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Abstract A Lie superalgebra endowed with a non-degenerate super-symmetric and invariant bilinear form is

called a quadratic Lie superalgebra. In this paper, we consider the decomposition of a Lie superalgebra and the

�rst main result is that the decomposition of a Lie superalgebra into indecomposable graded ideals is unique

up to an isomorphism. Next, we obtain the uniqueness of the decomposition of an arbitrary quadratic Lie

superalgebra into irreducible graded ideals up to an isometry.
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A Lie superalgebra is a Z2-graded vector space g = g�0�g�1, together with a graded Lie bracket

[ , ] :g� g! g satisfying the following conditions

[a; b] = �(�1)xy[b; a]; (skew symmetry)

[a; [b; c]] = [[a; b]; c] + (�1)xy[b; [a; c]]; (Jocobian identity)

for all elements a 2 gx; b 2 gy, and c 2 gz (x; y; z;2 Z2). For simplicity, we call the elements in

g�0 or g�1 homogeneous.

It is well known that the study of the Killing form plays a key role in the theory of simple

Lie superalgebras. It is desirable to extend the investigation to Lie superalgebras with a non-

degenerate super-symmetric invariant bilinear form. For simplicity, we call such a Lie superalgebra

a quadratic Lie superalgebra and the form an invariant scalar product. Quadratic Lie superal-

gebras, in particular, Lie bi-superalgebras occur naturally in physics[1;2]: Besides semi-simple Lie

superalgebras, quadratic Lie superalgebras include some solvable superalgebras[3;4]. The notion of

double extension of Lie algebras[5] was generalized to quadratic Lie superalgebras and a suÆcient

condition for a quadratic Lie superalgebra to be a double extension was given by Benamor et al.[3].

In ref. [4], Benayadi studied the quadratic Lie superalgebras with the completely reducible action

of even part on the odd part.

It is well known that there is much work on simple Lie superalgebras[6�9]. But the theory of

quadratic Lie superalgebras does not seem to be well developed.

This paper considers the decomposition of a Lie superalgebra and a quadratic Lie superalge-

bra. Our main results are Theorem 1 and Theorem 2. For a quadratic Lie algebra, the uniqueness

of the decomposition was obtained by Zhu et al.1)

1) Zhu, F. H., Zhu, L. S., The uniqueness of the decomposition of quadratic Lie algebras, to appear in Comm.

Alg.
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All Lie superalgebras mentioned in this paper are over a �eld F of characteristic 0 and �nite-

dimensional.

De�nition 1[3]. Let g be a Lie superalgebra. A bilinear form B on g is called super-

symmetric if B(x; y) = (�1)��B(y; x) for any x 2 g�; y 2 g�, called g-invariant if B([x; y]; z) =

B(x; [y; z]) for all x; y; z 2 g, called consistent if B(x; y) = 0 for all x 2 g�0 and y 2 g�1.

From now on we shall consider only consistent bilinear forms.

De�nition 2[3]. (1) Let g be a Lie superalgebra with a bilinear form B. Then (g; B) is

called quadratic if B is super-symmetric, non-degenerate and g-invariant. In this case, B is called

an invariant scalar product on g.

(2) Let (g; B) be a quadratic Lie superalgebra. A graded ideal I of g is called non-degenerate

(resp. degenerate) if the restriction of B on I is non-degenerate (resp. degenerate).

(3) We call a quadratic Lie superalgebra (g; B) B-irreducible (or irreducible for short) if g

contains no nontrivial non-degenerate graded ideal.

Let g be a Lie superalgebra. Clearly, g has the following decomposition

g = g1 � � � � � gn (1)

as Lie superalgebras, where gi (i = 1; 2; � � � ; n) are indecomposable graded ideals of g.

Similarly, any quadratic Lie superalgebra can be decomposed into a direct sum of irreducible

non-degenerate graded ideals by the following Lemma 2.

Theorem 1. With the above notations, the decomposition of g as in (1) is unique up to

an isomorphism. Furthermore, if C(g) = 0, then the decomposition is unique up to the order of

ideals gi (i = 1; 2; � � � ; n).

Theorem 2. Let (g; B) be a quadratic Lie superalgebra. Then the decomposition of g into

irreducible non-degenerate graded ideals is unique up to an isometry. Furthermore, if C(g) = 0,

then g is just the direct sum of all its irreducible non-degenerate graded ideals (coinciding with

all its indecomposable graded ideals) and so the decomposition is unique up to the order of these

graded ideals.

Following Theorem 2, the problem of studying quadratic Lie superalgebras is reduced to the

problem of studying irreducible quadratic Lie superalgebras.

Proof of main results

The proof of Theorem 1. Assume that a homogeneous element x is in the center C(g)

of g. Then we have the following fact:

F: x 62 [g; g] if and only if the 1-dimensional graded subspace Fx is an abelian direct factor

of g as Lie superalgebra.

Let

g = g1 � g2; (2)

where g1 and g2 are graded ideals of g and g2 is the maximal abelian direct factors of g. Let

g = g
0

1 � g
0

2 be another such decomposition of g. Then by fact F, one may easily check that

g1 \ g
0

2 = 0 and g01 \ g2 = 0. Consider the projection:

�1 : g1 ! g
0

1:

Obviously, �1 is homomorphism of Lie superalgebras and Ker�1 � g
0

2 \ g1 = 0, so �1 is injective.

Thus we have dim g1 6 dim g
0

1. Similarly, we have dim g1 > dim g
0

1. Therefore dim g1 = dim g
0

1.

Setting �2 : g2 ! g
0

2 to be the projection, one may easily check that � = (�1; �2) is an isomorphism
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of Lie superalgebra g and such decomposition as in (2) is unique up to an isomorphism. Hence we

may assume that g has no abelian graded direct factor.

For g, we have the decomposition (1). Assume

g = g
0

1 � � � � � g
0

m
(3)

is another such decomposition of g. Then

[g1; g1] = �m

j=1[g1; g
0

j
]

and [g1; g1] 6= 0, which implies [g1; g
0

j
] 6= 0 for some j. We assume [g1; g

0

1] 6= 0 for simplicity.

Denote Ai = g1 \ g
0

i
(i = 1; 2; � � � ;m). De�ne

M = f(B1; B2; � � � ; Bm) j Ai � Bi; Bi

\X
j 6=i

Bj = 0;

any Bi is a graded ideal of g1g:

Clearly (A1; A2; � � � ; Am) 2M.

Claim 1. A2 = A3 = � � � = Am = 0.

Case 1. If g1 = A1 � A2 � � � � � Am, then A2 = A3 = � � � = Am = 0 since g1 is an

indecomposable graded ideal of g and 0 6= [g1; g
0

1] � A1.

Case 2. If g1 6= A1 � A2 � � � � � Am, we may choose a homogeneous element d 2 g1 with

d 62 A1 �A2 � � � � �Am. Assume

d = d01 + d02 + � � � + d0
m

(4)

by (3), where d0
i
2 g

0

i
(i = 1; 2; � � � ;m) are homogeneous. Furthermore, by (1), we assume

d0
i
= di1 + di2 + � � �+ din; i = 1; 2; � � � ;m; (5)

where dij 2 gj (j = 1; 2; � � � ; n) are homogeneous. So

d =

mX
i=1

di1 +

mX
i=1

di2 + � � �+

mX
i=1

din:

Since d 2 g1, we have d =
mP
i=1

di1 and
nP

j=2

mP
i=1

dij = 0. By (5), we have

[di1; g1] =

"
nX

j=1

dij ; g1

#
= [d0

i
; g1] � [g1; g

0

i
]; i = 1; 2; � � � ;m: (6)

Assume d11 62 A1�� � ��Am. Then we let C1 = A1 _+Fd11. Furthermore, let C2 = A2 _+Fd21 if d21 62

C1 _+A2 and let C2 = A2 otherwise. Generally, we let Cj = Aj
_+Fdj1 if dj1 62 C1 _+ � � � _+Cj�1 _+Aj

and let Cj = Aj (j = 3; 4; � � � ;m) otherwise. Clearly, Cj (j = 1; 2; � � � ;m) are graded ideals of g1 by

(6). Since dimg1 <1, repeating the above discussion, there exists an element (B1; B2; � � � ; Bm) 2

M such that

B1 �B2 � � � � �Bm = g1:

Similar to Case 1, we have Bi = 0 (i = 2; 3; � � � ;m), which implies Ai = 0 (i = 2; 3; � � � ;m).

Claim 2. With the above notations, we have n = m, dim gj = dim g
0

j
(up to a permutation

of index), [gj ; gj ] = [gj ; g
0

j
] = [g0

j
; g0

j
] and [gj ; g

0

k
] = 0 for j 6= k.
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Since Ai = 0 (i = 2; 3; � � � ;m), we have [g1; g
0

i
] = 0. So [g1; g1] = [g1; g] = [g1; g

0

1]. Similarly,

we have [gk; g
0

1] = 0 for k = 2; 3; � � � ; n and [g01g
0

1] = [g1; g
0

1]. Consider the projection

�1 : g1 ! g
0

1:

Obviously, �1 is a homomorphism of Lie superalgebras and ker�1 �
mP
i=2

g1\g
0

i
=0, so �1 is injective.

Thus we have dimg1 6 dimg01. Similarly, we have dimg1 � dimg01. Therefore dimg1 = dimg01.

Repeating the above discussion for j = 2; 3; � � � ; n, we obtain Claim 2.

By Claim 2 and its proof, we know that all �i : gi ! g
0

i
(i = 1; 2; � � � ; n) are isomorphisms.

De�ne � = (�1; �2; � � � ; �) such that �jgi = �i. Then � is an isomorphism of g we want.

Now we assume C(g) = 0. Then C(gi) = C(g0
i
) = 0 for i = 1; 2; � � � ; n. De�ne �ij : gi !

g
0

j
i 6= j; i; j = 1; 2; � � � ; n to be the projections. For any homogeneous element x 2 gi, we assume

x =
nP

j=1

xj , where xj 2 g
0

j
are homogeneous. Clearly �ij(x) = xj and [xj ; g

0

j
] = [x; g0

j
] � gi\g

0

j
= 0.

Thus xj 2 C(g0
j
) = 0. It follows that �i = idgi , i.e. gi = g

0

i
.

Remark. The latter assertion of Theorem 1 is the main result in ref. [10].

In order to prove Theorem 2, we �rst establish some lemmas.

Lemma 1. Let (g; B) be a quadratic Lie superalgebra, and let a and b be graded subspaces

of g. Then the following assertions are equivalent:

(1) x 2 [a; b]?; (2) [x; a] � b
?; (3) [x; b] � a

?.

Lemma 2[11]: Let (g; B) be a quadratic Lie superalgebra, and let a be an graded ideal of

g. Then we have the following:

(1) [a; g]? is the centralizer Cg(a) of a in g;

(2) a
? is an graded ideal of g and centralizes a. Therefore, if [g; a] = a, then a

? = Cg(a);

(3) [g; g]? = C(g);

(4) Assume a is non-degenerate. Then a? is also non-degenerate and g = a� a
?.

Proof. (1) By Lemma 1, x 2 [a; g]? if and only if [x; a] � g
? = 0. Hence [a; g]? = Cg(a).

(2) Let x 2 g�; y 2 a�; z 2 a
?



. Then B([x; z]; y) = �(�1)�
B(z; [x; y]) = 0 by the invariance

of B. Hence [x; z] 2 a
?. Consequently, a? is a graded ideal of g.

Since [a; g] � a, we have a? � [a; g]? = Cg(a). By (1), [a; g] = a implies a? = Cg(a).

(3) follows from (1).

(4) Let x 2 a \ a?. Then B(x; a) = 0. Since a is a non-degenerate graded ideal of g, x = 0.

It follows that a \ a? = 0. Note that dimg = dima+ dima?. We have g = a� a
?.

Lemma 3. Let (g; B) be a quadratic Lie superalgebra. Then any perfect graded direct

factor s of g is non-degenerate.

Proof. Assume that g = s�g1 as Lie superalgebras and [s; s] = s. Then 0 = g
? = s

?\g1
?.

Since B(g1; s) = B(g1; [s; s]) = B([g1; s]; s) = 0, s � g1
?. Hence s \ s? = 0. It follows that s is

non-degenerate.

Lemma 4. Let (g; B) be a quadratic Lie superalgebra with the center C(g) being isotropic.

Then any graded direct factor of g is non-degenerate. In particular, g has no abelian graded direct

factor.

Proof. Assume that g1 is a graded direct factor of g. Then there exists another graded ideal

g2 of g such that g = g1 � g2. Assume g1 is not quadratic. Then the radical of a = rad(Bjg1) 6= 0

is a graded ideal of g. Since g is quadratic and B([g1; g1]; g2) = B(g1; [g1; g2]) = 0; we have

a \ [g1; g1] = 0. Therefore a \ C(g) = 0 since C(g) � C(g)? = [g; g], i.e. [a; g1] 6= 0. Clearly

B([a; g1]; g) = B(a; [g1; g]) = 0, which contradicts the non-degeneracy of B.

The latter assertion of the lemma is clear.
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Proof of Theorem 2.

Case I. The center C(g) of g is isotropic.

Let

g = g1 � � � � � gn; and g = g
0

1 � � � � � g
0

m

be two decompositions of g. Here gi, g
0

j
; 1 6 i 6 n, 1 6 j 6 m, are irreducible non-degenerate

graded ideals of g and B(gi; gj) = 0, B(g0
i
; g0

j
) = 0 for i 6= j. By Lemma 4, we have

[g1; g1] =

mM
j=1

[g1; g
0

j
] 6= 0:

Hence [g1; g
0

j
] 6= 0 for some j. Assume [g1; g

0

1] 6= 0 for simplicity. Let Ai = g1 \ g
0

i
; i = 1; 2; � � � ;m.

Clearly, Ai (i = 1; 2; � � � ;m) are graded ideals of g1. If g1 = A1 � A2 � � � � � Am, then Ai is

non-degenerate for any i by Lemma 4. Since g1 is irreducible non-degenerate and A1 6= 0, we have

Ai = 0 for i = 2; 3; � � � ;m. If g1 6= A1 �A2 � � � � �Am, as in the proof of Theorem 1, we de�ne

M = f(B1; B2; � � � ; Bm)g;

where Bi (i = 1; 2; � � � ;m) are graded ideals of g1, Ai � Bi and Bi \
P

j 6=i
Bj = 0. By Lemmas

2 and 4, similar to the discussion in the proof of Theorem 1, we have Bi = 0, consequently,

Ai = 0 (i = 2; 3; � � � ;m). Thus [g1; gi] = 0 (i = 2; 3; � � � ;m), which implies that [g1; g1] = [g1; g
0

1].

Similarly, we have [g1; g
0

1] = [g01; g
0

1] and [gj ; g
0

1] = 0 for all j = 2; 3; � � � ; n. Therefore [g1; g1] =

[g01; g
0

1]. By Lemma 2, we have dimg1 = dim[g1; g1] + dimC(g1). It is clear that C(g1) = C(g01). It

follows that dimg1 = dimg01. Repeating the above discussion for j = 2; 3; � � � ; n, we have n = m,

dim gj = dim g
0

j
(up to a permutation of index), [gj ; gj ] = [gj ; g

0

j
] = [g0

j
; g0

j
] and [gj ; g

0

k
] = 0 for

j 6= k.

It is easy to check that all the projections �j : gj ! g
0

j
(1 6 j 6 n) are isomorphisms of Lie

superalgebras and preserve the bilinear form. De�ne � = (�1; : : : ; �n) such that �jgi = �i. Then

� is an isometry of g, i.e. the decomposition is unique up to an isometry, furthermore, � is an

automorphism of g.

Case II. C(g) is not isotropic.

If g is abelian, it is clear that any irreducible graded ideal a of g is 1-dimensional or 2-

dimensional. Following the super-symmetry of B, we must have a = Fx � g�0 with B(x; x) 6= 0 or

a = Fx1 � Fx2 � g�1 with B(x1; x1) = B(x2; x2) = 0 and B(x1; x2) 6= 0: So the assertion is clear.

Now assume that g is not abelian. Since C(g) is not isotropic, there exists an element

x 2 C(g)�0 such that B(x; x) 6= 0; in this case, a = Fx is an irreducible graded ideal of g; or there

exist two elements x1; x2 2 C(g)�1 such that a = Fx1 � Fx2 is an irreducible graded ideal of g:

De�ne b = a
?. By Lemma 2, we have that b is an irreducible graded ideal of g and g = a � b:

Since dimg <1; repeating the above discussion for b; we have g = g1 � g2; where g1 and g2 are

irreducible graded ideals of g; g2 � C(g) and the center of g1( 6= 0) is isotropic.

Let g = g
0

1 � g
0

2 be another such decomposition. Then we have

[g; g] = [g1; g1] = [g01; g
0

1] = [g1; g
0

1]:

Similar to Case I, we get dim g1 = dim g
0

1, consequently, dim g2 = dim g
0

2.

Since the center C(g1) of g1 is isotropic, by Lemma 2, we have

C(g1) � C(g1)
? = [g1; g1]: (7)
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Note that g1 is consistent. By (7), we may choose a basis

fx1; : : : ; xk; y1; : : : ; yk1 ;xk+1; : : : ; xn; yk1+1; : : : ; yn1 ;xn+1; : : : ; xn+k ; yn1+1; : : : ; yn1+k1
g

of g1 such that xi 2 (g1)�0 for i = 1; 2; : : : ; n + k, yj 2 (g1)�1 for j = 1; 2; : : : ; n1 + k1 such that

fx1; : : : ; xk; y1; : : : ; yk1g is a basis of C(g1) and fx1; : : : ; xn; y1; : : : ; yn1g is a basis of [g1; g1] =

[g01; g
0

1], and

B(xi; xj) = Æij ; B(yl; ym) = Ælm k + 1 6 i; j 6 n; k1 + 1 6 l;m 6 n1

B(xi; xn+j) = Æij ; B(yl; yn1+m) = Ælm 1 6 i; j 6 k; 1 6 l;m 6 k1

B(xi; xj) = 0; B(yl; ym) = 0 1 6 i; j 6 k; 1 6 l;m 6 k1

B(xi; xj) = 0; B(yl; ym) = 0 n+ 1 6 i; j 6 n+ k; n1 + 1 6 l;m 6 n1 + k1:

Let �i : gi ! g
0

i
i = 1; 2 be two projections. Clearly they are isomorphisms of Lie superalgebras.

For x; y 2 g2 � C(g), we assume that x = x1+x2 and y = y1+y2, where xi 2 g
0

i�0
, yi 2 g

0

i�0
(i = 1; 2)

and x1; y1 2 C(g01). Since C(g
0

1) is isotropic, we have B(�2(x); �2(y)) = B(x2; y2) = B(x; y).

Now consider the projection �1. Noticing that xj ; ym 2 [g1; g1] = [g01; g
0

1], by de�nition of

�1, we get �1j[g1;g1] = id, B(�1(xi); �1(xj)) = B(xi; xj) and B(�1(yl); �1(ym)) = B(yl; ym) for

1 6 i 6 n+ k, 1 6 j 6 n, 1 6 l 6 n1 + k1 and 1 6 m 6 n1.

Assume that xp = x0
p1+x0

p2 and yi = y0
i1+ y0

i2 for n+1 6 p 6 n+ k and n1+1 6 i 6 n1+ k1

and x0
pj
; y0

ij
2 g

0

j
(j = 1; 2). Then �1(xp) = x0

p1 and �1(yi) = y0
i1. For n + 1 6 q 6 n + k and

n1 + 1 6 j 6 n1 + k1, we have

0 = B(xp; xq) = B(x0
p1; x

0

q1) +B(x0
p2; x

0

q2)

and

0 = B(yi; yj) = B(y0
i1; y

0

j1) +B(y0
i2; y

0

j2):

Let bpq = B(x0
p2; x

0

q2) for p 6= q, cij = B(y0
i2; y

0

j2) for i 6= j, 2bpp = B(x0
p2; x

0

p2) and 2cii =

B(y0
i2; y

0

i2). De�ne

x0
p
= x0

p1 +

n+kX
l=p

bplxl�n and y0
i
= y0

i1 +

n1+k1X
m=i

cimxm�n1 :

Note that B(x0
p1; xq�n) = B(xp; xq�n) = Æpq for n + 1 6 p; q 6 n + k and B(y0

i1; yj�n1) =

B(yi; yj�n1) = Æij for n1 + 1 6 i; j 6 n1 + k1. One may check that

B(x0
p
; x0

p
) = B(x0

p1; x
0

p1) + 2bpp = 0; n+ 1 6 p 6 n+ k;

B(x0
p
; x0

q
) = B(x0

p1; x
0

q1) + bpq = 0; n+ 1 6 p < q 6 n+ k;

B(y0
i
; y0

i
) = B(y0

i1; y
0

i1) + 2cii = 0; n1 + 1 6 i 6 n1 + k1;

B(y0
i
; y0

j
) = B(y0

i1; y
0

j1) + cij = 0; n1 + 1 6 i < j 6 n1 + k1:

De�ne �01 : g1 ! g
0

1 such that

�01(xi) = xi; 1 6 i 6 n; �01(xi) = x0
i
; n+ 1 6 i 6 n+ k;

�01(yj) = yj ; 1 6 j 6 n1; �01(yj) = y0
j
; n1 + 1 6 j 6 n1 + k1:

One can easily check that �01, which preserves the bilinear forms, is also an isomorphism from g1

onto g01. Let � = (�01; �2). Then it is easy to see that � is an isometry of g.
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Assume C(g) = 0. Then by Lemma 2, [g; g] = g, i.e. g is perfect. Note that any direct factor

of a perfect Lie superalgebra is also perfect. By Lemmas 2{4, g has a decomposition

g = g1 � g2 � � � � � gn;

where any gi is a perfect irreducible non-degenerate graded ideal of g. Similar to the discussion

in the proof of Theorem 1, we get the latter assertion of Theorem 2.
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