖∇Lki −∇Qki‖+ πki 6 (2κegν + 1)πki ,

and the result (4.14) immediately follows from πki → 0.

Using the above lemma, we obtain the following global convergence result.

Theorem 4.10. Suppose that Assumptions 2.1–2.2 and 4.1–4.4 hold. Then

lim inf
k→∞

‖∇Lk‖ = 0.

This theorem follows directly from Lemmas 4.8 and 4.9.

Now we prove the following global convergence theorem.

Theorem 4.11. Suppose that Assumptions 2.1–2.2 and 4.1–4.4 hold. Then

lim
k→∞

‖∇Lk‖ = 0.

Proof. When S is finite, the result follows from Lemma 4.5. So we now consider only the case when S

is infinite. By contradiction we assume that there exists a subsequence {ki} such that

‖∇Lki‖ > δ0 (4.15)

for some δ0 > 0 and for all i. Then, from Lemma 4.9, there exists δ1 > 0 such that

πki > δ1

for all i sufficiently large. Then, by Lemma 4.3, there exists a constant δ2 > 0, independent of k, such

that

△k > δ2. (4.16)

Then, since Lk does not increase and is bounded below, it follows from Algorithm 3.1, (2.12) and (4.1) that

+∞ >

∞∑

k=0

[Lk(xk, yk)− Lk(xk + s1,k, yk + s2,k)]

>
∑

k∈S

[Lk(xk, yk)− Lk(xk + s1,k, yk + s2,k)]

>
∑

k∈S

η1[Qk(xk, yk)−Qk(xk + s1,k, yk + s2,k)]
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>
∑

k∈S

η1κqdδ1 min

{
δ1
κuqh

,△k

}
.

Hence,

lim
k→∞,k∈S

‖△k‖ = 0.

Combining with Lemma 4.5, we have

lim
k→∞

‖△k‖ = 0 (4.17)

which contradicts (4.16).

5 Conclusions

In this paper, we present a framework for a derivative-free trust region algorithms for minimizing con-

strained optimization with separable structure. At each iteration, we construct a quadratic interpolation

model of the objective function based on Newton interpolation. The new iterates are generated by min-

imizing the augmented Lagrangian function of this model. We use the filter technique to ensure the

feasibility and optimality of our algorithm. The poisedness of the interpolation set can be monitored

by using Newton polynomials and maintained via appropriate exchange of new iterates and the points

in the interpolation set. Global convergence of our algorithm is proved under suitable assumptions. In

future works we will continue our investigation, for example, we will study the numerical behavior of the

algorithm proposed in this paper, and consider further the case where the derivatives of both objective

functions and constrained functions in separable optimization are unavailable.
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