
SCIENCE CHINA 
Life Sciences 

© Science China Press and Springer-Verlag Berlin Heidelberg 2010  life.scichina.com  www.springerlink.com 

                  
*Corresponding author (email: gpickard2@unl.edu) 

• REVIEW • January 2010  Vol.53  No.1: 58–67 
 doi: 10.1007/s11427-010-0024-5 

Intrinsically photosensitive retinal ganglion cells 

Gary E. PICKARD & Patricia J. SOLLARS 

School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln NE 68583, USA 

Received December 20, 2009; accepted December 30, 2009 

 

A new mammalian photoreceptor was recently discovered to reside in the ganglion cell layer of the inner retina. These intrin-
sically photosensitive retinal ganglion cells (ipRGCs) express a photopigment, melanopsin, that confers upon them the ability 
to respond to light in the absence of all rod and cone photoreceptor input. Although relatively few in number, ipRGCs extend 
their dendrites across large expanses of the retina making them ideally suited to function as irradiance detectors to assess 
changes in ambient light levels. Phototransduction in ipRGCs appears to be mediated by transient receptor potential channels 
more closely resembling the phototransduction cascade of invertebrate rather than vertebrate photoreceptors. ipRGCs convey 
irradiance information centrally via the optic nerve to influence several functions. ipRGCs are the primary retinal input to the 
hypothalamic suprachiasmatic nucleus (SCN), a circadian oscillator and biological clock, and this input entrains the SCN to the 
day/night cycle. ipRGCs contribute irradiance signals that regulate pupil size and they also provide signals that interface with 
the autonomic nervous system to regulate rhythmic gene activity in major organs of the body. ipRGCs also provide excitatory 
drive to dopaminergic amacrine cells in the retina, providing a novel basis for the restructuring of retinal circuits by light. Here 
we review the ground-breaking discoveries, current progress and directions for future investigation. 
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1 The long road to intrinsically photosensitive 
retinal ganglion cells  

Visual perception begins in the outer retina where light is ab-
sorbed by the rod and cone photoreceptors and converted into 
an electrical signal. These signals are relayed to bipolar cells 
and then to the output cells of the retina, the ganglion cells. 
Retinal ganglion cell (RGC) signals are conveyed by their 
axons via the optic nerve to higher centers in the brain for 
further processing required for conscious visual perception 
(Figure 1). Although extra-ocular photoreceptors are common 
among non-mammalian vertebrates, it was believed since the 
time of the pioneering descriptions of Ramón y Cajal in the 
late 1800s that retinal rods and cones were the only photo-

receptors in mammals [1]. 
This depiction of the organization of the mammalian ret-

ina prevailed despite occasional reports dating as far back as 
1927, indicating that rodents with severe degeneration of the 
outer retina remained capable of responding to light (i.e., 
irradiance responses). Mice carrying the retinal degenera-
tion mutation (rd) are virtually devoid of rod and cone pho-
toreceptors by 4 weeks of age and these animals do not 
produce recordable electroretinographic responses or visual 
evoked potentials [2]. Yet Keeler reported that these mice 
were capable of generating a pupillary light reflex (i.e., in 
vivo contraction of the iris in response to light stimulation) 
[3]. Others later reported that rd/rd mice were able to syn-
chronize their daily activity rhythms to cycles of light and 
darkness suggesting that cells other than rods and cones in 
the retina might be light sensitive [4,5]. However, it seemed  
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Figure 1  Schematic vertical section of the retina depicting ipRGCs (red) 
and rod and cone photoreceptors. ipRGCs reside in the ganglion cell layer 
(GCL) whereas rods and cones have their cell bodies in the outer nuclear 
layer (ONL). The three morphological types of ipRGC (M1, M2 and M3) 
are shown. Dendrites of M1 ipRGCs stratify in the distal inner plexiform 
layer (IPL), near the border of the inner nuclear layer (INL) in the tradi-
tional ‘OFF’ sublamina of the IPL. Dendrites of M2 ipRGCs are confined 
to the proximal ‘ON’ sublayer of the IPL whereas M3 ipRGCs are bistrati-
fied. Conventional RGCs (black) receive signals from rods and cones via 
input from bipolar cells located in the INL. M1 ipRGCs and dopaminergic 
amacrine cells (DA) receive ON bipolar input in the ‘OFF’ sublamina of 
the IPL via ectopic synapses of ON bipolar cell axons as they pass through 
the IPL. Conventional RGCs and ipRGCs send axons from the eye to 
communicate with the brain. M1 ipRGCs also drive excitatory responses in 
DA presumably by their dendrites that co-stratify in the IPL near the border 
of the INL. OS, outer segment layer; OPL, outer plexiform layer. Adapted 
from Berson, TINS, 2003, 26: 314–320. 

unreasonable to most visual neuroscientists at the time that 
a photoreceptor had been missed despite study of the retina 
for over 150 years. The persistent response to light in retinal 
degenerate mice was widely attributed to the few cone pho-
toreceptor remnants that remain in these animals [6], as re-
moval of the eyes of rodents eliminates all forms of light 
detection [7]. 

To directly test the interpretation that residual cone pho-
toreceptors mediate the irradiance responses to light in reti-
nal degenerate animals, transgenic mice were generated 
lacking all rod and cone photoreceptors. Surprisingly these 
animals retained several irradiance responses including en-
trainment of their locomotor behavior to a light: dark cycle, 
the pupillary light reflex, and light-induced suppression of 
nocturnal pineal melatonin secretion [8,9]. Additional sup-
port for a non-rod, non-cone ocular photoreceptor came 
from reports in rodents and humans describing photic re-
sponses that had an action spectrum inconsistent with that 
of any known retinal photoreceptor [10–13]. Taken together 
these data provided clear evidence of the existence of a 
non-rod, non-cone photoreceptor in the mammalian retina. 

2 Melanopsin and intrinsically photosensitive 
retinal ganglion cells 

In 1998, while strong evidence was beginning to mount for 
a non-rod, non-cone photoreceptor in the mammalian retina, 
Provencio and his colleagues identified a novel opsin in 

photosensitive dermal melanophores of Xenopus laevis. 
They named the opsin melanopsin based on its isolation 
from a melanophore cDNA library and they demonstrated 
that it was a member of the opsin family of G-protein cou-
pled receptors [14]. Provencio and co-workers in 2000 de-
scribed the expression of melanopsin in cells of the inner 
retina of both primates and rodents, providing a basis for the 
suggestion that RGCs expressing this novel mammalian 
opsin were directly photosensitive [15]. This prediction was 
borne out in early 2002 in a set of landmark reports, when 
Berson, Hattar, Yau and colleagues recorded from RGCs 
that give rise to the retinohypothalamic tract (RHT) and 
terminate in the suprachiasmatic nucleus (SCN), a circadian 
oscillator responsible for the generation of rhythmic behav-
ior. These investigators showed that these RGCs, when iso-
lated from all rod and cone synaptic input, generated action 
potentials in response to photic stimulation [16]. Impor-
tantly, they also showed that these intrinsically photosensi-
tive retinal ganglion cells (ipRGCs) expressed melanopsin 
[17]. These reports laid the foundation for a now rapidly 
growing new subdivision of retinal biology. However, two 
key questions remained after the discovery of ipRGCs: was 
melanopsin truly a photopigment and was it required for 
animals to show irradiance responses such as the pupillary 
light reflex or entrainment of circadian behavior to the light: 
dark cycle? 

The second question was the first to be answered unam-
biguously with the generation of melanopsin knockout mice. 
These animals retain the ability to entrain to daily cycles of 
light and darkness and they generate a pupillary light reflex, 
although several aspects of these responses to light are al-
tered [18–20]. Both acute and chronic effects of light on the 
circadian system were significantly attenuated in melanop-
sin-deficient mice [18,19] and the pupillary light reflex was 
described as incomplete at high irradiances [20] indicating 
that both the classical rod/cone photoreceptors and ipRGCs 
contribute to irradiance responses. When melanopsin was 
knocked out in mice lacking functional rods and cones, all 
tested responses to light were lost, confirming a role for 
melanopsin in irradiance responses to light and also indi-
cating the unlikelihood that any other photoreceptor in the 
mammalian retina has remained undetected [21].  

The observation that mice lacking the melanopsin protein 
retain the ability to entrain the SCN circadian pacemaker to 
the day/night cycle suggests that either conventional RGCs 
send afferent fibers to the SCN or that ipRGCs receive syn-
aptic input from rods and/or cones and that this input is ca-
pable of driving these cells. Indeed, ipRGCs do receive 
synaptic input from both amacrine and bipolar cells [22–24] 
and this rod/cone driven input is capable of inducing 
physiological responses in these cells in the absence of 
melanopsin [25]. Moreover, retrograde labeling of RGCs 
afferent to the SCN in the mouse has revealed that virtually 
all SCN-projecting RGCs express melanopsin [26]. The 
data of Güler and colleagues [27] are in full agreement with 
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these findings. These investigators generated mice in which 
ipRGCs were genetically ablated and these animals lost 
their ability to entrain to environmental light/dark cycles, 
confirming that rod/cone influences on circadian entrain-
ment are via melanopsin expressing ipRGCs which act as a 
conduit for rod/cone signals to reach the SCN. 

In the rodent retina approximately 1%–2% of ganglion 
cells express melanopsin [26]. While in the mouse it ap-
pears that only melanopsin immunoreactive RGCs send 
afferent fibers to the SCN, in other rodents (i.e., the golden 
hamster and rat) non-melanopsin expressing RGCs have 
been described projecting to the SCN; these RGCs comprise 
10%–20% of the total number of RGCs afferent to the  
SCN [28–30]. These differences among rodents may repre-
sent true species differences, but it remains to be determined 
whether the small number (i.e., 100–200) ‘non-melanopsin’ 
SCN-projecting RGCs identified in the rat and hamster are 
actually intrinsically light sensitive RGCs that either ex-
press too little melanopsin to be detected [26] or express a 
melanopsin isoform not recognized by the antibodies cur-
rently available [31–32]. 

Evidence confirming the identification of melanopsin as 
a photopigment came from heterologous expression of 
melanopsin in several different in vitro systems. The first 
data came from purified melanopsin harvested from mel-
anopsin transfected COS cells. While it was shown that 
melanopsin was a photopigment that bound retinaldehyde 
and was capable of activating a G-protein [33], the spectral 
properties (i.e., maximal absorbance at ≈424 nm) were not 
consistent with the action spectrum observed by Berson and 
colleagues for SCN-projecting ipRGCs (≈484 nm) [16]. 
Subsequently, the photopigment properties of melanopsin 
were confirmed after expression in HEK cells that also ex-
pressed TRPC3 channels [34], Neuro-2a cells [35] and 
Xenopus oocytes [36]. Together these studies provided 
overwhelming evidence that melanopsin was indeed a pho-
topigment. However, one study again reported an absorption 
maximum ≈420 nm [35] whereas the others indicated that 
expressed melanopsin maximally absorbed light at ≈480 nm 
[34,36], more closely matching the spectral tuning of phar-
macologically isolated rat [16] and primate [37] ipRGCs. 
Non-mammalian melanopsin also shows peak sensitivity 
≈480 nm in close agreement with mammalian ipRGCs 
[31,38]. Currently it is generally agreed that melanopsin 
maximally absorbs light at ≈480 nm although direct in vitro 
spectroscopic and biochemical analysis of purified mam-
malian melanopsin is needed [39]. 

3 ipRGC physiological responses to light 

Several characteristics of ipRGC responsiveness set these 
ganglion cell photoreceptors apart from mammalian rod and 
cone photoreceptors. In particular, the stimulus response 
kinetics of ipRGCs is extremely slow compared to rods and 

cones. In addition, the melanopsin phototransduction cas-
cade appears similar to that of many invertebrates, resulting 
in the polarity of the response of ipRGCs to light opposite 
that of rods and cones. 

3.1 ipRGC response kinetics 

The response of ipRGCs to light stimulation is extremely 
sluggish and ipRGCs are relatively insensitive to light. Un-
der dim light conditions these cells can take many seconds 
to reach a peak response and the response may persist for 
minutes after stimulus termination [16]. While slow to re-
spond to dim light conditions, it is remarkable that ipRGCs 
appear capable of responding to the absorption of a single 
photon of light [40]. Thus the relatively low sensitivity to 
light does not appear to be the result of inefficient photo-
transduction but rather of poor photon catch. This may be 
related to the low membrane density of melanopsin, esti-
mated to be 104-fold lower than that of rod and cone pho-
topigments [40,41]. Indeed, single photon capture in an 
ipRGC generates a large and prolonged membrane current, 
greater than that recorded in rod photoreceptors but also 
20-fold slower [42]. The slow response kinetics of ipRGCs 
may provide for long temporal integration which may well 
suit the primary function of these cells, assessing ambient 
light levels via irradiance detection [40]. Moreover, since 
ipRGCs are synaptically driven by rods and/or cones 
[22–24], ganglion cell photoreceptors themselves may not 
require the level of intrinsic sensitivity noted for the classic 
photoreceptors. Considering that light passes first through 
the inner retina before being captured by rods and cones in 
the outer retina, a low photon capture rate by ipRGCs may 
also serve visual perception by allowing the vast majority of 
photons to pass by the inner retina to interact with rods and 
cones and thereby not degrading the visual image. It should 
be noted, however, that very brief (2 millisecond), intense 
light flashes are capable of driving SCN-mediated behavior, 
though it remains to be determined if melanopsin is required 
for these responses to very brief light flashes [43]. 

3.2 Photon capture in ipRGCs results in depolarization 

In response to light, ipRGCs depolarize, unlike the hyper-
polarizing light responses of mammalian rods and cones but 
similar to the responses of most invertebrate photoreceptors 
[44]. Perhaps this invertebrate-like response to light is not 
surprising since vertebrate melanopsin belongs to the rhab-
domeric-opsin subfamily of opsins characteristic of most 
invertebrates [45,46]. It is equally unsurprising then that 
melanopsin also appears to utilize an invertebrate-like pho-
totransduction mechanism. 

Melanopsin, a member of the G-protein coupled-recep- 
tors, utilizes a G-protein to trigger a downstream cascade 
that results in generation of action potentials. The details of 
this basic mechanism remain uncertain but are under active 



 Gary E. Pickard, et al.   Sci China Life Sci   January (2010) Vol.53 No.1 61 

investigation. Opsins in mammalian rods and cones couple 
to the Gt-protein, transducin, which activates a phosphodi-
esterase cascade resulting in the closure of cGMP-gated 
channels and hyperpolarization of the cell. Melanopsin in 
ipRGCs is believed to be coupled to a G-protein of the Gq 
family (q, 11, 14 or 15) as its cognate G-protein in vivo. 
There is some evidence supporting a role for Gq/11 which 
would activate the effecter enzyme phospholipase C, result-
ing in depolarization, an invertebrate-like phototransduction 
cascade [47]. Preliminary data from Gq/G11 double knockout 
mice indicate that these animals have a defective pupillary 
light reflex at both low and high irradiances but normal en-
trainment to the day/night cycle and normal light responses 
in SCN-projecting RGCs [48].  

The membrane channel that carries the initial inward 
current following the apparent activation of phospholipase 
C has also not yet been conclusively identified. However, 
the involvement of a canonical transient receptor potential 
(TRPC) channel, similar to the channels in Drosophila 
photoreceptors, is supported by several lines of evidence 
including pharmacological blockade of light responses and 
identification of TRPC channel protein and/or mRNA in 
RGCs expressing melanopsin [45–51]. Of the subfamily of 
TRPC channels, TRPC3, TRPC6, and/or TRPC7 have all 
been implicated as the TRPC channel mediating the initial 
depolarization in ipRGCs although the TRPC7 channel 
seems to be the current leading candidate [51,52]. As in 
invertebrates, light stimulates an increase in intracellular 
calcium in ipRGCs [53]. Some Ca2+ appears to enter after 
activation of the TRPC channel whereas Hartwick and col-
leagues have shown that approximately 90% of the 
light-triggered rise in intracellular Ca2+ is associated with 
the opening of L-type voltage-gated calcium channels and is 
highly correlated with action potential firing [51]. The 
pharmacological tools currently available do not adequately 
distinguish specific TRPC channels as the TRPC channel 
blockers are non-selective and inhibit many different cation 
channels [51]. As more selective tools become available to 
probe specific TRPC channels, a more definitive picture 
will surely emerge. 

Identification of TRPC channel protein or mRNA may 
also not be definitive. Yau and Hardie [46] point out that the 
assumption used by many investigators, that “phototrans-
duction proteins in ipRGCs ought to be selectively, or at 
least predominately, present in ipRGCs and not conven-
tional RGCs” may not be valid based on the recent report 
from Bin and colleagues [54]. These investigators used a 
viral vector to express the melanopsin gene in the retinas of 
retinal degenerate mice and they noted that a wide variety of 
conventional RGCs became light-responsive, demonstrating 
that a signaling system that functionally couples melanopsin 
to membrane depolarization may be widespread in retinal 
ganglion cells [54]. Could there be an alternative explana- 
tion for this finding? Perhaps these ‘newly melanopsin-  
expressing RGCs’ expressed melanopsin very early in 

development and thus already possessed the melanopsin 
transduction machinery although they lost expression of 
melanopsin during development. The number of melanop-
sin-expressing RGCs is much greater early in development, 
being at least a 5-fold greater at postnatal day 4 compared to 
adult retina although it has been assumed that this repre-
sents overproduction followed by apoptotic cell death [55]. 
There is strong evidence that melanopsin protein levels are 
regulated developmentally, on a daily basis, and by envi-
ronmental lighting conditions [55–57]. 

3.3 Chromophore recycling and bistability 

Another aspect of the ipRGC response to light that appears 
similar to that of the invertebrate rhabdomeric type photo-
receptors is that of photopigment regeneration. The visual 
pigment consists of two components: a protein moiety, the 
opsin, and the chromophore, 11-cis-retinal, a vitamin A de-
rivative. Light isomerizes 11-cis-retinal to all-trans-retinal 
which results in rapid conformational changes in the opsin. 
After all-trans-retinal is reduced to all-trans-retinol in rod 
and cone photoreceptors, it exits the cell where it is con-
verted in the overlying retinal pigment epithelium back to 
11-cis-retinal by RPE65, a retinyl isomerohydrolase for 
return to the photoreceptors [46]. Müller glial cells in the 
mammalian retina also recycle 11-cis-retinal using a slightly 
different mechanism although these glial cells appear to 
serve only cone photoreceptors. 

Unlike vertebrate rods and cones, the invertebrate rhab-
domeric photopigment regenerating system is independent 
of other cells or tissue. Invertebrate photopigments do not 
dissociate from the opsin moiety but instead are re-isomer- 
ized by light of a longer wavelength than that which causes 
the initial photoactivation; these photopigments are thus 
considered bistable [46]. It would seem unlikely that 
ipRGCs utilize the retinal pigment epithelium to recycle 
11-cis-retinal in vivo since ipRGCs are located in the inner 
retina. Moreover, native ipRGCs respond to prolonged light 
exposure when maintained in vitro in isolation from other 
retinal cells including Müller glial cells [51] suggesting that 
ipRGCs can convert all-trans-retinal back to 11-cis-retinal 
autonomously. Thus melanopsin would appear to be a prime 
candidate for a vertebrate bistable photopigment, similar to 
those of invertebrates. Indeed, using heterologously ex-
pressed cephalochordate melanopsin, Koyanagi and col-
leagues unambiguously demonstrated that melanopsin func-
tions as a bistable pigment in vitro acting as both a pho-
topigment and a photoisomerase [58], although it remained 
to be demonstrated that melanopsin in mammalian ipRGCs 
also functions as a bistable photopigment in vivo. 

This question was first addressed by Fu and colleagues 
using a mouse model deficient in 11-cis-retinaldehyde syn- 
thesis [59]. These experiments firmly established that mel- 
anopsin in mouse ipRGCs detects light with a vitamin A- 
based chromophore and they also suggested that melanopsin 
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may be bistable [59]. Cooper and his coworkers addressed 
the issue of melanopsin’s bistability in vivo using an indirect 
approach by recording single-unit activity in the mouse 
SCN in response to light stimulation of different wave-
lengths. They observed that prestimulation of the animal 
with long-wavelength light (e.g., 620 nm) enhanced the 
responses of SCN neurons to 480 nm light stimulation, con-
sistent with long wavelength light causing re-isomerization 
and melanopsin being bistable [60]. Similarly, these authors 
examined the pupillary light reflex in humans and reported 
that prior exposure to long wavelength light increases while 
short wavelength light decreases the amplitude of pupil 
constriction, again consistent with the interpretation of a 
bistable photopigment [61]. Surprisingly, however, little 
long-wavelength photic potentiation was observed when 
mouse ipRGCs were recorded in vitro using a multielec-
trode array [62]. The reasons for these differences are not 
apparent [63,64]. However, whether or not melanopsin is 
able to regenerate 11-cis-retinal through sequential photon 
absorption, it has also been reported that melanopsin uses a 
light-independent retinoid regeneration mechanism [65]. 
Studies using mice lacking outer retinal function may help 
to determine if long wavelength enhancement of melanop-
sin-mediated behaviors in vivo is mediated by long wave-
length cone input to ipRGCs. Examination of individual 
native ipRGCs maintained in vitro [51] may also contribute 
to determining whether mammalian melanopsin is truly a 
bistable photopigment. 

4 Central and retinal targets of ipRGCs 

The suspicion of the existence of a non-rod, non-cone ocu-
lar photoreceptor was originally based primarily on the ob-
servation that mice lacking rods and cones synchronized 
their circadian locomotor activity to the day/night cycle 
[4,5]. The circadian oscillator that drives this behavior is 
located in the SCN and the SCN was known to receive di-
rect input from the retina [66], so it was unsurprising that 
the RGCs projecting to the SCN were found to be intrinsi-
cally photosensitive [15].  

4.1 ipRGC projections are widespread  

It has long been known that RGCs afferent to the SCN have 
axons that bifurcate, sending collateral branches to the in-
tergeniculate leaflet (IGL) of the thalamus [29,67,68] and 
the olivary pretectal nucleus (OPN), the region of the mid-
brain that regulates the pupillary light reflex [29,68]. Con-
sistent with these previously documented divergent axonal 
branches of RGCs innervating the SCN, Hattar and col-
leagues described melanopsin RGC projections to the IGL 
and OPN, in addition to the SCN, using a reporter mouse in 
which the melanopsin gene opn4 was replaced with the 
tau-lacZ gene [17]. The tau-lacZ gene codes for a protein 

consisting of the β-galactosidase enzyme fused to a signal 
sequence from tau to promote axonal transport of the re-
porter enzyme thus enabling visualization of melanopsin 
axons throughout the brain [17]. The initial description of 
melanopsin projections to the SCN, IGL and OPN in the 
tau-lacZ mouse was followed by a more comprehensive 
examination of melanopsin axonal projections in the mouse 
brain. This revealed widespread ipRGC targets that included 
several other hypothalamic nuclei, the medial amygdala, 
lateral habenula, superior colliculus and periaqueductal gray 
[69]. Conspicuously lacking in the central targets of 
melanopsin-expressing RGCs revealed by β-galactosidase 
axonal labeling in the tau-lacZ mouse was a significant pro-
jection to the dorsal lateral geniculate nucleus (dLGN), the 
thalamic relay to primary visual cortex [17,69]. Although it 
might have been explicable for a photoreceptive system 
conveying irradiance information centrally not to send sig-
nals to the primary visual system mediating conscious vis-
ual perception, the absence of β-galactosidase labeled axons 
projecting to the dLGN in the mouse stood in contrast to 
work in the primate where melanopsin RGCs were retro-
gradely labeled after tracer injection into the dLGN [37]. 
The apparent species difference between rodent and primate 
regarding melanopsin afferents to the dLGN is now recog-
nized to be the result of an under-representation of the 
melanopsin afferent fibers in the tau-lacZ reporter mouse. 
For reasons not well understood, the β-galactosidase re-
porter protein is expressed at detectable levels only in ≈50% 
of the melanopsin RGCs in the adult tau-lacZ mouse retina 
[25,26] although all melanopsin RGCs appear to express 
β-galactosidase in the tau-lacZ neonatal retina up to about 
postnatal day 7 (Sollars and Pickard, unpublished observa-
tions). Using a new reporter mouse line in which all mel-
anopsin RGCs appear to express the reporter protein, Hattar 
and colleagues recently described in a preliminary report, 
widespread melanopsin RGC axonal projections that 
included a “substantial innervation in the dLGN” [70]. 

A substantial projection of ipRGCs to the thalamic relay 
of the primary visual system indicates that the apparent di-
chotomy of ‘image-forming’ and ‘non-image forming’ vis-
ual systems, often used to contrast ipRGCs from the rod and 
cone photoreceptors of the primary visual system [71,72] is 
in need of revision if not rejection, since even at the level of 
the retina the ‘visual’ rod and cone photoreceptors commu-
nicate with the ‘non-visual’ ipRGCs. The role of ipRGC 
input to the dLGN in visual perception is still unclear al-
though Dacey et al. have suggested that dLGN-projecting 
ipRGCs in the primate might play a role in the conscious 
perception of brightness [37]. This hypothesis is supported 
by results from a case study of an 87 year old patient with 
autosomal-dominant cone-rod dystrophy with no apparent 
outer retinal function. The patient however, did have cir-
cadian entrainment and an intact pupil response when light 
exposure was extended to 10 sec duration (brief light expo-
sure was ineffective), apparently mediated by ipRGCs [73].  
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She was also reported to be able to correctly identify the 
presence of a 481 nm test light but was unable to detect 
light at shorter or longer wavelengths. This unprecedented 
visual awareness without conscious perception was de-
scribed by the patient as ‘brightness’ [73]. These intriguing 
findings are clearly in need of further investigation. 

4.2 Different types of ipRGC have different central 
targets 

There are multiple types of ganglion cell in the mammalian 
retina. Based on morphological criteria such as the level of 
dendritic stratification in the inner plexiform layer (IPL), 
the extent of the dendritic field and the density of dendritic 
branching, conventional ganglion cells can be grouped into 
clusters [74]. Physiologically, ganglion cells can be classi-
fied simply as belonging to one of three types; those that 
respond to increments in light (ON cells), those that respond 
to decrements in light (OFF cells), and those that respond to 
the initiation and termination of a stimulus (ON-OFF cells) 
[75,76]. ON cells have their dendritic processes confined to 
the lower part of the IPL, the ON substratum, whereas OFF 
cell have their dendrites limited to the upper part of the IPL, 
the OFF sublayer. Ganglion cells with bistratified dendritic 
arborizations in both the lower and upper layers of the IPL 
are ON-OFF cells. It has become apparent that ipRGCs are 
similarly not a homogenous population but rather can be 
classified into types based on morphology and physiology. 

The first morphological description of ipRGCs in the rat 
described these SCN-projecting cells as sparsely branching 
and stratifying almost exclusively in the OFF sublayer of 
the IPL, near the border of the inner nuclear layer [16,17]. 
This pattern of dendritic aborization in the IPL is very un-
usual for ganglion cells that are depolarized by light (i.e., 
ON cells). Baver and colleagues retrogradely labeled 
SCN-projecting RGCs in the tau-lacZ mouse and discov-
ered that the vast majority (80%) of SCN-projecting 
ipRGCs had their dendrites in the OFF sublamina of the IPL 
and appeared to express a greater level of melanopsin pro- 
tein based on immunostaining; these ipRGCs were termed 
M1 cells. The remainder of ipRGCs projecting to the SCN 
expressed less melanopsin protein and had their dendrites in 
the proximal or ON sublayer of the IPL; these cells were 
termed M2 [26]. M1 and M2 ipRGCs were also described 
projecting to the OPN although in approximately equal 
proportions [26]. However, M1 ipRGCs innervate the shell 
region of the OPN whereas M2 ipRGCs send their axons to 
the central core of the OPN [26,70]. M2 ipRGCs have a 
more complex dendritic arborization, higher input resistance 
and a lower light sensitivity compared to M1 cells [77,78], 
consistent with less melanopsin expression in these cells 
[26]. The specific physiological roles these two subtypes of 
ipRGC serve remains to be determined. 

As mentioned above, rodent ipRGCs do not appear to 
maintain the strict anatomically determined differentiation 

between ON and OFF signaling observed for conventional 
ganglion cells. Moreover in the primate, two types of 
monostratified ipRGC have been described that send den-
drites to either the inner or the outer stratum of the IPL and 
both types generate sustained ON responses to light in vitro 
[37]. It was recently shown that ipRGCs with dendrites in 
the OFF sublamina (i.e., M1 ipRGCs) receive ON-bipolar 
cell input [25] via ectopic synapses of ON-bipolar cells as 
their axons pass through the OFF layer of the IPL, thereby 
establishing a new accessory ON sublayer in the outer IPL 
[79,80] (Figure1). 

4.3 ipRGC input to the ventrolateral preoptic nucleus 

ipRGC input to the SCN mediates entrainment of circadian 
rhythms and ipRGC input to the OPN provides the sensory 
limb of the pupillary light reflex. Retinal input to the IGL 
feeds back to the SCN to modulate the effects of light on 
circadian behavior [81,82]. Recently a series of reports have 
demonstrated that ipRGC input to the ventral lateral preop-
tic nucleus (VLPO) can induce sleep. 

The VLPO is a region of the hypothalamus involved in 
sleep homeostasis. VLPO neurons, which are active during 
sleep [83], receive ipRGC input [68,69] and light can influ-
ence sleep, promoting alertness in day-active species and 
sleep in night-active species. Light presented to mice during 
the dark period activates the VLPO and induces sleep. The-
se effects are still present, but reduced in melanopsin 
knockout mice, indicating that rods and cones also partici-
pate in the effects of light on sleep [84–86]. 

4.4 Retinal dopaminergic amacrine cells receive signals 
from ipRGCs 

Retinal dopaminergic amacrine cells play a critical role in 
reconfiguring retinal function according to prevailing illu-
mination conditions, yet the mechanisms by which light 
regulates their activity has remained poorly understood. 
Dopaminergic amacrine cells reside in the inner nuclear 
layer (INL) of the retina. They receive bipolar cell input and 
release dopamine through volume transmission, influencing 
visual signaling by all major classes of retinal neurons, from 
photoreceptors to ganglion cells [87]. 

Dopaminergic amacrine cells release dopamine in re-
sponse to flickering light and steady background illumina-
tion, as well as during prolonged darkness. This functional 
heterogeneity is reflected at the cellular level in retinal do-
paminergic neurons as transient, sustained, and null light 
responses in physiologically distinct neuronal subpopula-
tions [88]. ON-transient dopaminergic amacrine cells re-
ceive bipolar cell input, perhaps via ectopic bipolar cell 
synapses [80] whereas input from bipolar cells is not re-
quired for the excitatory light responses of ON-sustained 
dopaminergic amacrine cells. Surprisingly, these cells re-
ceive excitatory drive from ipRGCs [89], most likely from 
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direct contact of their dendrites with those of ipRGCs co- 
stratifying in the IPL near the border of the INL (Figure 2). 
ON-transient dopaminergic amacrine cell responses to light 
are absent in mice lacking rods and cones. Conversely 
ON-sustained dopaminergic amacrine cell responses to light 
are absent in melanopsin knockout mice [89]. This un-
precedented centrifugal outflow of ganglion-cell signals 
within the retina provides a novel basis for the restructuring 
of retinal circuits by light and indicates that information 
flow in the retina is truly bi-directional. 

5 Serotonergic modulation of ipRGC input to 
the SCN 

The intrinsic response of ipRGCs is modified by rod/cone 
input in the retina. In addition, the release of the neuro-
transmitter, glutamate, from their axon terminals in the SCN 
is modulated by serotonergic signals. 

The SCN receives a dense serotonergic input that arises 
from the median raphe nucleus of the midbrain. Selective 
destruction of serotonergic input to the SCN amplifies cir-
cadian behavioral responses to light [90,91]. A serotonin 
(5-HT) receptor subtype involved in the effects of 5-HT in 
the SCN is the 5-HT1B receptor. ipRGCs synthesize 5-HT1B 
receptors in the retina and ship them to their terminals in the 
SCN where they function as presynaptic inhibitory recep-
tors; activation of these receptors modulates the response of 
the SCN to photic input [92,93]. Moreover, 5-HT1B receptor 
knockout mice display a behavioral phenotype under 
short-day (winter-like) conditions, a delayed phase rela-
tionship to the day/night cycle [94], that resembles people  

 
 

Figure 2  Electron micrograph showing immunolabeling for tyrosine 
hydroxylase (TH) and melanopsin (Mel) in the innerplexiform layer of the 
mouse retina. Tissue was double-labeled with a sheep anti-TH antibody 
and rabbit anti-melanopsin antibody using a pre-embedding protocol and 
silver intensification of gold particles. TH processes and melanopsin den-
drites are in contact although to date no synaptic specializations have been 
observed. Note that the melanopsin immunoreaction product is located 
along the plasma membrane whereas TH staining is distributed throughout 
the cytoplasm as expected. Scale bar=500 nm. 

suffering from recurrent winter depression or seasonal af- 
fective disorder (SAD) [95,96]. Recently Provencio and 
colleagues described a missense variant of the melanopsin 
gene in SAD patients [97]. Several factors surely contribute 
to the etiology of SAD, and these may well include reduced 
sensitivity to light that may result from abnormalities in 
phototransduction in ipRGCs [97] and/or abnormalities in 
5-HT neurotransmission in the SCN [94]. 

Alterations in the phase of entrainment to the day/night 
cycle are associated with alterations in the amplitude of the 
diurnal rhythm of plasma corticosterone secreted from the 
adrenal cortex; phase delayed entrainment in mice signifi-
cantly blunts the daily corticosterone rhythm (Sollars and 
Pickard, unpublished observations). A blunted cortisol 
rhythm has been reported in SAD patients [98]. The reduc-
tion in corticosterone secretion may result from an altered 
phase relationship between the adrenal gland’s innate cir-
cadian rhythm in steroid biosynthesis [99] and the availabil-
ity of adrenocorticotropic hormone (ACTH) released from 
the anterior pituitary gland [100,101]. It is possible that 
ipRGC projections to the hypothalamus caudal to the SCN 
[69,102] may provide a direct input to hypothalamic neu-
rons that regulate the sympathetic outflow to the major or-
gans of the body. Considering that corticosterone is a potent 
transcription factor and the daily rhythm of corticosterone 
secretion affects gene expression in the brain and major 
organs of the body [103,104], this is an area that requires 
further investigation. 

6 The long road ahead 

Since the discovery of ipRGCs less than a decade ago, a 
remarkable literature has arisen documenting the idiosyn-
crasies of these neuronal photoreceptors and the diverse 
array of connections and functions these cells subserve. It is 
clear that much work remains to be done, for although many 
questions have already been addressed, few answers seem 
definitive, particularly with regard to the basic phototrans-
duction cascade. Still, after the mere existence of ipRGCs 
eluded notice during more than a century of active retinal 
research, it is a near certainty that unraveling the many puz-
zles that are posed by the structure and function of ipRGCs 
will shed unexpected new light on most currently held no-
tions of retinal organization.   
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